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Abstract
The multiplicity of solutions for a (p,q)-Laplacian equation involving critical exponent

–�pu –�qu = λV(x)|u|k–2u + K (x)|u|p∗–2u, x ∈R
N

is considered. By variational methods and the concentration–compactness principle,
we prove that the problem possesses infinitely many weak solutions with negative
energy for λ ∈ (0,λ∗). Moreover, the existence of infinitely many solutions with
positive energy is also given for all λ > 0 under suitable conditions.
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1 Introduction
In this paper, we consider multiple nontrivial weak solutions to the following nonlinear
elliptic problem of (p, q)-Laplacian type involving critical Sobolev exponent:

–�pu – �qu = λV (x)|u|k–2u + K(x)|u|p∗–2u, x ∈R
N , (1.1)

where �mu = div(|∇|m–2∇u) is the m-Laplacian of u, λ > 0, 1 < k < q < p < N and p∗ = Np
N–p .

The (p, q)-Laplacian problem (1.1) comes from a general reaction–diffusion system

ut = div
[
E(u)∇u

]
+ c(x, u), (1.2)

where E(u) = (|∇u|p–2 + |∇u|q–2). The system has a wide range of applications in physics
and related sciences, such as biophysics, chemical reaction and plasma physics. In such
applications, the function u describes a concentration, the first term on the right-hand
side of (1.2) corresponds to the diffusion with a diffusion coefficient E(u); whereas the
second one is the reaction and relates to sources and loss processes. Typically, in chemical
and biological applications, the reaction term c(x, u) has a polynomial form with respect
to the concentration u. Specially, taking q = 2, we note that (p, 2)-equations arise in many
physical applications (see [2] and [5]), and recently such equations were studied by Papa-
georgiou et al. [10–13]. For example, in [11], they studied the existence and multiplicity of
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the following parametric nonlinear nonhomogeneous Dirichlet problem:

–�pu(z) – �(z) = λ
∣
∣u(z)

∣
∣p–2u(z) + f

(
z, u(z)

)
in �, u|∂� = 0, 2 < p < ∞,

where � ⊂ R
N and the parameter λ > 0 is near the principal eigenvalue λ1(p) > 0 of

(–�p, W 1,p
0 (�)).

For general q ∈ (1, p) and concave–convex nonlinearities, the stationary solution of (1.2)
was studied by many authors and fruitful multiplicity results were obtained for the follow-
ing problem:

– div
[
E(u)∇u

]
= c(x, u). (1.3)

For example, in [7], G. Li and G. Zhang considered problem (1.3) with the critical exponent

c(x, u) = |u|p∗–2u + θ |u|r–2u (1.4)

by using Lusternik–Schnirelman’s theory. They proved that when θ > 0, 1 < r < q < p < N
and � ⊂R

N is bounded, there is a θ0 > 0 such that problem (1.3) possesses infinitely many
weak solutions in W 1,p

0 (�) for any θ ∈ (0, θ0).
Moreover, H. Yin and Z. Yang in [17] studied the equation

–�pu – μ�qu = θV (x)|u|r–2u + |u|p∗–2u + λf (x, u) (1.5)

for the multiplicity of solutions on a bounded domain � ⊂ R
N with 1 < r < q < p and

λ ∈ (0,λ∗).
But they only considered infinitely many weak solutions on a bounded domain �. Dif-

ferent from [7] and [17], our work is developed in the whole space R
N and the existence

of infinitely many solutions with positive energy for problem (1.1) is also discussed, which
are not mentioned in the references.

Our main results can be described as follows.

Theorem 1.1 Suppose 1 < k < q < p < N , N ≥ 3, K(x) ∈ C(RN ) ∩ L∞(RN ) and 0 ≤ V (x) ∈
C(RN )∩Lr(RN ) with r = p∗

p∗–k . Moreover, V (x) > 0 is bounded on some open subset � ⊂R
N ,

with |�| > 0. Then there exists a λ∗ > 0 such that, for all λ ∈ (0,λ∗), problem (1.1) has a
sequence of weak solutions with negative energy.

Denote the group of orthogonal linear transformations in R
N by O(N) and let T ⊂ O(N)

be a subgroup. Set |T | := infx∈RN ,x 
=0 |Tx|, where Tx := {τx : τ ∈ O(N)} for x 
= 0 (see [16]).
Moreover, a function f : RN → R is called T-invariant if f (τx) = f (x) for all τ ∈ T and
x ∈R

N .

Theorem 1.2 Suppose 1 < k < q < p < N , N ≥ 3, and assume V (x) and K(x) are T-
invariant. Moreover, let |T | = ∞, K(0) = 0, lim|x|→∞ K(x) = 0, K(x) ∈ C(RN ) ∩ L∞(RN ),
K(x) > 0 a.e. in R

N and 0 ≤ V (x) ∈ Lr(RN ) ∩ Lr′ (RN ) with r = p∗
p∗–k and r′ = q∗

q∗–k . Then, for
all λ > 0, problem (1.1) possesses infinitely many solutions with positive energy.
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This paper is organized as follows. In Sect. 2, for the reader’s convenience, we describe
the main mathematical tools which we shall use. The existence theorem for λ ∈ (0,λ∗) is
proved in Sect. 3 via the application of genus. In Sect. 4, under suitable conditions, we
show that problem (1.1) possesses infinitely many solutions with positive energy for every
λ > 0.

2 Preliminary results
We now recall some known results and state our basic assumptions.

In this paper ‖ · ‖p denotes the usual Lp norm and

D1,p(
R

N)
:=

{∇u ∈ Lp(
R

N)}
,

with the norm defined by

‖u‖D1,p =
(∫

RN
|∇u|p dx

)1/p

.

We deal with problem (1.1) in the reflexive Banach space [3]

X := D1,p(
R

N) ∩ D1,q(
R

N)
,

which is endowed with the norm

‖u‖X = ‖u‖D1,p + ‖u‖D1,q .

Throughout this paper the function K(x) ∈ C(RN ) ∩L∞(RN ). We consider the following
functional

Eλ(u) =
1
p

∫

RN
|∇u|p dx +

1
q

∫

RN
|∇u|q dx

–
λ

k

∫

RN
V (x)|u|k dx –

1
p∗

∫

RN
K(x)|u|p∗

dx. (2.1)

From the following Lemmas 2.1–2.2 the functional Eλ is well defined in X. Obviously, a
critical point of Eλ in X is a weak solution of (1.1).

The value S is the best Sobolev constant, i.e.,

S = inf

{‖∇u‖p
p

‖u‖p
p∗

: u ∈ D1,p(
R

N)
, u 
= 0

}
. (2.2)

Lemma 2.1 Suppose that V (x) ∈ Lr(RN ) with r = p∗
p∗–k , then the functional

J(u) =
∫

RN
V (x)|u|k dx

is well defined and weakly continuous on D1,p(RN ). Moreover, J(u) is continuously differen-
tiable, its derivative J ′ : D1,p(RN ) → (D1,p(RN ))∗ is given by

J ′(u)ψ = k
∫

RN
V (x)|u|k–2u · ψ dx, ∀ψ ∈ D1,p(

R
N)

.
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Proof For u ∈ X ⊂ Lp∗ (RN ), by Hölder inequality, we have

∫

RN
V (x)|u|k dx ≤ ‖V‖r‖u‖p∗ .

This implies that J(u) is well defined.
Let {un} converge weakly to u in D1,p(RN ). Then {un} is bounded in Lp∗ (RN ) and {|un|k}

is bounded in L
p∗
k (RN ). Hence, {|un|k} converges weakly to |u|k in L

p∗
k (RN ). Since V (x) ∈

L
p∗

p∗–k (RN ), we have

∫

RN
V (x)|un|k dx →

∫

RN
V (x)|u|k dx,

which implies weak continuity. The proof of the rest is similar to that of Lemma 2.6 in
[15], we omit it. �

Using a similar argument as in the proof of Lemma 2.1, we have

Lemma 2.2 Suppose that K(x) ∈ L∞(RN ) , then the functional

H(u) =
∫

RN
K(x)|u|p∗

dx

is well defined on D1,p(RN ). Moreover, H(u) is continuously differentiable, its derivative
H ′ : D1,p(RN ) → (D1,p(RN ))∗ is given by

H ′(u)ψ = p∗
∫

RN
K(x)|u|p∗–2u · ψ dx, ∀ψ ∈ D1,p(

R
N)

.

The following lemmas and definitions are also needed in our discussion.

Lemma 2.3 ([6]) Let s > 1 and � be an open set in R
N . Consider un, u ∈ W 1,s(�), n =

1, 2, 3, . . . . Let a(x, ξ ) ∈ C0(� × R
N ,RN ) have, for positive numbers α,β > 0, the following

properties:
(i) α|ξ |s ≤ a(x, ξ )ξ for all ξ ∈R

N ,
(ii) |a(x, ξ )| ≤ β|ξ |s–1 for all (x, ξ ) ∈ � ×R

N ,
(iii) (a(x, ξ ) – a(x,η))(ξ – η) > 0 for all (x, ξ ) ∈ � ×R

N with ξ 
= η.
Then ∇un → ∇u in Ls(�) if and only if

lim
n→∞

∫

�

(
a
(
x,∇un(x)

)
– a

(
x,∇u(x)

))(∇un(x) – ∇u(x)
)

dx = 0.

Lemma 2.4 ([8, 9]) Let {un} converge weakly to u in D1,p(RN ) such that {|un|p∗ } converges
weakly to a nonnegative measure ν on R

N . Then, for some at most countable set J , we have

ν = |u|p∗
+

∑

j∈J

νjδxj and
∑

j∈J

ν

p
p∗

j < ∞, (2.3)

where xj ∈R
N , δxj denotes the Dirac measure at xj, and νj are constants.
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Definition 2.1
(i) Let X be a Banach space and E : X →R be a differentiable functional. A sequence

{uk} ⊆ X is called a (PS)c sequence for E if E(uk) → c and E′(uk) → 0 (in X∗) as
k → ∞.

(ii) If every (PS)c sequence for E has a converging subsequence (in X), we say that E
satisfies the (PS)c-conditions.

In the rest of this section, we introduce some preparatory work for the proof of Theo-
rem 1.1.

Lemma 2.5 Let {un} ⊂ X be a (PS)c sequence for Eλ(u). Then {un} is bounded in X.

Proof Suppose {un} ⊂ X is a (PS)c sequence of Eλ(u), i.e.,

Eλ(un) = c + o(1), E′
λ(un) = o(1), (2.4)

where o(1) → 0 as n → ∞. By (2.4), for n large enough, we have

c + 1 + ‖un‖ ≥ Eλ(un) –
1
p∗ E′

λ(un)un

=
(

1
p

–
1
p∗

)∫

RN
|∇un|p dx +

(
1
q

–
1

p∗
)∫

RN
|∇un|q dx

–
(

λ

k
–

λ

p∗

)∫

RN
V (x)|un|k dx

≥
(

1
p

–
1
p∗

)∫

RN
|∇un|p dx +

(
1
q

–
1
p∗

)∫

RN
|∇un|q dx

–
(

λ

k
–

λ

p∗

)
S– k

p
∥∥V (x)

∥∥
L

p∗
p∗–k

(∫

RN
|∇un|p dx

) k
p

.

That is, for all large n, we have

c1
(
1 + ‖un‖ + ‖un‖k) ≥ c2‖un‖p

D1,p + c3‖un‖q
D1,q ,

where c1, c2 and c3 are positive constants independent of n.
Suppose ‖un‖ → ∞. We distinguish the following three cases:
(1) ‖un‖D1,p → ∞ and ‖un‖D1,q → ∞;
(2) ‖un‖D1,p → ∞ and {‖un‖D1,q} is bounded;
(3) {‖un‖D1,p} is bounded and ‖un‖D1,q → ∞.
If case (1) occurs, for all large n, we get

c1
(
1 + ‖un‖ + ‖un‖k) ≥ c2‖un‖p

D1,p + c3‖un‖q
D1,q

≥ c2‖un‖q
D1,p + c3‖un‖q

D1,q

≥ c4
(‖un‖q

D1,p + ‖un‖q
D1,q

)

≥ c5‖un‖q,

which is a contradiction to the fact k < q.
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If case (2) is true, for all large n, we have

c1
(
1 + ‖un‖D1,p + ‖un‖D1,q + 2k–1‖un‖k

D1,p + 2k–1‖un‖k
D1,q

)

≥ c2‖un‖p
D1,p + c3‖un‖q

D1,q

≥ c2‖un‖p
D1,p ,

thus

0 <
c2

c1
≤ lim

n→∞

(
1

‖un‖p
D1,p

+
1

‖un‖p–1
D1,p

+
‖un‖D1,q

‖un‖p
D1,p

+
2k–1

‖un‖p–k
D1,p

+
2k–1‖un‖k

D1,q

‖un‖p
D1,p

)
= 0.

This is impossible.
Proceeding as in the second case, one can also verify that the third case cannot happen.

Hence, the proof is completed. �

Lemma 2.6 If c < 0, then there exists a λ∗ > 0 such that Eλ satisfies (PS)c-conditions for all
0 < λ < λ∗.

Proof For ϕ ∈ C∞
0 (RN ) and w ∈ X, from (2.2) we have

S
1
p

(∫

RN
|wϕ|p∗

dx
) 1

p∗

≤
(∫

RN

∣
∣∇(wϕ)

∣
∣p dx

) 1
p

≤
(∫

RN
|w|p|∇ϕ|p dx

) 1
p

+
(∫

RN
|∇w|p|ϕ|p dx

) 1
p

≤
(∫

RN
|w|p|∇ϕ|p dx

) 1
p

+
(∫

RN

(|∇w|p + |∇w|q)|ϕ|p dx
) 1

p
. (2.5)

Suppose {un} is a (PS)c sequence. As a consequence of the boundedness of {un}, given
by Lemma 2.5, there exists a u ∈ X such that, up to subsequence, un ⇀ u in X.

Let ψ ∈ C∞
0 (RN ) satisfy ψ(x) = 0 for |x| > 1, ψ(x) = 1 for |x| ≤ 1

2 , 0 ≤ ψ(x) ≤ 1, x ∈R
N .

Applying Lemma 2.4 gives

|un|p∗
⇀ |u|p∗ +

∑

j∈J

νjδxj .

Since {un} is bounded, there exists a nonnegative measure μ such that

|∇un|p + |∇un|q ⇀ μ. (2.6)

For each index j and each 0 < ε < 1, define

ψε(x) := ψ

(
x – xj

ε

)
.
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It follows from inequality (2.5) that

S
1
p

(∫

RN
|unψε|p∗

dx
) 1

p∗
≤

(∫

RN
|un|p|∇ψε|p dx

) 1
p

+
(∫

RN

(|∇un|p + |∇un|q
)|ψε|p dx

) 1
p

.

Furthermore, letting n → ∞, Lemma 2.4 and (2.6) together imply that

S
1
p

(∫

RN
|ψε|p∗

dν

) 1
p∗

≤
(∫

RN
|u|p|∇ψε|p dx

) 1
p

+
(∫

RN
|ψε|p dμ

) 1
p

,

and then, by taking ε → 0,

S
1
p

(∫

xj

dν

) 1
p∗

≤
(∫

xj

dμ

) 1
p

,

which yields

Sν

p
p∗

j ≤ μj :=
∫

xj

dμ. (2.7)

On the other hand, from the fact that E′
λ(un)ψεun → 0 we have

∫

RN
|∇un|p–2un∇ψε∇un dx +

∫

RN
|∇un|q–2un∇ψε∇un dx

= λ

∫

RN
V (x)|un|kψε dx +

∫

RN
K(x)|un|p∗

ψε dx

–
∫

RN

(|∇un|p + |∇un|q
)
ψε dx + o(1), as n → ∞, (2.8)

and since V (x)ψε ∈ Lr(RN ), Lemma 2.1 and (2.8) show that

lim
n→∞

(∫

RN
|∇un|p–2un∇ψε∇un dx +

∫

RN
|∇un|q–2un∇ψε∇un dx

)

= λ

∫

RN
V (x)|u|kψε dx +

∫

RN
K(x)ψε dν –

∫

RN
ψε dμ. (2.9)

From Hölder inequality with p, p/(p – 1), we have

∣∣
∣∣

∫

RN
|∇un|p–2un∇ψε∇un dx

∣∣
∣∣ ≤

∫

RN
|∇un|p–1|un∇ψε|dx

≤ ‖un‖p–1
(∫

Bε(xj)
|un|p|∇ψε|p dx

)1/p

.
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Furthermore, since |un∇ψε| → |u∇ψε| in Lp(RN ),

lim
n→∞

(
‖un‖p–1

(∫

Bε(xj)
|un|p|∇ψε|p dx

)1/p)

≤ C
(∫

Bε(xj)
|u|p|∇ψε|p dx

)1/p

≤ C
(∫

Bε(xj)
|u|p∗

dx
)1/p∗(∫

Bε(xj)
|∇ψε|N dx

)1/N

≤ C
(∫

Bε(xj)
|u|p∗

dx
)1/p∗

. (2.10)

Now by replacing p with q, (2.10) reveals

lim
n→∞

∫

RN
|∇un|q–2un∇ψε∇un dx ≤ C

(∫

Bε (xj)
|u|q∗

dx
)1/q∗

.

In (2.9),

K(xj)νj = μj (2.11)

is valid if ε → 0. Besides, if K(xj) ≤ 0, one gets μj = νj = 0; while if K(xj) > 0, by (2.7), we
have

(i) νj = 0;
(ii) νj ≥ ( S

K (xj)
)

N
P .

Define

ν∞ := lim
R→∞ lim sup

n→∞

∫

|x|>R
|un|p∗

dx;

μ∞ := lim
R→∞ lim sup

n→∞

∫

|x|>R
|∇un|p + |∇un|q dx.

By the concentration–compactness principle at infinity, ν∞ and μ∞ exist and satisfy:
(a1) lim supn→∞

∫
RN |un|p∗ dx =

∫
RN dν + ν∞;

(a2) lim supn→∞
∫
RN (|∇un|p + |∇un|q) dx =

∫
RN dμ + μ∞;

(a3) Sν

p
p∗
∞ ≤ μ∞.

Let ψR ∈ C∞(RN ) satisfy ψR(x) = 0 for |x| < R, ψR(x) = 1 for |x| > 2R, 0 ≤ ψR(x) ≤ 1,
x ∈R

N . Then we get

∫

RN
|∇un|p–2un∇ψR∇un dx +

∫

RN
|∇un|q–2un∇ψR∇un dx

= λ

∫

RN
V (x)|un|kψR dx +

∫

RN
K(x)|un|p∗

ψR dx

–
∫

RN

(|∇un|p + |∇un|q
)
ψR dx + o(1). (2.12)
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Similar to the proof of (2.10), we have

lim sup
n→∞

∣∣
∣∣

∫

RN
|∇un|p–2un∇ψR∇un dx

∣∣
∣∣ ≤ C

(∫

R<|x|<2R
|u|p∗

dx
)1/p∗

→ 0, as R → ∞.

Let R → ∞ in (2.12), then

‖K‖∞ν∞ = μ∞, (2.13)

which in turn means, by (a3),
(iii) ν∞ = 0;
(iv) ν∞ ≥ ( S

‖K‖∞ )
N
p .

We now claim that (ii) and (iv) are impossible if λ is chosen small enough. Indeed, since
{un} is a (PS)c sequence, for n large enough, we have

0 > c + o(1)‖un‖ = Eλ(un) –
1
p∗ E′

λ(un)un

≥
(

1
p

–
1
p∗

)∫

RN
|∇un|p dx –

(p∗ – k)λ
kp∗

∫

RN
V (x)|un|k dx

≥ S
N

‖un‖p
p∗ –

(p∗ – k)λ
kp∗

∥
∥V (x)

∥
∥

r‖un‖k
p∗. (2.14)

This yields that

‖un‖p∗ ≤ Cλ
1

p–k . (2.15)

On the other hand, for n and R large enough and if (iv) occurs, we get

0 > c + o(1)‖un‖

≥
(

1
p

–
1
p∗

)∫

RN
|∇un|p dx +

(
1
q

–
1
p∗

)∫

RN
|∇un|q dx

–
(p∗ – k)λ

kp∗

∫

RN
V (x)|un|k dx

≥ 1
N

∫

RN

(|∇un|p + |∇un|q
)
ψR dx –

(p∗ – k)λ
kp∗

∥
∥V (x)

∥
∥

r‖un‖k
p∗

≥ 1
N

μ∞ + o(1) –
(p∗ – k)λ

kp∗
∥∥V (x)

∥∥
r‖un‖k

p∗

≥ 1
N

S
N
p ‖K‖

p–N
p∞ – Cλ

p
p–k , (2.16)

where we use (2.15) and (a3). Therefore we can choose λ∗ > 0 such that for every λ ∈ (0,λ∗)

1
N

S
N
p ‖K‖

p–N
p∞ – Cλ

p
p–k > 0,

which is a contradiction to (2.16).
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A similar argument shows that (ii) cannot occur if λ∗ is chosen properly. Thus, μi = νi =
μ∞ = ν∞ = 0. From (a1) and (2.3),

lim
n→∞

∫

RN
|un|p∗

dx =
∫

RN
|u|p∗

dx. (2.17)

And Brezis–Lieb Lemma [16] implies

lim
n→∞

∫

RN
|un – u|p∗

dx = 0. (2.18)

Since K(x) ∈ L∞(RN ),

∣∣
∣∣

∫

RN
K(x)|un

∣∣
∣∣

p∗–1

|un – u|dx| ≤ ‖K‖∞‖un‖p∗–1
p∗

(∫

RN
|un – u|p∗

dx
) 1

p∗
. (2.19)

Then from (2.18) and (2.19), one gets

lim
n→∞

∫

RN
K(x)|un|p∗–1|un – u|dx = 0. (2.20)

A similar argument shows that

lim
n→∞

∫

RN
V (x)|un|k–1|un – u|dx = 0. (2.21)

Now we define

〈
Ar(u),ϕ

〉
:=

∫

RN
|∇u|r–2〈∇u,∇ϕ〉RN dx, ∀u,ϕ ∈ X.

Considering 〈E′
λ(un), un – u〉 as n → ∞, we have

lim
n→∞

[〈
Ap(un), un – u

〉
+

〈
Aq(un), un – u

〉

– λ

∫

RN
V (x)|un|k–2un(un – u) dx –

∫

RN
K(x)|un|p∗–2un(un – u) dx

]
= 0.

It means

lim
n→∞

[〈
Ap(un), un – u

〉
+

〈
Aq(un), un – u

〉]
= 0.

From the monotonicity of Aq(u) (see [4]), the following is true:

lim sup
n→∞

[〈
Ap(un), un – u

〉
+

〈
Aq(u), un – u

〉] ≤ 0.

Notice that un ⇀ u in D1,q(RN ),

lim
n→∞

〈
Aq(u), un – u

〉
= 0.
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Therefore

lim sup
n→∞

〈
Ap(un), un – u

〉 ≤ 0. (2.22)

Consequently,

lim
n→∞

〈
Ap(un) – Ap(u), un – u

〉
= 0.

Finally, the following two results can be obtained by taking a(x, ξ ) = |ξ |p–2ξ and using
Lemma 2.3:

lim
n→∞

∫

RN

∣∣∇(un – u)
∣∣p dx = 0,

lim
n→∞

∫

RN

∣∣∇(un – u)
∣∣q dx = 0.

The proof is complete. �

Now truncate the energy functional of problem (1.1). By Sobolev embedding theorem,
for all u ∈ X, we have

Eλ(u) =
1
p

∫

RN
|∇u|p dx +

1
q

∫

RN
|∇u|q dx

–
λ

k

∫

RN
V (x)|u|k dx –

1
p∗

∫

RN
K(x)|u|p∗

dx

≥ 1
p
‖u‖p

D1,p – λc1‖u‖k
D1,p – c2‖u‖p∗

D1,p . (2.23)

Let h(t) = c3tp – λc4tk – c5tp∗ , we need to discuss the further properties of h(t). Firstly, it
is easy to see that there exist λ∗, T0 and T1, with 0 < T0 < T1, such that

h(T0) = h(T1) = 0,

h(t) ≤ 0, ∀0 ≤ t ≤ T0,

h(t) > 0, ∀T0 < t < T1,

h(t) ≤ 0, ∀t ≥ T1.

for every λ ∈ (0,λ∗).
Secondly, let τ : R+ → [0, 1] be a C∞ non-increasing function such that

τ (t) = 1, if t ≤ T0; τ (t) = 0, if t ≥ T1.

We consider the truncated functional

E∞(u) =
1
p

∫

RN
|∇u|p dx +

1
q

∫

RN
|∇u|q dx –

λ

k

∫

RN
V (x)|u|k dx

–
τ (‖u‖D1,p )

p∗

∫

RN
K(x)|u|p∗

dx
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and suppose

h(t) = c3tp – λc4tk – c5tp∗
τ (t).

Then

E∞(u) ≥ h
(‖u‖D1,p

)
.

At the same time, we notice that h(t) ≥ h(t), if t > 0; h(t) = h(t) if 0 ≤ t ≤ T0; 0 ≤ h(t) ≤
h(t), if T0 < t < T1; h(t) > 0, if t > T1. Thus we get that Eλ(u) = E∞(u) when 0 ≤ ‖u‖D1,p ≤ T0.
Furthermore, for τ ∈ C∞ we have E∞(u) ∈ C1(X,R) and obtain the following lemma.

Lemma 2.7
(a) If E∞(u) < 0, then ‖u‖D1,p < T0, and Eλ(v) = E∞(v) for all v in a small enough

neighborhood of u.
(b) For all λ ∈ (0,λ∗), E∞(u) satisfies the (PS)c-conditions for c < 0.

Proof We prove (a) by contradiction. If ‖u‖D1,p ∈ [T0, +∞), by the above analysis we see
that

E∞(u) ≥ h
(‖u‖D1,p

) ≥ 0.

This is a contradiction to E∞(u) < 0, thus ‖u‖D1,p < T0 and (a) holds.
Claim (b) can be proved by the (PS)c-conditions for Eλ as λ ∈ (0,λ∗) (see Lemma 2.6). �

The following is the classical Deformation Lemma (see [14]):

Lemma 2.8 Let Y be a Banach space and consider an f ∈ C1(Y ,R), satisfying the (PS)-
conditions. If c ∈ R and N is any neighborhood of Kc � {u ∈ Y : f (u) = c, f ′(u) = 0}, there
exist η(t, u) ≡ ηt(u) ∈ C([0, 1] × Y , Y ) and constants ε > ε > 0 such that

(1) η0(u) = u ∀u ∈ Y ;
(2) ηt(u) = u ∀u /∈ f –1[c – ε, c + ε];
(3) ηt(u) = u is a homeomorphism of Y onto Y ∀t ∈ [0, 1];
(4) f (ηt(u)) ≤ f (u) ∀u ∈ Y ∀t ∈ [0, 1];
(5) η1(f c+ε \ N) ⊂ f c–ε , where f c = {u ∈ Y : f (u) ≤ c} ∀c ∈R;
(6) If Kc = ∅, η1(f c+ε) ⊂ f c–ε ;
(7) If f is even, ηt is odd in u.

We end up this section by pointing out some concepts and results about Z2 index theory.
Let Y be a Banach space and set

� =
{

A ⊂ Y \ {0} : A is closed, –A = A
}

.

For A ∈ �, we define the Z2 genus of A by

γ (A) = min
{

n ∈N : there exists an odd, continuous φ : A →R
n \ {0}},

if such a minimum does not exist, then γ (A) = +∞.
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The main properties of genus are given in the following lemma (see [14]).

Lemma 2.9 Let A, B ∈ �. Then
(1) If there exists f ∈ C(A, B), odd, then γ (A) ≤ γ (B);
(2) If A ⊂ B, then γ (A) ≤ γ (B);
(3) If there exists an odd homeomorphism between A and B, then γ (A) = γ (B);
(4) If SN–1 is the unit sphere in R

N , then γ (SN–1) = N ;
(5) γ (A ∪ B) ≤ γ (A) + γ (B);
(6) If γ (A) < ∞, then γ (A – B) ≥ γ (A) – γ (B);
(7) If A is compact, then γ (A) < ∞, and there exists a δ > 0 such that γ (A) = γ (Nδ(A)),

where Nδ(A) = {x ∈ Y : d(x, A) ≤ δ};
(8) If Y0 is a subspace of Y with codimension k, and γ (A) > k, then A ∩ Y0 
= ∅.

3 Proof of Theorem 1.1
Now we are ready to prove Theorem 1.1 via genus argument.

For 1 ≤ j ≤ n, we define

cj = inf
A∈∑

j
sup
u∈A

E∞(u),

where

�j =
{

A ⊂ X \ {0} : A is closed in X, –A = A,γ (A) ≥ j
}

.

Let Kc = {u ∈ X : E∞(u) = c, E′∞(u) = 0} and suppose that λ ∈ (0,λ∗), where λ∗ is given by
Lemma 2.6.

Firstly, we claim that if j ∈N, there is an εj = ε(j) > 0 such that

γ
(
E–εj

∞
) ≥ j,

where E–ε∞ = {u ∈ X : E∞(u) ≤ –ε}.
Here W 1,p

0 (�) is the closure of C∞
0 (�) with ‖u‖W 1,p

0 (�) = (
∫
�

|∇u|p)
1
p , and � ⊂ R

N is an
open bounded subset with |�| > 0 and C1-boundary, V (x) > 0 in �. Extending functions
in W 1,p

0 (�) by 0 outside �, we can assume that W 1,p
0 (�) ⊂ X.

Let Wj be a j-dimensional subspace of W 1,p
0 (�). For every v ∈ Wj with ‖v‖W 1,p

0 (�) = 1,
from the assumptions of V (x), it is easy to see that there exists a dj > 0 such that

∫

�

V (x)|v|k dx ≥ dj.

Since Wj is a finite-dimensional space, all the norms in Wj are equivalent. Thus we can
define

aj = sup
{|∇v|qq : v ∈ Wj,‖v‖W 1,p

0 (�) = 1
}

< ∞,

bj = sup
{|v|p∗

p∗ : v ∈ Wj,‖v‖W 1,p
0 (�) = 1

}
< ∞.

(3.1)
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On the other hand, for 0 < t < T0, since

E∞(tv) = Eλ(tv) =
1
p

tp +
tq

q
|∇v|qq –

λtk

k

∫

�

V (x)|v|k dx –
tp∗

p∗

∫

�

K(x)|v|p∗
dx,

for every v ∈ Wj with ‖v‖W 1,p
0 (�) = 1, we obtain

E∞(tv) ≤ 1
p

tp +
aj

q
tq –

λdj

k
tk –

tp∗

p∗

∫

�

K(x)|v|p∗
dx

≤ 1
p

tp +
aj

q
tq –

λdj

k
tk +

bj|K |∞
p∗ tp∗

. (3.2)

Therefore for λ ∈ (0,λ∗), there must be a t0 ∈ (0, T0) sufficiently small such that E∞(t0v) ≤
–εj < 0, where εj = – 1

p tp
0 – aj

q tq
0 + λdj

k tk
0 – bj|K |∞

p∗ tp∗
0 . Denote St0 = {v ∈ X : ‖v‖W 1,p

0 (�) = t0},

then St0 ∩ Wj ⊂ E–εj
∞ . By Lemma 2.9,

γ
(
E–εj

∞
) ≥ γ (St0 ∩ Xj) ≥ j.

As E∞ is continuous and even, E–εj
∞ ∈ �j and cj ≤ –εj < 0. Since E∞ is bounded from

below, cj > –∞ (that is why we consider E∞ instead of Eλ). Then from Lemma 2.6 we see
that E∞ satisfies the (PS)c-conditions (for c < 0) and this implies that Kc is a compact set.

Secondly, we claim that if for some j ∈N there is an i ≥ 0 such that c = cj = cj+1 = · · · = cj+i,
then γ (Kc) ≥ i + 1.

We now prove the main claim by contradiction. If γ (Kc) ≤ i, there exists a closed and
symmetric set U with Kc ⊂ U and γ (U) ≤ i. Since c < 0, we can also assume that the closed
set U ⊂ E0∞. Using Lemma 2.8, there is an odd homeomorphism

η : [0, 1] × X → X

such that η(Ec+δ∞ \U) ⊂ Ec–δ∞ for some δ ∈ (0, –c).
From the hypothesis of c = cj+i, there exists an A ∈ �j+i such that

sup
u∈A

E∞(u) < c + δ.

Thus

η(A\U) ⊂ η
(
Ec+δ

∞ \U
) ⊂ Ec–δ

∞ ,

which means

sup
u∈η(A\U)

E∞(u) ≤ c – δ.

But Lemma 2.9 reveals

γ
(
η(A\U)

) ≥ γ (A\U) ≥ γ (A) – γ (U) ≥ j.
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Hence η(A\U) ∈ �j and

c = cj ≤ sup
u∈η(A\U)

E∞(u) = sup
u∈η(A\U)

E∞(u) ≤ c – δ.

So we have proved the main claim.
We now complete the proof of Theorem 1.1. For all j ∈ N, we have �j+1 ⊂ �j and cj ≤

cj+1 < 0. If all cjs are distinct, then γ (Kcj ) ≥ 1, and we know that {cj} is a sequence of distinct
negative critical values of E∞. If for some j0, there exists an i ≥ 1 such that

c = cj0 = cj0+1 = · · · = cj0+i,

from the main claim, we have

γ (Kcj0
) ≥ i + 1,

which shows that Kcj0
has infinitely many distinct elements.

By Lemma 2.7, we know Eλ(u) = E∞(u) when E∞(u) < 0, and we see that there exist 2n
critical points of Eλ(u) with negative critical values. Therefore problem (1.1) has 2n weak
solutions with negative critical energy.

4 Proof of Theorem 1.2
We denote XT = {u ∈ X : u(τx) = u(x), τ ∈ O(N)} and Lp∗

T = {u ∈ Lp∗ (RN ) : u(τx) = u(x), τ ∈
O(N)}. By the principle of symmetric criticality, we have

Lemma 4.1 ([15]) If E′
λ(u) = 0 in X∗

T , then E′
λ(u) = 0 in X∗.

Lemma 4.2 If 1 < k < q < p < N , |T | = ∞, K(0) = 0 and lim|x|→∞ K(x) = 0, then Eλ in XT

satisfies the (PS)c-conditions for all c ∈R.

Proof We only give a sketch of the proof because it is analogous to that of Lemma 2.6.
Let {un} ⊂ XT be a (PS)c sequence of Eλ. An argument similar to the one used in proving
Lemma 2.5 shows that {un} is bounded. Using Lemma 2.4, there exists a measure ν such
that (2.3) holds. We claim that the concentration of ν cannot occur at any x 
= 0. Assuming
that xk 
= 0 is a singular point of ν , we have νk = ν(xk) > 0 and since ν is T-invariant, ν(τxk) =
νk > 0 for all τ ∈ T . Since |T | = ∞, the sum in (2.3) (see Lemma 2.4) is infinite, which is a
contradiction. On the other hand, by (2.11) and since K(0) = 0, we get ν0 = 0.

The next step in the proof is showing that the concentration of ν cannot occur at infinity.
Since lim|x|→∞ K(x) = 0, we have

lim
R→∞ lim sup

n→∞

∫

|x|>R
K(x)|un|p∗

dx = 0.

By the same arguments as when proving (2.13), we have μ∞ = 0, then from (a3) (see
Lemma 2.6), we obtain ν∞ = 0. Thus un → u in Lp∗

T (RN ), and the argument at the end
of the proof of Lemma 2.6 implies that un → u in XT . �
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Since XT is a separable Banach space (see [1]), there is a linearly independent sequence
{ej} such that

XT =
⊕

j≥1

Xj, Xj := span{ej}.

Denote Yk =
⊕

j≤k Xj and Zk =
⊕

j≥k Xj.

Lemma 4.3 ([15]) Let E ∈ C1(XT ,R) be an even functional satisfying the (PS)c-conditions
for every c > 0. If for every k ∈ N there exist ρk > rk > 0 such that

(a) αk := maxu∈Yk ,‖u‖=ρk E(u) ≤ 0,
(b) βk := infu∈Zk ,‖u‖=rk E(u) → ∞, as k → ∞,

then E has a sequence of critical values tending to ∞.

Proof of Theorem 1.2 Obviously, Eλ is even and Eλ ∈ C1(XT ,R). By Lemma 4.2, Eλ satisfies
the (PS)c conditions for every c ∈ R. Since Yk is a finite-dimensional subspace of XT for
each k ∈N and K(x) > 0 a.e. in R

N , this implies that there exists a constant εk > 0 such that
for all v ∈ Yk with ‖v‖ = 1 we have

∫

RN
K(x)|v|p∗

dx ≥ εk . (4.1)

On the other hand,

Eλ(u) =
1
p

∫

RN
|∇u|p dx +

1
q

∫

RN
|∇u|q dx

–
λ

k

∫

RN
V (x)|u|k dx –

1
p∗

∫

RN
K(x)|u|p∗

dx

≤ 1
p
‖u‖p +

1
q
‖u‖q –

1
p∗

∫

RN
K(x)|u|p∗

dx. (4.2)

Therefore, if u ∈ Yk , u 
= 0, and writing u = tkv with ‖v‖ = 1, from (4.1) and (4.2) we get

Eλ(u) ≤ 1
p

tp
k +

1
q

tq
k –

εk

p∗ tp∗
k ≤ 0

for large tk . This proves (a) of Lemma 4.3.
Define

βk := sup
u∈Zk ,‖u‖=1

(∫

RN
K(x)|u|p∗

dx
) 1

p∗
. (4.3)

It is clear that 0 ≤ βk+1 ≤ βk and βk → β0 ≥ 0. Then for every k ≥ 1 there exists a uk ∈ Zk

such that ‖uk‖ = 1 and

(∫

RN
K(x)|uk|p∗

dx
) 1

p∗
≥ β0

2
. (4.4)

By the definition of Zk , we get uk ⇀ 0 in XT . Thus, there exists a ν such that (2.3) holds.
Combining the arguments proving Lemma 4.2 and the fact that |T | = ∞, we see that a
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concentration of the measure ν can only occur at 0 and ∞. Thus, uk → 0 in Lp∗ (�), where
� = {x ∈ R

N : r < |x| < R} for each 0 < r < R. Due to K(x) being continuous, K(0) = 0 and
lim|x|→∞ K(x) = 0, for any ε > 0, we can choose small r and large R such that

(∫

{x∈RN :|x|<r}
K(x)|uk|p∗

dx
) 1

p∗
<

ε

2
,

(∫

{x∈RN :|x|>R}
K(x)|uk|p∗

dx
) 1

p∗
<

ε

2
.

Therefore, from K(x) ∈ L∞(RN ), we have

(∫

RN
K(x)|uk|p∗

dx
) 1

p∗
→ 0,

as k → ∞. Hence, by (4.4), we get β0 = 0.
If we take ‖u‖ = rk , by the definition of ‖ · ‖, either ‖u‖D1,p or ‖u‖D1,q is not less than rk/2.

Without loss of generality, we let ‖u‖D1,p ≥ rk/2. Since V (x) ≥ 0 and K(x) > 0 a.e. in R
N

and λ > 0, for u ∈ Zk , by Sobolev inequality and (4.3), we have

Eλ(u) ≥ 1
p
‖u‖p

D1,p –
λC
k

‖u‖k
D1,p –

β
p∗
k

p∗ ‖u‖p∗
.

On the other hand, there exists an R > 0 such that for all ‖u‖D1,p ≥ R, we have

1
2p

‖u‖p
D1,p ≥ λC

k
‖u‖k

D1,p .

Hence, taking ‖u‖ = rk := ( p∗

p2p+2β
p∗
k

)
1

p∗–p , since βk → 0, we get rk → ∞ and

Eλ(u) ≥ 1
2p

‖u‖p
D1,p –

β
p∗
k

p∗ ‖u‖p∗

≥ 1
p2p+1 ‖u‖p –

β
p∗
k

p∗ ‖u‖p∗

=
1

p2p+2 rp
k → ∞, as k → ∞.

This concludes the proof of Theorem 1.2. �
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