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Abstract
In this paper, the authors consider the reaction–diffusion equation with nonlinear
absorption and nonlinear nonlocal Neumann boundary condition. They prove that
the solution either exists globally or blows up in finite time depending on the initial
data, the weighting function on the border, and nonlinear indexes in the equation by
using the comparison principle.
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1 Introduction
In this paper, we consider the initial boundary value problem for the following nonlocal
reaction–diffusion equation with nonlinear absorption:

ut = �u + aup
∫

�

uq(y, t) dy – bum, x ∈ �, 0 < t < T , (1.1)

∂u
∂ν

=
∫

�

k(x, y)ul(y, t) dy, x ∈ ∂�, 0 < t < T , (1.2)

u(x, 0) = u0(x), x ∈ �, (1.3)

where p, q, m, l > 0, � is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂�, ν is
unit outward normal on ∂�. Here a, b are positive constants, k(x, y) is a positive continu-
ous bounded function defined for x ∈ ∂�, y ∈ �. Furthermore, we assume that u0(x) ≥ 0
and satisfies the compatibility conditions

∂u0

∂ν
=

∫
�

k(x, y)ul
0(y, t) dy, x ∈ ∂�.

It is found that lots of physical phenomena could be formulated into nonlocal mathemat-
ical models and studied by many authors (see [1–5] and the related references). Problem
(1.1)–(1.3) can be used to describe, for example, heat conduction in solid media with non-
linear absorption terms and nonlinear boundary currents. In the last few decades, there
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has been a large amount of literature devoted to the study of properties of solutions to
reaction–diffusion equation with nonlocal source with homogeneous Dirichlet boundary
conditions or with nonlinear boundary conditions (see [6–9] and the related references).
In particular, the following nonlocal reaction–diffusion equation with nonlinear absorp-
tion

ut = �u +
∫

�

up dx – cuq, x ∈ �, t > 0, (1.4)

u(x, t) =
∫

�

f (x, y)ul(y, t) dy, x ∈ ∂�, t > 0, (1.5)

u(x, 0) = u0(x), x ∈ �, (1.6)

was studied by Mu in [10]. They discussed that the weighting function on the border
and nonlinear index influenced global and non-global existence of solutions. The con-
ditions on the existence and nonexistence of global positive solutions are given and the
uniform blow-up estimates for the blow-up solution are established. They focus on the
reaction–diffusion equation with nonlocal source, nonlinear absorption, and nonlocal
Dirichlet boundary condition; however, the authors did not give any result about equa-
tion (1.4) with nonlinear nonlocal Neumann boundary condition. The nonlinear nonlocal
Neumann boundary condition can be considered as some cross boundary flow. Thus, this
paper will extend the above work to the reaction–diffusion equation (1.1) with nonlinear
nonlocal Neumann boundary condition and obtain the corresponding results.

In addition, in [11] Zhou and Yang considered the local reaction–diffusion equation with
the weighted coefficient

ut = �u + c(x, t)up
∫

�

uq(y, t) dy, x ∈ �, t > 0, (1.7)

∂u
∂ν

=
∫

�

k(x, y)ul(y, t) dy, x ∈ ∂�, 0 < t < T , (1.8)

u(x, 0) = u0(x), x ∈ �. (1.9)

The authors discussed the effect of the behavior for the weighted function on the prop-
erties of the solution and obtained that p + q ≤ 1, l ≤ 1, then the solutions exist globally
for any nonnegative initial data. They found that p + q < 1, l > 1, then the solutions exist
globally for small initial data. They proved that p + q > 1, l > 0, then the solutions blow
up in finite time for any positive initial data. They also assumed that min{p, q} > 1, l > 0,
then the solutions blow up in finite time for large initial data. This paper just studied the
reaction–diffusion equation with nonlocal source and Neumann boundary condition, but
they did not consider the equation with nonlinear absorption. We will show that the ef-
fect of the nonlinear absorption of (1.1) plays a substantial role in determining whether a
solution blows up or not.

However, a nonlocal reaction–diffusion equation with nonlinear absorption and cou-
pled with nonlinear nonlocal Neumann boundary condition, to our knowledge, has not
been well studied. Furthermore, because this kind of problem is widely used in physics
and engineering, it is necessary to study it. Motivated by those of the above works, we
will get blow-up and global existence criteria for problem (1.1) with nonlinear absorption
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and nonlocal nonlinear Neumann boundary, which are not only different from the situ-
ations with the Dirichlet boundary condition, but also different from the situations with
problem (1.7)–(1.9) without absorption term. We will show that the nonlinear absorption
and the nonlinear term ul(y, t) in the boundary condition of (1.1) play substantial roles in
determining whether a solution blows up or not. In fact, we will prove that if p + q < m,
l ≤ 1, the solution exists globally for any k(x, y) and any nonnegative initial data. We notice
that if p + q > m > 1, l > 0, a blow-up occurs in finite time if the initial data u0(x) satisfies∫
�

u0(x)ϕ(x) dx > 1. We also find that if p+q = m > 1, then problem (1.1)–(1.3) has blow-up
solutions in finite time as well as global solutions.

Because we will study the nonlocal reaction–diffusion equation with nonlinear absorp-
tion and coupled with nonlinear nonlocal Neumann boundary condition, we have some
new difficulties to overcome. First, we establish a complete proof for the local existence
of the solution of (1.1)–(1.3) which was not proved in [10] and [11]. Second, due to the
appearance of the Neumann boundary condition, some approaches used in [10] can-
not be extended to handle our problem; for example, the treatment of boundary integral
–
∫
�

u ∂ϕ

∂ν
dS during the calculation of auxiliary function J ′(t), the selection of ODE, and the

condition of auxiliary function ζ (x). Third, for problem (1.7)–(1.9), there is no global so-
lution when p + q > 1, l > 0. However, for our problem (1.1)–(1.3), if p + q = m > 1, l ≥ 1, a
solution still may exist globally. Thus, compared with [11], we can see that the absorption
plays an important role in the properties of solutions.

The structure of this paper is as follows. In Sect. 2, we establish and prove the compari-
son principle and local existence. In Sect. 3, by using the comparison principle and super-
subsolution method, we establish the conditions for blow-up in finite time and global ex-
istence.

2 The comparison principle and local existence
In this section we start with the definition of supersolution and subsolution of problem
(1.1)–(1.3). Then we will prove the comparison principle and give the local existence of
solutions for (1.1)–(1.3).

First, for convenience, we set QT = � × (0, T), ST = ∂� × (0, T), and �T = ST ∪ � × 0,
T > 0.

Next, the definitions of supersolution, subsolution, and solution for (1.1)–(1.3) will be
given.

Definition 2.1 We say that a nonnegative function u ∈ C2,1(QT ) ∩ C(QT ∪ �T ) is a sub-
solution of (1.1)–(1.3) if

ut ≤ �u + aup
∫

�

uq(y, t) dy – bum, (x, t) ∈ QT , (2.1)

∂u
∂ν

≤
∫

�

k(x, y)ul(y, t) dy, (x, t) ∈ ST , (2.2)

u(x, 0) ≤ u0(x), x ∈ �, (2.3)

and similarly we say that a nonnegative function u(x, t) ∈ C2,1(QT ) ∩ C(QT ∪ �T ) is a su-
persolution of (1.1)–(1.3) in QT and satisfies (2.1)–(2.3) in the reverse order. We say that
u(x, t) is a solution of problem (1.1)–(1.3) in QT , if u(x, t) is both a subsolution and a su-
persolution of (1.1)–(1.3) in QT .
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The following comparison principle plays an important role in the proof of our main
results.

Lemma 2.1 Let u(x, t) and u(x, t) be a subsolution and a supersolution of (1.1)–(1.3) in QT ,
respectively, with u(x, 0) ≤ u(x, 0) in �. Suppose that u(x, 0) > 0 or u(x, 0) > 0 in QT ∪ �T if
min(p, q, m, l) < 1. Then u(x, t) ≤ u(x, t) in QT ∪ �T .

Proof Set φ(x, t) ∈ C2,1(Qt) (0 < t < T ) is a nonnegative function which satisfies the homo-
geneous Neumann boundary condition

∂φ

∂ν
= 0, x ∈ ∂�.

Multiplying (2.1) by φ and integrating over Qt , we obtain that the subsolution u(x, t) sat-
isfies

∫
�

u(x, t)φ(x, t) dx ≤
∫

�

u(x, 0)φ(x, 0) dx

+
∫ t

0

∫
�

[
u(x, τ )φτ (x, τ ) + u(x, τ )�φ(x, τ )

+ aφ(x, τ )up(x, τ )
∫

�

uq(y, τ ) dy – bφ(x, τ )um(x, τ )
]

dx dτ

+
∫ t

0

∫
∂�

φ(x, τ )
(∫

�

k(x, y)ul(y, τ ) dy
)

dS dτ . (2.4)

On the other hand, the supersolution u(x, t) satisfies

∫
�

u(x, t)φ(x, t) dx ≥
∫

�

u(x, 0)φ(x, 0) dx

+
∫ t

0

∫
�

[
u(x, τ )φτ (x, τ ) + u(x, τ )�φ(x, τ )

+ aφ(x, τ )up(x, τ )
∫

�

uq(y, τ ) dy – bφ(x, τ )um(x, τ )
]

dx dτ

+
∫ t

0

∫
∂�

φ(x, τ )
∫

�

k(x, y)ul(y, τ ) dy dS dτ . (2.5)

Let ω(x, t) = u – u, subtracting (2.5) from (2.4) and using mean value theorem, we get

∫
�

ω(x, t)φ(x, t) dx ≤
∫

�

ω(x, 0)φ(x, 0) dx

+
∫ t

0

∫
�

ω(x, τ )
(

φτ (x, τ ) + �φ(x, τ )

+ apθ1
p–1φ(x, τ )

∫
�

uq(y, τ ) dy – bmθ2
m–1

)
dx dτ

+
∫ t

0

∫
�

aqupφ(x, τ )
∫

�

ω(y, τ )θ3
q–1(y, τ ) dy dx dτ

+
∫ t

0

∫
∂�

lφ(x, τ )
(∫

�

k(x, y)θ4
l–1ω(y, τ ) dy

)
dS dτ , (2.6)
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where θi(x, t) (i = 1, 2, 3, 4) are some positive continuous functions between u and u in Qt ,
if min(p, q, l, m) < 1 and some nonnegative continuous functions in Qt otherwise.

The function φ(x, t) is defined as a solution of the following problem:

φτ (x, τ ) + �φ(x, τ ) + apθ1
p–1φ(x, τ )

∫
�

uq(y, τ ) dy – bmθ2
m–1 = 0, (x, τ ) ∈ Qt , (2.7)

∂φ

∂ν
= 0, (x, τ ) ∈ St , (2.8)

φ(x, 0) = μ(x), x ∈ �, (2.9)

where μ(x) ∈ C∞
0 (�), 0 ≤ μ(x) ≤ 1. By virtue of the comparison principle, the solution

φ(x, t) is nonnegative and bounded (see [12] for example). Denote a solution of (2.7)–
(2.9) as φn(x, τ ). Then, by the standard theory for linear parabolic equations, we know
that φn ∈ C2,1(Qt), 0 ≤ φn(x, τ ) ≤ 1 in Qt . Putting φ = φn in (2.6) and ω(x, 0) ≤ 0, we get

∫
�

ω(x, t)φ(x, t) dx ≤ K
∫ t

0

∫
�

ω+(x, τ ) dx dτ , (2.10)

where we denote ω+ = max(0,ω) and choose

K = aq sup
Qt

up(x, τ )φ(x, τ )θq–1
3 (x, τ ) + l|∂�| sup

∂�×Qt
k(x, y) sup

Qt
θ l–1

4 (x, τ ) sup
St

φ(x, τ ).

Inequality (2.10) holds for each function μ(x),

∫
�

ω(x, t)μn(x, t) dx ≤ K
∫ t

0

∫
�

ω+(x, τ ) dx dτ ,

so we can choose a sequence μn(x) ∈ C∞
0 (�) converging in L1(�) to the function

μ(x) =

⎧⎨
⎩

1, ω(x, t) > 0,

0, ω(x, t) ≤ 0.

Substituting μn(x) instead of μ(x) in (2.10) and letting n → ∞, we obtain

∫
�

ω(x, t)μn(x, t) dx =
∫

�

ω+(x, t) dx ≤ K
∫ t

0

∫
�

ω+(x, τ ) dx dτ . (2.11)

By using Gronwall’s inequality, we have ω+(x, t) ≤ 0, which means that u(x, t) ≤ u(x, t) in
QT ∪ �T . �

Next, we will establish the local existence of solution for (1.1)–(1.3) using representation
formula and the contraction mapping argument.

Let {εm} be decreasing to 0 sequence such that 0 < εm < 1. For ε = εm, let u0ε(x) be the
functions with the following properties (the existence of u0ε , see [13]):

u0ε(x) ∈ C1(�), u0ε(x) ≥ ε, u0εi (x) ≥ u0εj (x), εi ≥ εj,

u0ε(x) → u0(x) as ε → 0,
∂u0ε(x)

∂ν
=

∫
�

k(x, y)ul
0ε(y) dy for x ∈ ∂�.
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Due to the nonlinearities in (1.1) and (1.2), the Lipschitz condition is not satisfied if
min(p, q, m, l) < 1, and thus we need to consider the auxiliary problem

ut = �u + aup
∫

�

uq(y, t) dy – bum + bεm, x ∈ �, 0 < t < T , (2.12)

∂u
∂ν

=
∫

�

k(x, y)ul(y, t) dy, x ∈ ∂�, 0 < t < T , (2.13)

uε(x, 0) = u0ε(x), x ∈ �, (2.14)

where ε = εm.

Theorem 2.1 For some small values of T , problem (2.12)–(2.14) has a unique solution
in QT .

Proof Let GN (x, y; t – τ ) be the Green function for the following heat equation:

ut – �u = 0, x ∈ �, t > 0,

with homogeneous Neumann boundary condition. We denote that the function GN (x, y;
t – τ ) has the following properties (see [14]):

GN (x, y; t – τ ) ≥ 0, x, y ∈ �, 0 ≤ τ < t < T , (2.15)
∫

�

GN (x, y; t – τ ) dy = 1, x ∈ �, 0 ≤ τ < t < T . (2.16)

Then uε(x, t) is a solution of (2.12)–(2.14) in QT if and only if

uε(x, t) =
∫

�

GN (x, y; t – τ )u0ε(y) dy

+
∫ t

0

∫
�

GN (x, y; t – τ )aup
ε

∫
�

uq
ε(x, τ ) dx dy dτ

+ b
∫ t

0

∫
�

GN (x, y; t – τ )
(
εq – uq(y, τ )

)
dy dτ

+
∫ t

0

∫
∂

�GN (x, y; t – τ )
∫

�

k(ξ , y, τ )ul
ε(y, τ ) dy dSξ dτ

= Luε(x, t). (2.17)

To show that (2.17) is solvable for small T , we will use the contraction mapping argument.
To this end, we define a sequence of functions uε,n(x, t), n = 1, 2, . . . in the following way:

uε,1(x, t) = ε, (x, t) ∈ QT , (2.18)

uε,n+1(x, t) = Luε,n(x, t), (x, t) ∈ QT , n = 1, 2, . . . . (2.19)

By (2.15)–(2.19) and the properties of u0ε(x), we get

uε,n(x, t) ≥ ε, (x, t) ∈ QT , n = 1, 2, . . . . (2.20)
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Set

M0ε = sup
x∈�

u0ε(x).

Using the method of mathematical induction, we prove that the inequalities

sup
QT1

uε,n(x, t) ≤ M, n = 1, 2, . . . (2.21)

hold for some constants T1 > 0 and M > max{ε, M0ε}. For n = 1, it is established obviously.
Supposing that (2.19) is true for n = m, we shall prove it for n = m + 1. Indeed, by (2.12)–
(2.14) and (2.19), we have

uε,m+1(x, t) =
∫

�

GN (x, y; t)u0ε(y) dy

+
∫ t

0

∫
�

GN (x, y; t – τ )aup
ε,m

∫
�

uq
ε,m(x, τ ) dx dy dτ

+ b
∫ t

0

∫
�

GN (x, y; t – τ )
(
εq – uε, mq(y, τ )

)
dy dτ

+
∫ t

0

∫
∂

�GN (x, y; t – τ )
∫

�

k(ξ , y, τ )ul
ε,m(y, τ ) dy dSξ dτ

≤ M0ε + Mp+qγ (t) + Mlβ(t), (2.22)

where

γ (t) =
∫ t

0

∫
�

a|�|GN (x, y; t – τ ) dy dτ ,

β(t) = sup
x∈�

∫ t

0

∫
∂�

GN (x, ξ ; t – τ )
∫

�

k(ξ , y, τ ) dy dSξ dτ .

We note that [15] there exist positive constants δ1 and a1 such that

β(t) ≤ a1
√

t, t ≤ δ1. (2.23)

Due to (2.15) and (2.16), we have

γ (t) = a|�|t ≤ a2t, t ≤ δ2, (2.24)

where δ2 and a2 are some positive constants. We choose 0 < T1 < min{δ1, δ2} such that

sup
0<t<T1

(
M(p+q)γ (t) + Mlβ(t)

) ≤ M – M0ε . (2.25)

Because of (2.22) and (2.25), we have (2.21) with n = m + 1. Using mean value theorem, we
obtain for n = 2, 3, . . .

sup
QT1

|uε,n+1 – uε,n|

= sup
QT1

∣∣∣∣a
∫ t

0

∫
�

GN (x, y; t – τ )
[

up
ε,n

∫
�

uq
ε,n(x, τ ) dx
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– up
ε,n–1

∫
�

uq
ε,n–1(x, τ ) dx

]
dξ dτ

– b
∫ t

0

∫
�

GN (x, ξ ; t – τ )
(
um

ε,n(ξ , τ ) – um
ε,n–1(ξ , τ )

)
dξ dτ

+
∫ t

0

∫
∂

�GN (x, ξ ; t – τ )
∫

�

k(ξ , y, τ )
(
ul

ε,n(y, τ ) – ul
ε,n–1(y, τ )

)
dy dSξ dτ

∣∣∣∣

= sup
QT1

∣∣∣∣a
∫ t

0

∫
�

GN (x, y; t – τ )
[

(uε,n – uε,n–1)pθ1,n
p–1

∫
�

uq
ε,n(x, τ ) dx

+ up
ε,n–1

∫
�

(uε,n – uε,n–1)qθ2,n
q–1(x, τ ) dx

]
dξ dτ

– b
∫ t

0

∫
�

GN (x, ξ ; t – τ )m(uε,n – uε,n–1)θ3,n
m–1(ξ , τ ) dξ dτ

+
∫ t

0

∫
∂�

GN (x, ξ ; t – τ )
∫

�

k(ξ , y, τ )l
(
uε,n(y, τ ) – uε,n–1(y, τ )

)
θ l–1

4,n dy dSξ dτ

∣∣∣∣,

where θi,n(x, t) (i = 1, 2, 3, 4) are continuous functions in QT1 such that α1 ≤ θi,n(x, t) ≤ M1

for (x, t) ∈ QT1 . Thus,

sup
QT1

|uε,n+1 – uε,n|

≤ sup
(0,T1)

ρ(t) sup
QT1

∣∣uε,n(x, t) – uε,n–1(x, t)
∣∣

≤ (M + ε)
(

sup
(0,T1)

ρ(t)
)n–1

,

where

ρ(t) =
(
p
(
α1

p–1 + M1
p–1)Mq + Mpq

(
α1

q–1 + M1
q–1))γ (t)

–
b

a|�|m
(
α1

m–1 + M1
m–1)γ (t) + l

(
α1

l–1 + M1
l–1)β(t)

for t ∈ [0, T1]. We note that positive constants α1 and M1 do not depend on n. By (2.23)
and (2.24) there exists a constant T ∈ (0, T1) such that

sup
(0,T)

ρ(t) < 1.

Hence, the sequence uε,n(x, t) converges uniformly in QT as n → ∞. We denote

uε(x, t) = lim
n→∞ uε,n(x, t). (2.26)

By virtue of (2.20), (2.21) we have

ε ≤ uε(x, t) ≤ M, (x, t) ∈ QT . (2.27)

Passing to the limit as n → ∞ in (2.19), by dominated convergence theorem, we obtain
that the function uε(x, t) satisfies (2.17). Thus, uε(x, t) is the solution of problem (2.12)–
(2.14) in QT . By contradiction we shall prove uniqueness of the solution of (2.12)–(2.14)
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in QT for small values of T . Let problem (2.12)–(2.14) have at least two solutions uε(x, t)
and vε(x, t) in QT . Arguing as above, we can get

sup
QT

∣∣uε(x, t) – vε(x, t)
∣∣

= sup
QT

∣∣∣∣a
∫ t

0

∫
�

GN (x, y; t – τ )
[

up
ε

∫
�

uq
ε(x, τ ) dx – vp

ε

∫
�

vq
ε(x, τ ) dx

]
dξ dτ

– b
∫ t

0

∫
�

GN (x, ξ ; t – τ )
(
um

ε (ξ , τ ) – vm
ε (ξ , τ )

)
dξ dτ

+
∫ t

0

∫
∂

�GN (x, ξ ; t – τ )
∫

�

k(ξ , y, τ )
(
ul

ε(y, τ ) – vl
ε(y, τ )

)
dy dSξ dτ

∣∣∣∣

= sup
QT

∣∣∣∣a
∫ t

0

∫
�

GN (x, y; t – τ )
[

(uε – vε)pθ1,n
p–1

∫
�

uq
ε(x, τ ) dx

+ vp
ε

∫
�

(uε – vε)qθ2,n
q–1(x, τ ) dx

]
dξ dτ

– b
∫ t

0

∫
�

GN (x, ξ ; t – τ )m(uε – vε)θ3,n
m–1(ξ , τ ) dξ dτ

+
∫ t

0

∫
∂�

GN (x, ξ ; t – τ )
∫

�

k(ξ , y, τ )l
(
uε(y, τ ) – vε(y, τ )

)
θ l–1

4,n dy dSξ dτ

∣∣∣∣
≤ sup

QT

((
pθ1

p–1Mq + Mpqθ2
q–1 –

b
a|�|mθ3

m–1
)

γ (t)

+ lθ4
l–1β(t)

)
sup
QT

∣∣uε(x, t) – vε(x, t)
∣∣

≤ α sup
QT

∣∣uε(x, t) – vε(x, t)
∣∣,

where θi(x, t) (i = 1, 2, 3, 4) are some positive continuous functions between uε(x, t) and
vε(x, t) in QT and α < 1 for small values of T . Obviously, uε(x, t) = vε(x, t) in QT . �

Theorem 2.2 For some values of T , problem (1.1)–(1.3) has a maximal solution in QT .

Proof Let uε be a solution of (2.12)–(2.14). It is easy to see that uε is a supersolution of
(1.1)–(1.3). By Lemma 2.1, for ε1 ≤ ε2, we can obtain uε1 ≤ quε2 . According to the Dini
theorem (see [16]) for some T > 0, the sequence uε(x, t) converges as ε → 0 uniformly
in QT to some function u(x, t). Passing to the limit as ε → 0 in (2.17) and using domi-
nated convergence theorem, we have that the function u(x, t) satisfies in QT the following
equation:

u(x, t) =
∫

�

GN (x, y; t – τ )u0(y) dy

+
∫ t

0

∫
�

GN (x, y; t – τ )aup
∫

�

uq(x, τ ) dx dy dτ

– b
∫ t

0

∫
�

GN (x, y; t – τ )uq(y, τ ) dy dτ

+
∫ t

0

∫
∂�

GN (x, y; t – τ )
∫

�

k(ξ , y, τ )ul(y, τ ) dy dSξ dτ .
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Thus, u(x, t) solves problem (1.1)–(1.3) in QT . It is easy to prove that u(x, t) is a maximal
solution of (1.1)–(1.3) in QT . �

3 Global existence and blow-up in finite time
In order to state the following results, let us introduce some useful symbols. Through-
out this paper, let λ and ϕ(x) be the first eigenvalue and the corresponding normalized
eigenfunction of the following problem:

⎧⎨
⎩

–�ϕ(x) = λϕ, x ∈ �,

ϕ(x) = 0, x ∈ ∂�,
(3.1)

where λ > 0, max∂�
∂ϕ

∂ν
< 0, then ϕ(x) > 0 and

∫
�

ϕ(x) dx = 1.
Denote L = sup� ϕ(x), M1 = inf∂�×� k(x, y), M2 = sup∂�×� k(x, y).

Theorem 3.1 Assume that p + q < m, l ≤ 1. Then the solutions of problem (1.1)–(1.3) exist
globally for any k(x, y) and any nonnegative initial data.

Proof Let λ and ϕ(x) satisfy (3.1), then for some 0 < ε < 1 we choose δ to satisfy that

δ ≥ max
∂�

(
–

∂ϕ

∂υ

)–1

M2

∫
�

1
(δϕ(x) + ε)l dx.

Let

u(x, t) =
cert

δϕ(x) + ε
,

where

r ≥ λ + sup
�

2δ2|∇ϕ|2
(δϕ(x) + ε)2 ,

c = max

{
sup
�

(
u0(x) + 1

)(
δϕ(x) + ε

)
, 1, sup

�

[
(δϕ(x) + ε)m–p

b

∫
�

1
(δϕ(x) + ε)q dx

] 1
m–p–q

}
.

Then, when (x, t) ∈ QT , we have

ut – �u – aup
∫

�

uq(y, t) dy + bum

= ru – u
(

λϕδ

δϕ(x) + ε
+

2δ2|∇ϕ|2
(δϕ(x) + ε)2

)

– a
cp+qe(p+q)rt

(δϕ(x) + ε)p

∫
�

1
(δϕ(x) + ε)q dx + b

cmemrt

(δϕ(x) + ε)m

≥ 0. (3.2)
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On the other hand, when (x, t) ∈ ST , we obtain

∂u
∂υ

–
∫

�

k(x, y)ul(y, t) dy

=
certδ
ε2

(
–

∂ϕ

∂υ

)
– clelrt

∫
�

k(x, y)
1

(δϕ(x) + ε)l dy

≥ cert
[
δ

(
–

∂ϕ

∂υ

)
– M2

∫
�

1
(δϕ(x) + ε)l dx

]

≥ 0. (3.3)

Since c > sup�(u0(x) + 1)(δϕ(x) + ε), we get

u(x, 0) =
c

δϕ(x) + ε
≥ sup�(u0(x) + 1)(δϕ(x) + ε)

δϕ(x) + ε
≥ u0(x). (3.4)

Combining (3.2)–(3.4), it is clear that u(x, t) is a supersolution of problem (1.1)–(1.3) in
Qt . By the comparison principle, the solution of problem (1.1)–(1.3) exists globally. �

Theorem 3.2 Assume that p + q > m > 1, l > 0, a
L > b. Then, for any k(x, y) > 0, the

solution of problem (1.1)–(1.3) blows up in finite time if the initial data u0(x) satisfies∫
�

u0(x)ϕ(x) dx > 1.

Proof Let u(x, t) be the solution of problem (1.1)–(1.3), we define the following auxiliary
function:

J(t) =
∫

�

ϕ(x)u(x, t) dx,

where ϕ(x) satisfies (3.1).
Multiplying both sides of the equation of (1.1) by ϕ(x) and integrating over �, we could

obtain

J ′(t) =
∫

�

ϕ

(
�u + aup

∫
�

uq(y, t) dy – bum
)

dx

=
∫

∂�

ϕ
∂u
∂υ

dS –
∫

∂�

u
∂ϕ

∂υ
dS +

∫
�

u�ϕ dx

+
∫

�

ϕ(x)aup
∫

�

uq(y, t) dy dx – b
∫

�

ϕum dx

= –λ

∫
�

uϕ dx + a
∫

�

ϕ(x)up
∫

�

uq(y, t) dy dx – b
∫

�

ϕum dx –
∫

∂�

u
∂ϕ

∂ν
dS.

Using the equality
∫
∂�

∂ϕ

∂υ
dS = –λ

∫
�

ϕ dx = –λ and u(x, t) ≥ 0, we have

J ′(t) ≥ –λ

∫
�

uϕ dx + a
∫

�

ϕ(x)up
∫

�

uq(y, t) dy dx – b
∫

�

ϕum dx + λ inf
ST

u(x, t)

≥
∫

�

(
–λu + aup

∫
�

uq(y, t) dy – bum
)

ϕ(x) dx. (3.5)
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From (3.5), Jensen’s inequality, and
∫
�

ϕ(x) dx = 1, we obtain

J ′(t) ≥ –λ

∫
�

uϕ dx + a
∫

�

uq(y, t) dy
∫

�

upϕ(x) dx – b
∫

�

umϕ(x) dx

≥ –λJ +
a

sup� ϕ(x)

∫
�

uqϕ(x) dx
∫

�

upϕ(x) dx – b
∫

�

umϕ(x) dx

≥ –λJ +
a
L

Jp+q – bJm ≥ –λJ +
(

a
L

– b
)

Jp+q – b.

Since a
L – b > 0 and the function f (J) = Jp+q is convex, then there exists η > 1 such that

(
a
L

– b
)

Jp+q ≥ 2(λJ + b) (3.6)

with the initial data J(0) =
∫
�

u0(x)ϕ(x) dx. It follows easily that if J(0) > η, then J(t) is in-
creasing on its interval of existence and

J ′(t) ≥ 1
2

(
a
L

– b
)

Jp+q.

From above inequality (3.6), we have

lim
t→T–

0
J(t) = +∞,

where

T0 =
2

(p + q – 1)Jp+q–1(0)

(
a
L

– b
)

.

By the comparison principle for ordinary equations (see [11, 17]), it is clear that the solu-
tion of (1.1)–(1.3) blows up in finite time. �

Theorem 3.3 Assume p + q = m > 1. Then problem (1.1)–(1.3) has blow-up solutions in
finite time as well as global solutions. More precisely,

(i) if a|�| > b and u0(x) is large enough, then for any k(x, y) ≥ 0, the solution blows up in
finite time;

(ii) if l ≥ 1 and
∫
�

k(x, y) dy < 1, the solution exists globally when u0(x) ≤ ρζ (x) for some
ρ > 0, where ζ (x) satisfies

–�ζ (x) = σ , x ∈ �, (3.7)

∂ζ

∂υ
= δ, x ∈ ∂�. (3.8)

Proof (i) Consider the following ODE:

u′(t) =
(
a|�| – b

)
um,

u(0) = u0,

where 0 < u0 < min� u0(x).
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It is clear that u(t) is a subsolution of (1.1)–(1.3), and we know limt→T–
0

u(t) = +∞, where
T0 = 1

(m–1)(a|�|–b)um–1
0

.
By the comparison principle, we could obtain our blow-up result immediately.
(ii) Let ζ (x) be the unique positive solution of the following elliptic problem: (3.7)–(3.8)

and we choose σ > 0 such that 0 < ζ (x) < 1.
Let

u(x) = ρζ (x),

where

0 < ρ < min

{
1,

(
σ

aζ p(x)
∫
�

ζ q(y) dy – bζ m(x)

) 1
m–1

}
.

Calculating directly, for x ∈ �, we have that

ut – �u – aup
∫

�

uq(y, t) dy + bum

= σρ – aρp+qζ p(x)
∫

�

ζ p(y) dy + bρmζ m(x) ≥ 0. (3.9)

On the other hand, for x ∈ ∂�, we find that

∂u
∂ν

–
∫

�

k(x, y)ul(y, t) dy

= ρδ – ρ l
∫

�

k(x, y)ζ l(y) dy

≥ ρδ – ρ lM2

∫
�

ζ (x) dx ≥ ρ
[
δ – ρ l–1M2 max

�
ζ |�|

]
≥ 0, (3.10)

where we choose max� ζ (x) small enough.
Combining now (3.9)–(3.10) and by Lemma 2.1, it follows that u(x, t) exists globally pro-

vided that u0(x) < ρζ (x). The proof of Theorem 3.3 is complete. �

4 Conclusion
In this paper, we considered the properties of solutions for the reaction–diffusion equation
with nonlinear absorption and with nonlinear nonlocal Neumann boundary condition and
proved that the solution either exists globally or blows up in finite time depending on the
initial data, the weighting function on the border, and nonlinear indexes in the equation by
using the comparison principle. However, as far as we know, there is little literature on the
blow-up properties for problem (1.1) with nonlinear inner absorptions and nonlinear non-
local Neumann boundary condition. Due to the nonlinear diffusion terms and nonlinear
nonlocal Neumann boundary condition, we have some new difficulties to overcome. First
we should prove the comparison principle for problem (1.1) which plays an important role
in the proof of our main results. Then, by the Neumann eigenvalue and its corresponding
eigenfunctions to the eigenvalue problem for the equation, we construct a well-ordered
positive supersolution and subsolution. Using the comparison principle, we achieve our
purpose and obtain the global existence and blow-up of solutions to the problem. It should
be pointed out that our results enrich and extend some previous results.
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