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Abstract
In this paper, we study a p(x)-biharmonic equation with Navier boundary condition

{
�2

p(x)u + a(x)|u|p(x)–2u = λf (x,u) +μg(x,u) in �,

u =�u = 0 on ∂�.

Here � ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂�, �2

p(x)u is a

p(x)-biharmonic operator with p(x) ∈ C(�), p(x) > 1. λ,μ ∈R, a ∈ L∞(�) such that
infx∈� a(x) = a– > 0. By variational methods, we establish the results of existence and
non-existence of solutions.
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1 Introduction
In recent years, the study on variational problems with variable exponent is an interesting
topic, which arises from nonlinear electrorheological fluids and elastic mechanics (see
[1–3]). We also refer to [4–14] for an overview.

Fourth-order equations have various applications in areas of applied mathematics and
physics such as micro-electro-mechanical systems, phase field models of multi-phase sys-
tems, thin film theory, thin plate theory, surface diffusion on solids, interface dynamics,
flow in Hele-Shaw cells (see [15–17]). In addition, this type of equation can describe the
static from change of beam or the sport of rigid body [18]. Many authors study the exis-
tence of multiple nontrivial solutions for some fourth order problems [18, 19]. The inter-
play between the fourth-order equation and the variable exponent equation goes to the
p(x)-biharmonic problems. The p(x)-biharmonic operator possesses more complicated
nonlinearities than the p-biharmonic one, for example, it is inhomogeneous.

For a p(x)-biharmonic problem, there are three common boundary conditions:
(1) Navier boundary condition, i.e.,

u = �u = 0 on ∂�.
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(2) Neumann type boundary condition, i.e.,

∂u
∂ν

=
∂

∂ν

(|�u|p(x)–2�u
)

= 0 on ∂�.

(3) No-flux boundary condition, i.e.,

⎧⎨
⎩u = constant, �u = 0 on ∂�,∫

∂�
∂
∂ν

(|�u|p(x)–2�u) dS = 0.

Study on p(x)-biharmonic problems with Navier boundary condition was started prob-
ably in 2009, readers may refer to [20–23]. In the paper [20], El Amrouss et al. studied
the p(x)-biharmonic problem both with Navier boundary condition and Neumann type
boundary condition. The no-flux boundary condition represents the situations when the
surfaces are impermeable to some contaminants. This condition was extended to the p(x)-
biharmonic case by Boureanu et al. [24] from the work [9], where the no-flux boundary
condition in p(x)-Laplacian equations is given by

⎧⎨
⎩u = constant on ∂�,∫

∂�
|∇u|p(x)–2 ∂u

∂ν
dS = 0.

Recently, Afrouzi et al. [23] studied the following p(x)-biharmonic problem with Navier
boundary condition:

⎧⎨
⎩�2

p(x)u + |u|p(x)–2u = λ|u|q(x)–2u + μ|u|γ (x)–2u in �,

u = �u = 0 on ∂�,
(1.1)

where q(x),γ (x) ∈ C+(�) and γ + < p– < p+ < q–. Using variational methods, they estab-
lished some existence and non-existence results of solutions for this problem.

Equations with two parameters involving p or p(x)-Laplacian have been studied exten-
sively. For example, in [25], Ricceri showed a further three critical points theorem which
gives also information on the localization to the interval of the parameters, and gave an
example as an application, i.e.,

⎧⎨
⎩�pu = λf (x, u) + μg(x, u) in �,

u = 0 on ∂�.
(1.2)

Subsequently, Ji generalized the equation above to a p(x)-Laplace equation both in Dirich-
let and Neumann boundary conditions [26], i.e.,

⎧⎨
⎩�p(x)u + |u|p(x)–2u = λf (x, u) + μg(x, u) in �,

Bu = 0 on ∂�.
(1.3)
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In this paper, we consider the p(x)-biharmonic equation with Navier boundary condi-
tion:

⎧⎨
⎩�2

p(x)u + a(x)|u|p(x)–2u = λf (x, u) + μg(x, u) in �,

u = �u = 0 on ∂�.
(P)

Here � ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂�, �2

p(x)u =
�(|�u|p(x)–2�u) is the operator of fourth order called the p(x)-biharmonic operator with
p(x) ∈ C(�), p(x) > 1. λ,μ ∈ R, a ∈ L∞(�) such that infx∈� a(x) = a– > 0.

To apply the theorem in [25], as in papers [25–27] we denote by ℵ the class of all func-
tions f ∈ C(� ×R) satisfying the subcritical growth conditions:

∣∣f (x, t)
∣∣ ≤ c̃

(
1 + |t|q(x)–1) for all (x, t) ∈ (� ×R),

where q ∈ C(�) and 1 ≤ q(x) 	 p∗
2(x) for all x ∈ �, q1 	 q2 denotes essinfx∈�(q2(x) –

q1(x)) > 0, and

p∗
2(x) =

⎧⎨
⎩

Np(x)
N–2p(x) , if 2p(x) < N ,

+∞, if 2p(x) ≥ N .

Applying Ricceri’s theorem [25], we get our first result as follows.

Theorem 1.1 Let � ⊆ R
N (N ≥ 2) be a bounded domain with smooth boundary, assume

f ∈ ℵ,

max

{
lim sup

ξ→0

supx∈� F(x, ξ )
|ξ |p+ , lim sup

ξ→+∞
supx∈� F(x, ξ )

|ξ |p–

}
≤ 0, (1.4)

and

sup
u∈X

∫
�

F
(
x, u(x)

)
> 0.

Set

θ = inf

{∫
�

|�u|p(x)+a(x)|u|p(x)

p(x) dx∫
�

F(x, u(x)) dx
: u ∈ X,

∫
�

F
(
x, u(x)

)
> 0

}
.

Then, for each compact interval [a, b] ⊂ (θ , +∞), there exists r > 0 with the following prop-
erty: for every λ ∈ [a, b] and every g ∈ ℵ, there exists δ > 0 such that, for each μ ∈ [0, δ], the
equation (P) has at least three solutions whose norms are less than r.

Notice that the work space X = W 2,p(x)(�) ∩ W 1,p(x)
0 (�) is a separable, reflexive Banach

space, we apply the fountain theorem and the dual fountain theorem to obtain infinitely
many solutions. In this part, we suppose � ⊆ R

N (N ≥ 1) is a bounded domain with
smooth boundary, and assume
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(H0) f : � ×R →R is a Carathéodory function such that

∣∣f (x, t)
∣∣ ≤ c1|t|q(x)–1,

∣∣g(x, t)
∣∣ ≤ c2|t|γ (x)–1, ∀(x, t) ∈ � ×R,

where c1, c2 > 0, q(x),γ (x) ∈ C(�) and 1 < q(x),γ (x) < p∗
2(x), ∀x ∈ �;

(H1) ∃l > 0, μ > p+, 0 < μF(x, s) ≤ f (x, s)s for |s| ≥ l and x ∈ �;
(H2) f (x, –s) = –f (x, s), g(x, –s) = –g(x, s);
(H3) lim inft→0

G(x,t)
|t|α ≥ 0, 0 < α < p–;

(H4) lim supt→∞
F(x,t)
|t|p– = 0;

(H5) f (x, t) · t > 0, g(x, t) · t > 0 for all (x, t) ∈ (� ×R).
Then we establish our second result as follows.

Theorem 1.2 Assume that (H0) holds, and p+ < q– ≤ q(x) < p∗
2(x), γ + < p–, then

(i) For every λ > 0, μ ∈ R, with (H1), (H2) satisfied, (P) has a sequence of weak solutions
(±uk) such that Iλ,μ(±uk) → +∞ as k → +∞.

(ii) For every λ > 0, μ > 0, with (H2), (H3) satisfied, (P) has a sequence of weak solutions
(±uk) such that Iλ,μ(±uk) < 0 and Iλ,μ(±uk) → 0 as k → +∞.

(iii) For every λ < 0, μ > 0, with (H3), (H4) satisfied, (P) has at least one nontrivial weak
solution.

(iv) For every λ < 0, μ < 0, with (H5) satisfied, (P) has no nontrivial weak solution.

Assumption (H1) is used to get the (P.S.) condition in part (i). (H3) is used to verify con-
dition (B2) in the dual fountain theorem. (H4) is used in (iii) to get the coerciveness of the
functional. Actually, (1.1) comes completely as a special case of this work, and problems
(1.2), (1.3) are generalized.

The paper consists of four sections. In Sect. 2, we start with some preliminary basic
results for the variable exponent Lebesgue–Sobolev spaces. In Sect. 3, we prove Theo-
rem 1.1. In Sect. 4, we prove Theorem 1.2.

2 Preliminaries
We start with some preliminary basic results for the variable exponent Lebesgue–Sobolev
spaces. Set

C+(�̄) =
{

h ∈ C(�̄) : h(x) > 1 ∀x ∈ �̄
}

,

and

h– = inf
x∈�̄

h(x), h+ = sup
x∈�̄

h(x) for any h ∈ C(�̄).

For any p(x) ∈ C+(�̄), denote

p∗
k(x) =

⎧⎨
⎩

Np(x)
N–kp(x) , if kp(x) < N ,

+∞, if kp(x) ≥ N .

The Lebesgue space with variable exponent is defined by

Lp(·)(�) :=
{

u : � →R measurable and
∫

�

∣∣u(x)
∣∣p(x) dx < ∞

}
,
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equipped with the Luxemburg norm

|u|p(·) = inf

{
μ > 0 :

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1
}

,

and it is a separable and reflexive Banach space.

Proposition 2.1 ([10]) For u ∈ Lp(·)(�) and v ∈ Lq(·)(�), we have

∣∣∣∣
∫

�

u(x)v(x) dx
∣∣∣∣ ≤

(
1

p– +
1

q–

)
|u|p(·)|v|q(·) ≤ 2|u|p(·)|v|q(·),

where 1
p(·) + 1

q(·) = 1.

Proposition 2.2 ([14]) Let ρ(u) =
∫
�

|u|p(x) dx. For u, un ∈ Lp(·)(�), we have
(1) |u|p(·) < (=; >); 1 ⇔ ρ(u) < (=; >) 1;
(2) |u|p(·) > 1 ⇒ |u|p–

p(·) ≤ ρ(u) ≤ |u|p+

p(·);
(3) |u|p(·) < 1 ⇒ |u|p+

p(·) ≤ ρ(u) ≤ |u|p–

p(·);
(4) |un|p(·) → 0 ⇔ ρ(un) → 0;
(5) |un|p(·) → ∞ ⇔ ρ(un) → ∞.

Define the variable exponent Sobolev space W m,p(·)(�) by

W m,p(·)(�) =
{

u ∈ Lp(·)(�)|Dαu ∈ Lp(·)(�), |α| ≤ m
}

,

where Dαu = ∂ |α|
∂xα1

1 ···∂xαN
N

u with α = (α1, . . . ,αN ) is a multi-index and |α| =
∑N

i=1 αi. The space

W m,p(·)(�), equipped with the norm

‖u‖m,p(·) :=
∑

|α|≤m

∣∣Dαu
∣∣
p(·),

becomes a separable, reflexive, and uniformly convex Banach space (see [11]).

Proposition 2.3 ([10]) For p, r ∈ C+(�) such that r(x) ≤ p∗
k(x) for all x ∈ �, there is a

continuous embedding

W k,p(x)(�) ↪→ Lr(x)(�).

If we replace ≤ with <, the embedding is compact.

We denote by W k,p(·)
0 (�) the closure of C∞

0 (�) in W k,p(·)(�). The weak solutions of prob-
lem (P) are considered in the Banach space

X = W 2,p(x)(�) ∩ W 1,p(x)
0 (�)

equipped with the norm

‖u‖W 2,p(x)(�)∩W 1,p(x)
0 (�) = ‖u‖W 2,p(x)(�) + ‖u‖W 1,p(x)

0 (�),
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which is equivalent to the norm ‖∇u‖Lp(x)(�) (see [28]). Taking into account the particu-
larity of problem (P), the following representation of the norm might be best:

‖u‖a = inf

{
θ > 0 :

∫
�

(∣∣∣∣�u
θ

∣∣∣∣
p(x)

+ a(x)
∣∣∣∣u
θ

∣∣∣∣
p(x))

dx ≤ 1
}

(2.1)

for all u ∈ W 2,p(x)(�) or W 2,p(x)(�) ∩ W 1,p(x)
0 (�). According to [20, 24], the three norms

above are equivalent. For convenience, we choose ‖u‖a as the norm on X in the following.

Proposition 2.4 ([20]) Set ρa(u) =
∫
�

(|�u|p(x) + a(x)|u|p(x)) dx. For u, un ∈ W 2,p(·)(�), we
have

(1) ‖u‖a < (=; >) 1 ⇔ ρa(u) < (=; >) 1;
(2) ‖u‖a > 1 ⇒ ‖u‖p+

a ≤ ρa(u) ≤ ‖u‖p–
a ;

(3) ‖u‖a > 1 ⇒ ‖u‖p–
a ≤ ρa(u) ≥ ‖u‖p+

a ;
(4) ‖u‖a → 0 ⇔ ρa(un) → 0;
(5) ‖un‖a → ∞ ⇔ ρa(un) → ∞.

Definition 2.1 We say that u ∈ X is a weak solution of the boundary value problem (P)
iff, for all v ∈ X,

∫
�

|�u|p(x)–2�u · �v dx +
∫

�

a(x)|u|p(x)–2uv dx

– λ

∫
�

f (x, u)v dx – μ

∫
�

g(x, u)v dx = 0.

We define Iλ,μ = � – λJ – μ� , λ,μ ∈R, where

�(u) =
∫

�

1
p(x)

(|�u|p(x) + a(x)|u|p(x))dx,

J(u) =
∫

�

F(x, u) dx, �(u) =
∫

�

G(x, u) dx,

and F(x, t) =
∫ t

0 f (x, s) ds, G(x, t) =
∫ t

0 g(x, s) ds.

Proposition 2.5 ([20, 24]) Let I0 be the functional defined above, then
(i) � ∈ C1(X,R), with the Gâteaux derivative defined by

〈
�′(u), v

〉
=

∫
�

|�u|p(x)–2�u�v dx +
∫

�

a(x)|u|p(x)–2uv dx.

(ii) � is sequentially weakly lower semicontinuous, that is, for any u ∈ X and any
subsequence (un)n ⊂ X such that un ⇀ u weakly in X , there holds
I�(u) ≤ lim infn→∞ �(un).

(iii) the mapping �′ : X → X ′ is strictly monotone, bounded homeomorphism and is of
type S+, namely un ⇀ u and lim supn→∞ �′(un)(un – u) ≤ 0 implies that un → u.

Similar to [4, 29], we have the following.
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Proposition 2.6 If h satisfies assumption (H0), then φ is a continuously Gâteaux differen-
tiable functional with

φ′(u)(v) =
∫

�

h
(
x, u(x)

)
v(x) dx

for each u, v ∈ W 2,p(x)(�) and φ′ is a compact operator.

Remark 2.1 (See Remark 2.1 in [9]) Noting that a sum of a mapping of type (S+) and a
weakly-strongly continuous mapping is still a mapping of type (S+), then I ′

λ,μ = �′ – λJ ′ –
μ� ′ is a mapping of type (S+). Hence, any bounded (P.S.) sequence of Iλ,μ has a convergent
subsequence.

Due to the properties fulfilled by f and g , we can deduce that Iλ,μ is of class C1 with the
Gâteaux derivative

〈
I ′
λ,μ(u), v

〉
=

∫
�

|�u|p(x)–2�u�v dx +
∫

�

a(x)|u|p(x)–2uv dx

– λ

∫
�

f (x, u)v dx – μ

∫
�

g(x, u)v dx.

So any critical point of Iλ,μ is a weak solution to (P).

3 Proof of Theorem 1.1
Firstly, we define a class of functions needed in this section as follows:

If X is a real Banach space, we denote by WX the functional � : X → R possess-
ing the following property: if {un} is a sequence in X converging weakly to u ∈ X and
lim infn→∞ �(un) ≤ �(u), then {un} has a subsequence converging strongly to u.

Lemma 3.1 ([25]) Let X be a separable and reflexive and real Banach space;
� : X →R be a coercive, sequentially weakly lower semicontinuous C1 functional belong-

ing to WX , bounded on each bounded subset of X and whose derivative admits a continuous
inverse on X∗;

J : X → R be a C1 functional with compact derivative. Assume that � has a strict local
minimum x0 with �(x0) = J(x0) = 0.

Finally, setting

α = max

{
0, lim sup

‖x‖→+∞
J(x)
�(x)

, lim
x→x0

J(x)
�(x)

}
, β = sup

x∈�–1(0,+∞)

J(x)
�(x)

,

assume that α < β .
Then, for each compact interval [a, b] ⊂ ( 1

β
, 1

α
) (with the conventions 1

0 = +∞, 1
∞ = 0),

there exists r > 0 with the following property: for every λ ∈ [a, b] and every C1 functional
� : X → R with compact derivative, there exists δ > 0 such that, for each μ ∈ [0, δ], the
equation

�′(x) = λJ ′(x) + μ� ′(x)

has at least three solutions whose norms are less than r.
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Proof of Theorem 1.1 Fix ε > 0, in view of (P), there exist ρ1,ρ2 with 0 < ρ1 < 1 < ρ2 such
that

F(x, ξ ) ≤ ε|ξ |p+ for all (x, ξ ) ∈ � × [–ρ1,ρ1], (3.1)

and

F(x, ξ ) ≤ ε|ξ |p– for all (x, ξ ) ∈ � × (
R \ [–ρ2,ρ2]

)
. (3.2)

It is clear that

F(x, ξ ) ≤ ε|ξ |p+ for all (x, ξ ) ∈ � × (
R \ (

[–ρ2, –ρ1] ∪ [ρ1,ρ2]
))

. (3.3)

Since F is bounded on each bounded subset of � ×R, we can choose c3 > 0 and q′
1 with

p+ < q′
1 	 p∗

2(x) such that

F(x, ξ ) ≤ ε|ξ |p+
+ c3|ξ |q′

1 for all (x, ξ ) ∈ (� ×R). (3.4)

By the embedding theorem, there exist c4, c5 > 0, we have if ‖u‖a < 1,

J(u) ≤ cp+

4 ε‖u‖p+
a + c5‖u‖q′

1
a .

So we get that

lim sup
u→0

J(u)
�(u)

≤ p+cp+

4 ε. (3.5)

If ‖u‖a > 1, by (3.2), we have

J(u)
�(u)

=
∫
�

F(x, u(x)) dx∫
�

|�u|p(x)+a(x)|u|p(x)

p(x) dx

≤ p+ ∫
�(|u|≤ρ2) F(x, u) dx

‖u‖p–
a

+
p+ ∫

�(|u|>ρ2) F(x, u) dx

‖u‖p–
a

.

Then we have

lim sup
‖u‖a→+∞

J(u)
�(u)

≤ p+cp–

6 ε. (3.6)

Since ε is arbitrary, combining (3.5) and (3.6) we get

max

{
lim sup

u→0

J(u)
�(u)

, lim sup
‖u‖a→+∞

J(u)
�(u)

}
≤ 0.

Then by Lemma 3.1, α = 0, and β > 0 by assumption. Thus all the hypotheses of Lemma 3.1
are satisfied, the proof is complete. �
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4 Proof of Theorem 1.2
In this section, we study the existence and non-existence of weak solutions for (P). In the
following, the letter ci > 0 is constant.

Lemma 4.1 Let X be a separable and reflexive Banach space, then there exist {ej} ⊂ X and
{e∗

j } ⊂ X∗ such that

X = span{ej : j = 1, 2, . . .}, X∗ = span
{

e∗
j : j = 1, 2, . . .

}
,

with

〈
ej, e∗

j
〉

=

⎧⎨
⎩1, if i = j,

0, if i �= j.

Define

Xj = span{ej}, Yk =
k⊕

j=1

Xj, Zk =
∞⊕
j=k

Xj. (4.1)

Similar to [21], we have the following.

Proposition 4.1 If q(x),γ (x) ∈ C+(�), q(x),γ (x) < p∗
2(x) for x ∈ �, let

βk = sup
{|u|q(x) : ‖u‖a = 1, u ∈ Zk

}
,

θk = sup
{|u|γ (x) : ‖u‖a = 1, u ∈ Zk

}
,

then limk→∞ βk = 0, limk→∞ θk = 0.

Lemma 4.2 (Fountain theorem [30]) Let
(A1) I ∈ C1(X,R) be an even functional, where (X,‖ · ‖) is a separable and reflexive Ba-

nach space, the subspaces Xk , Yk , and Zk are defined by (4.1).
If for each k ∈R, there exist ρk > rk > 0 such that

(A2) inf{I(u) : u ∈ Zk ,‖u‖ = rk} → +∞ as k → +∞;
(A3) max{I(u) : u ∈ Yk ,‖u‖ = ρk} ≤ 0;
(A4) I satisfies the (P.S.) condition for every c > 0.

Then I has an unbounded sequence of critical points.

Lemma 4.3 (Dual fountain theorem [30]) Assume that (A1) is satisfied and there is k0 > 0
such that, for each k > k0, there exist ρk > rk > 0 such that

(B1) inf{I(u) : u ∈ Zk ,‖u‖ = ρk} ≥ 0;
(B2) max{I(u) : u ∈ Yk ,‖u‖ = rk} < 0;
(B3) inf{I(u) : u ∈ Zk ,‖u‖ ≤ ρk} → 0 as k → +∞;
(B4) I satisfies the (PS)∗c condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values converging to 0.

Definition 4.1 We say that Iλ,μ satisfies the (PS)∗c condition (with respect to (Yn)) if any
sequence {unj} ⊂ X such that nj → +∞, unj ∈ Ynj , Iλ,μ(unj ) → m, and (Iλ,μ|Ynj

)′(unj ) → 0,
contains a subsequence converging to a critical point of Iλ,μ.
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Proposition 4.2 Iλ,μ is weakly lower semicontinuous on X .

Proof By Proposition 2.5, we know that I0 is weakly lower semicontinuous. Assume un ⇀

u in X, the compact embedding by Proposition 2.3 gives us

un → u in Lp(x)(�) and un → u in L1(�). (4.2)

Using the mean value theorem, there exists v which takes values strictly between u and un

such that
∫

�

∣∣F(x, un) – F(x, u)
∣∣dx ≤

∫
�

|un – u| sup
x∈�

∣∣f (x, v)
∣∣dx,

hence by assumption (H0) and (4.2) the functional J(u) =
∫
�

F(x, u) dx is weakly continu-
ous, and so is �(u) =

∫
�

G(x, u) dx. Consequently, the functional Iλ,μ is weakly lower semi-
continuous. �

Consequently, we come to the following.

Proof of Theorem 1.2 (i) First we verify that Iλ,μ satisfies the (P.S.) condition. Suppose that
(un) ⊂ X is a (P.S.) sequence, i.e.,

Iλ,μ(un) ≤ m, I ′
λ,μ(un) → 0 as n → ∞.

By Remark 2.1, it is sufficient to verify that (un) is bounded. Assume that (H1) holds and
‖un‖a > 1 for n large enough, we have

I ′
λ,μ(un) –

1
μ

〈
I ′
λ,μ(un), un

〉

≥
(

1
p+ –

1
μ

)
‖un‖p–

a + λ

∫
�

(
1
μ

f (x, un)un – F(x, un)
)

dx

– μ

∫
�

(
1
μ

G(x, un) – g(x, un)un

)
dx

=
(

1
p+ –

1
μ

)
‖un‖p–

a + λ

∫
�∩{|un|≤l}

(
1
μ

f (x, un)un – F(x, un)
)

dx

+ λ

∫
�∩{|un|>l}

(
1
μ

f (x, un)un – F(x, un)
)

dx

– μ

∫
�

(
1
μ

G(x, un) – g(x, un)un

)
dx

≥
(

1
p+ –

1
μ

)
‖un‖p–

a + c7 – μ

∫
�

(
1
μ

G(x, un) – g(x, un)un

)
dx

≥
(

1
p+ –

1
μ

)
‖un‖p–

a + c7 – c8μ‖un‖γ +
a . (4.3)

Since p– > γ +, we know that {un} is bounded in X. In the following we will prove that (A2)
holds.
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For any u ∈ Zk , ‖u‖a = rk > 1 (rk will be given below), we have

Iλ,μ(u) ≥ 1
p+ ‖u‖p–

a – λ

∫
�

F(x, u) dx – μ

∫
�

G(x, u) dx

≥ 1
p+ ‖u‖p–

a – λ

∫
�

F(x, u) dx – μc9‖u‖γ +
a . (4.4)

By condition (H1) and Proposition 2.2, we have

∫
�

F(x, u) dx ≤
∫

�

c1|u|q(x) dx ≤
⎧⎨
⎩c10, if |u|q(x) ≤ 1,

c11|u|q+

q(x), if |u|q(x) > 1.
(4.5)

However, if |u|q(x) > 1, we have

|u|q+

q(x) =
∣∣∣∣ u
‖u‖a

‖u‖a

∣∣∣∣
q+

q(x)
≤ (

βk‖u‖a
)q+

. (4.6)

Combining (4.4) and (4.6), we conclude that

Iλ,μ(u) ≥ 1
2p+ ‖u‖p–

a – λc12
(
βk‖u‖a

)q+
– c13.

Choose rk = (2λq+c12β
q+

k )
1

p––q+ , notice that p– < p+ < q+, by Proposition 4.1, we deduce that
rk → +∞ as k → ∞, hence

Iλ,μ(u) ≥ 1
2

(
1

p+ –
1

q+

)
rp–

k – c13 → ∞.

For (A3), let u ∈ Yk such that ‖u‖a = ρk > rk > 1, then

Iλ,μ(u) ≤ 1
p– ‖u‖p+

a – λ

∫
�

F(x, u) dx – μ

∫
�

G(x, u) dx

≤ 1
p– ‖u‖p+

a – λ

∫
�∩{|u|≤l}

F(x, u) dx – λ

∫
�∩{|u|>l}

F(x, u) dx

+ |μ|c2

∫
�

|u|γ (x) dx.

Since dim Yk < ∞, all norms are equivalent in Yk , we get that

Iλ,μ(u) ≤ 1
p– ‖u‖p+

a – c14 – c15λ‖u‖μ
a + c16|μ|‖u‖γ +

a .

We get that Iλ,μ(u) → –∞ as ‖u‖a → +∞ since γ + < p+ < μ, so (A3) holds. Obviously
Iλ,μ(u) is even, by Lemma 4.2 then (i) is verified.

(ii) We will use Lemma 4.3 to prove conclusion (ii). For (B1), for any u ∈ Zk , we have

Iλ,μ(u) ≥ 1
p+ ‖u‖p+

a – λ

∫
�

F(x, u) dx – μ

∫
�

G(x, u) dx

≥ 1
p+ ‖u‖p+

a – λc17‖u‖q–
a – c2μ

∫
�

|u|γ (x) dx.



Zhou Boundary Value Problems  (2018) 2018:149 Page 12 of 14

Notice that q– > p+, there exists ρ0 > 0 small enough such that λc17‖u‖q–
a ≤ 1

2p+ ‖u‖p+
a as

0 < ρ = ‖u‖a ≤ ρ0. Then, by Proposition 2.4, we have

Iλ,μ(u) ≥
⎧⎨
⎩

1
2p+ ‖u‖p+

a – μc18(θk‖u‖a)γ – , if |u|γ (x) ≤ 1,
1

2p+ ‖u‖p+
a – μc19(θk‖u‖a)γ + , if |u|γ (x) > 1.

(4.7)

Choosing

ρk = max
{(

2p+c18μθ
γ –

k
) 1

p+–γ – ,
(
2p+c19μθ

γ +

k
) 1

p+–γ + }
,

notice that p+ > γ +, from Proposition 4.1 we deduce that ρk → 0 as k → ∞, hence
Iλ,μ(u) ≥ 0.

(B2) For u ∈ Yk with ‖u‖a ≤ 1. Assumption (H3) is equivalent to

∃δ > 0, G(x, t) ≥ c20tα , α < p–,∀t ∈ (0, δ). (4.8)

Then we have

Iλ,μ(u) ≤ 1
p– ‖u‖p–

a + λ

∫
�

c1|u|q(x) dx – μc20

∫
�

|u|α dx

≤ 1
p– ‖u‖p–

a + λc1‖u‖q–
a – μc20‖u‖α

a . (4.9)

Since α < p– < q–, there exists rk ∈ (0,ρk) such that Iλ,μ(u) < 0 when ‖u‖ = rk .
(B3) Notice that Yk ∩ Zk �= ∅ and rk < ρk , we have

dk = inf
u∈Zk ,‖u‖a≤ρk

Iλ,μ(u) ≤ bk = max
u∈Yk ,‖u‖a=rk

inf Iλ,μ(u) < 0.

For u ∈ Zk , ‖u‖a ≤ ρk small enough. From (4.7), we have

Iλ,μ(u) ≥ 1
2p+ ‖u‖p+

a – μc21θ
γ +

k ‖u‖γ +
a ≥ –μc21θ

γ +

k ‖u‖γ +
a .

Since θk → 0 and ρk → 0 as k → ∞, then (B3) holds.
In the following, we verify the (PS)∗c condition. Suppose {unj} ⊂ X such that

unj ∈ Ynj , Iλ,μ(unj ) → m, (Iλ,μ|Ynj
)′(unj ) → 0 as nj → +∞.

Similar to (A1), we can get the boundedness of ‖unj‖a. Hence, there exists u ∈ X such that
unj ⇀ u weakly in X = ∪nj Ynj . Then we can find vnj ∈ Ynj such that vnj ⇀ u. We have

〈
I ′
λ,μ(unj ), unj – u

〉
=

〈
I ′
λ,μ(unj ), unj – vnj

〉
+

〈
I ′
λ,μ(unj ), vnj – u

〉
.

Notice that unj – vnj ∈ Ynj , it yields

〈
I ′
λ,μ(unj ), unj – u

〉
=

〈
(Iλ,μ|Ynj

)′(unj ), unj – vnj

〉
+

〈
I ′
λ,μ(unj ), vnj – u

〉
→ 0 as n → ∞. (4.10)

Since I ′
λ,μ is of (S+) type, we deduce that unj → u in X; furthermore I ′

λ,μ(unj ) → I ′
λ,μ(u).



Zhou Boundary Value Problems  (2018) 2018:149 Page 13 of 14

Now we claim that u is a critical point of Iλ,μ. Taking ωk ∈ Yk , when nj ≥ k we have

〈
I ′
λ,μ(u),ωk

〉
=

〈
I ′
λ,μ(u) – I ′

λ,μ(unj ),ωk
〉
+

〈
I ′
λ,μ(unj ),ωk

〉
=

〈
I ′
λ,μ(u) – I ′

λ,μ(unj ),ωk
〉〉 +

〈
(Iλ,μ|Ynj

)′(unj ),ωk
〉
.

Taking nj → ∞, we obtain

〈
I ′
λ,μ(u),ωk

〉
= 0, ∀ωk ∈ Yk .

So I ′
λ,μ(u) = 0, this verifies that Iλ,μ satisfies the (PS)∗c condition.

(iii) By Proposition 4.2 we know that Iλ,μ is weakly lower semi-continuous, next we will
prove the coerciveness of Iλ,μ. By adding (H4), for any ε > 0 small, there exists M > 0 such
that

∣∣F(x, t)
∣∣ ≤ ε|t|p–

for |t| > M.

Therefore, when λ ≤ 0, μ > 0, we get that

Iλ,μ(u) ≥ 1
p+ ‖u‖p–

a – λ

∫
�

F(x, u) dx – μ

∫
�

G(x, u) dx

≥ 1
p+ ‖u‖p–

a + λε‖u‖p–
a – μc22‖u‖γ +

a → +∞, (4.11)

as ‖u‖a → ∞ since γ + < p–. By the Weierstrass theorem, we know that there exists a global
minimizer u0 to Iλ,μ(u) in X. Next we show that u0 is nontrivial.

Choose v0 ∈ C∞
0 (�) such that 0 < v0 ≤ δ, by (H0) and (4.8), we have

Iλ,μ(tv0) ≤ tp–‖v0‖p–
a – λ

∫
�

F(x, tv0) dx – μ

∫
�

G(x, tv0) dx

≤ tp–‖v0‖p–
a + |λ|c1

∫
�

tp(x)|v0|p(x) dx – μc20

∫
�

tα|v0|α dx

≤ tp–‖v0‖p–
a + |λ|c1tp–

∫
�

|v0|p(x) dx – μc20tα

∫
�

|v0|α dx. (4.12)

Notice that α < p–, we can find t0 ∈ (0, 1) such that Iλ,μ(tv0) < 0, so u0 is nontrivial.
(iv) When λ < 0, μ < 0, we argue by contradiction that u ∈ X \ {0} is a weak solution of

(1.1). Multiplying (P) by u and integrating by part, we have

∫
�

|�u|p(x) dx +
∫

�

a(x)|u|p(x) dx = λ

∫
�

f (x, u)u dx + μ

∫
�

g(x, u)u dx.

It is contrary to condition (H5), the proof is complete. �
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2. Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math., vol. 1748. Springer,

Berlin (2000)
3. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 9, 33–66

(1987)
4. Barletta, G., Chinnì, A., O’Regan, C.: Existence results for a Neumann problem involving the p(x)-Laplacian with

discontinuous nonlinearities. Nonlinear Anal. 27, 312–325 (2016)
5. Cammaroto, F., Chinnì, A., Di Bella, B.: Multiple solutions for a Neumann problem involving the p(x)-Laplacian.

Nonlinear Anal. 71, 4486–4492 (2009)
6. Chinnì, A., Livrea, R.: Multiple solutions for a Neumann-type differential inclusion problem involving the

p(·)-Laplacian. Discrete Contin. Dyn. Syst., Ser. S 5(4), 753–764 (2012)
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