
Yue and Zhang Boundary Value Problems  (2018) 2018:151 
https://doi.org/10.1186/s13661-018-1076-x

R E S E A R C H Open Access

Existence of solution for integral
boundary value problems of fractional
differential equations
Xueying Yue1 and Kemei Zhang1*

*Correspondence:
zhkm90@126.com
1School of Mathematical Sciences,
Qufu Normal University, Qufu,
People’s Republic of China

Abstract
In this paper, we discuss the existence of positive solutions of fractional differential
equations on the infinite interval (0, +∞). The positive solution of fractional
differential equations is gained by using the properties of the Green’s function,
Leray–Schauder’s fixed point theorems, and Guo–Krasnosel’skii’s fixed point theorem.
As an application, two examples are given to prove our conclusions.
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1 Introduction
In this article, we investigate the positive solutions for fractional differential equations
with infinite-point boundary value conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + q(t)f (t, u(t)) = 0, t ∈ (0, +∞),

ui(0) = 0, i = 0, 1, 2, . . . , n – 3,

Dα–1
0+ u(+∞) = 0,

Dα–2
0+ u(0) =

∑∞
i=1 βiu(ξi),

(1.1)

where 1 < n – 1 < α ≤ n, n = [α] + 1, Dα
0+ is the Riemann–Liouville fractional deriva-

tive, 0 < ξ1 < ξ2 < · · · < ξi < · · · < +∞, βi ≥ 0, i = 0, 1, 2, . . . , n – 3, f : [0, +∞) × [0, +∞) →
[0, +∞).

Recently, many kinds of fractional differential equations have been generally studied, see
[1–15]. As everyone knows, fractional differential equations are used in many fields, for
instance, control theory, mechanics, polymer rheology and engineering, and so on, for the
details, see [16–21]. From the references, we can obtain that many authors have used the
cone expansion and cone compression fixed point theorem to prove their conclusions, see
[5, 22–26].
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In [4], the authors studied the following equations:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + f (t, u(t), Dα

0+ u(t)) = 0, t ∈ (0, +∞),

u(0) = 0,

Dα–1
0+ u(∞) =

∫ τ

0 g1(s)u(s) ds + a,

Dα–2
0+ u(0) =

∫ τ

0 g2(s)u(s) ds + b,

where 2 < α ≤ 3, R+ = [0, +∞), f : R+ × (R+)2 → R+, f (t, u, v) �≡ 0, disturbance parameters
a, b ∈ R+, g1, g2 ∈ L1[0, τ ) are nonnegative.

Li et al. in [7] investigated the following fractional:
⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0,

Dβ

0+ u(1) = αDβ

0+ u(ξ ),

where 1 < α ≤ 2 and Dα
0+ is the Riemann–Liouville fractional derivative. The existence

results of positive solutions are gained by using fixed point theorems.
Liang and Zhang [23] considered the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + a(t)f (t, u(t)) = 0, t ∈ (0, +∞),

u(0) = u′(0) = 0,

Dα–1
0+ u(+∞) =

∑m–2
i=1 βiu(ξi),

where 2 < α < 3, Dα
0+ is the Riemann–Liouville fractional derivative, 0 < ξ1 < ξ2 < · · · <

ξm–2 < +∞, βi ≥ 0, i = 1, 2, . . . , m – 2, satisfies 0 <
∑m–2

i=1 βiξ
α–1
i < �(α).

By using Banach contraction mapping principle, the writers gave some new results for
existence and uniqueness of positive solutions for the above problem in [12]. As far as we
can see, there are still very few papers (such as [22]) discussing the fractional coupled sys-
tems. To prove our conclusions, we put forward some necessary basic concepts in Sect. 2.
In Sect. 3, we obtain the positive solutions of BVP (1.1) by using the relevant fixed point
theorem. In Sect. 4, two examples are presented to verify our results.

2 Preliminaries and correlative lemmas
To prove our conclusion, we first introduce some basic concepts, see [5, 9].

Definition 2.1 ([9]) The Riemann–Liouville fractional integral of order α > 0 of a function
u : R+ → R is given by

Iα
0+ u(t) =

1
�(α)

∫ t

0
(t – s)α–1u(s) ds.

Definition 2.2 ([9]) The Riemann–Liouville fractional derivative of order α > 0 of a func-
tion u : R+ → R is given by

Dα
0+ u(t) = DnIn–α

0+ u(t) =
1

�(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1.
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Remark 2.1 ([1]) In this way, we need the following conclusions:
1. Dα

0+ tβ–1 = �(β)
�(β–α) tβ–α–1, α,β ≥ 0;

2. Dα
0+ tα–j = 0, j = 1, 2, . . . , [α] + 1.

Lemma 2.1 ([9, 12]) For α > 0, the equality Dα
0+ u(t) = 0 is well-founded if and only if

u(t) =
n∑

i=1

citα–i,

where ci ∈ R, i = 1, 2, . . . , n, n = [α] + 1.

Lemma 2.2 ([9, 12]) If u ∈ C(R+) and Dα
0+ u ∈ L1(R+), then

Iα
0+ Dα

0+ u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, . . . , n, n = [α] + 1.

Lemma 2.3 Let h ∈ L1[0, +∞), the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + h(t) = 0, t ∈ (0, +∞),

ui(0) = 0, i = 0, 1, 2, . . . , n – 3,

Dα–1
0+ u(+∞) = 0,

Dα–2
0+ u(0) =

∑∞
i=1 βiu(ξi),

(2.1)

where 1 < n – 1 < α ≤ n, n = [α] + 1, 0 < ξ1 < ξ2 < · · · < ξi < · · · < +∞, βi ≥ 0, i = 0, 1, 2, . . . , n –
3, satisfies 0 <

∑∞
i=1 βiξ

α–2
i < �(α), has a unique solution

u(t) =
∫ +∞

0
G(t, s)h(s) ds, (2.2)

where

G(t, s) = G1(t, s) + G2(t, s), (2.3)

G1(t, s) =
1

�(α)

⎧
⎨

⎩

tα–1 – (t – s)α–1, 0 ≤ s ≤ t < +∞,

tα–1, 0 ≤ t ≤ s < +∞,
(2.4)

G2(t, s) =
∑∞

i=1 βitα–2

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

G1(ξi, s). (2.5)

Proof From Lemma 2.2 and (2.1), we have

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1h(s) ds + c1tα–1 + c2tα–2 + · · · + cntα–n.

From ui(0) = 0, i = 0, 1, 2, . . . , n – 3, we know that c3 = c4 = · · · = cn = 0,

Dα–1
0+ u(t) = –

∫ t

0
h(s) ds + c1�(α),
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and

Dα–2
0+ u(t) = –

∫ t

0
(t – s)h(s) ds + c1�(α)t + c2�(α – 1).

By the boundary conditions, we can get

⎧
⎨

⎩

–
∫ +∞

0 h(s) ds + c1�(α) = 0,

c2�(α – 1) =
∑∞

i=1 βi(– 1
�(α)

∫ ξi
0 (ξi – s)α–1h(s) ds + c1ξ

α–1
i + c2ξ

α–2
i ),

then

c1 =
1

�(α)

∫ +∞

0
h(s) ds,

and

c2 =
∑∞

i=1 βi[ 1
�(α)

∫ +∞
0 ξα–1

i h(s) ds – 1
�(α)

∫ ξi
0 (ξi – s)α–1h(s) ds]

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

.

So

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1h(s) ds +

1
�(α)

∫ +∞

0
tα–1h(s) ds

+
∑∞

i=1 βitα–2[ 1
�(α)

∫ +∞
0 ξα–1

i h(s) ds – 1
�(α)

∫ ξi
0 (ξi – s)α–1h(s) ds]

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

=
∫ +∞

0
G1(t, s)h(s) ds +

∑∞
i=1 βitα–2

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

∫ +∞

0
G1(ξi, s)h(s) ds

=
∫ +∞

0
G1(t, s)h(s) ds +

∫ +∞

0
G2(t, s)h(s) ds

=
∫ +∞

0
G(t, s)h(s) ds,

where G(t, s), G1(t, s), and G2(t, s) are defined by (2.3)–(2.5). �

Lemma 2.4 The function G(t, s) defined by (2.3) satisfies
(1) G1(t, s) ≥ 0 is continuous for all t, s ∈ R+ × R+;
(2) 0 ≤ G1(t,s)

1+tα–1 ≤ 1
�(α) for all t, s ∈ R+ × R+;

(3) 0 ≤ G(t,s)
1+tα–1 ≤ L

�(α) for all t, s ∈ R+ × R+, L = 1 +
∑∞

i=1 βiξ
α–2
i

�(α–1)–
∑∞

i=1 βiξ
α–2
i

.

Proof (1) From (2.4), we know G1(t, s) is continuous on [0, +∞) × [0, +∞), obviously
G1(t, s) ≥ 0 for s ≥ t. For 0 ≤ s ≤ t < +∞, we have

tα–1 – (t – s)α–1 = tα–1
(

1 –
(

t – s
t

)α–1)

≥ 0.

By (2.4), we know G1(t, s) ≥ 0, t, s ∈ [0, +∞).
(2) From (2.4), it is easy to show that 0 ≤ G1(t,s)

1+tα–1 ≤ 1
�(α) ;
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(3) From (2), we have

0 ≤ G1(t, s)
1 + tα–1 ≤ 1

�(α)
.

Furthermore, we have

0 ≤ G1(ξi, s)
1 + tα–1 ≤ 1

�(α)
.

Therefore

0 ≤ G(t, s)
1 + tα–1 =

G1(t, s)
1 + tα–1 +

G2(t, s)
1 + tα–1 ≤ 1

�(α)
+

1
�(α)

∑∞
i=1 βiξ

α–2
i

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

=
L

�(α)

and

L = 1 +
∑∞

i=1 βiξ
α–2
i

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

. �

Lemma 2.5 ([23], Leray–Schauder fixed point theorem) Let B be a bounded, nonempty,
convex, and closed subset of Banach space E, and let F : B → E be a completely continuous
operator with F(B) ⊂ B. Then F has a fixed point in B.

Lemma 2.6 ([9]) Let k > 1 and denote λ(k) = min{ 1
4k2(1+kα–1) , 1

kα–2(1+kα–1) } for a fixed number
k ∈ R+. Then functions G1, G2, and G defined by (2.3)–(2.5) satisfy:

min
t∈[ 1

k ,k]

G1(t, s)
1 + tα–1 ≥ 1

4k2(1 + kα–1)
· sup

t∈[0,+∞)

G1(t, s)
1 + tα–1 , (2.6)

min
t∈[ 1

k ,k]

G2(t, s)
1 + tα–1 ≥ 1

kα–2(1 + kα–1)
· sup

t∈[0,+∞)

G2(t, s)
1 + tα–1 , (2.7)

min
t∈[ 1

k ,k]

G(t, s)
1 + tα–1 ≥ λ(k) · sup

t∈[0,+∞)

G(t, s)
1 + tα–1 , (2.8)

where t, s ∈ [0, +∞).

Proof According to Lemma 3.3 in [17], (2.6) is established.
From the definition of G2, we have

min
t∈[ 1

k ,k]

G2(t, s)
1 + tα–1 = min

t∈[ 1
k ,k]

tα–2

1 + tα–1 ·
∑∞

i=1 βiG1(ξi, s)
�(α – 1) –

∑∞
i=1 βiξ

α–2
i

≥
1

kα–2

1 + kα–1 ·
∑∞

i=1 βiG1(ξi, s)
�(α – 1) –

∑∞
i=1 βiξ

α–2
i

=
1

kα–2

1 + kα–1 · sup
t∈[0,+∞)

tα–2

1 + tα–1 ·
∑∞

i=1 βiG1(ξi, s)
�(α – 1) –

∑∞
i=1 βiξ

α–2
i

≥ 1
kα–2(1 + kα–1)

· sup
t∈[0,+∞)

G2(t, s)
1 + tα–1 .

Thus, (2.6) holds. According to the definition of λ(k), obviously (2.8) holds. �
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Lemma 2.7 ([25]) Let V = {u ∈ E : ‖u‖ < l, l > 0}, V0 = { u(t)
1+tα–1 : u ∈ V }. If V0 is equicontin-

uous in any finite subinterval of [0, +∞) and equiconvergent at infinity, then V is relatively
compact on E.

Lemma 2.8 ([26], Guo–Krasnosel’skii’s fixed point theorem) Let E be a Banach space,
P ⊂ E be a cone, �1, �2 be two bounded open sets of E centered at the origin with �1 ⊂ �2.
Suppose that A : P ∩ (�2\�1) → P is a completely continuous operator such that either

(i) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�2, or
(ii) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�2

holds. Then A has at least one fixed point in P ∩ (�2\�1).

In this article, we use the following space E to study (1.1), which is denoted by

E =
{

u ∈ C[0, +∞) : sup
t∈R+

|u(t)|
1 + tα–1 < +∞

}

,

with the norm ‖u‖ = supt∈R+
|u(t)|

1+tα–1 . Obviously, (E,‖ · ‖) is a Banach space.
Let P = {u ∈ E : u(t) ≥ 0, t ∈ R+}, P ⊂ E is a cone of E.
Denote Pr = {u ∈ P : 0 ≤ ‖u‖ < r}, ∂Pr = {x ∈ P : ‖x‖ = r} and Pr = {x ∈ P : ‖x‖ ≤ r} where

r > 0.

3 Main results
Define an operator T : P → E as follows:

Tu(t) =
∫ +∞

0
G(t, s)q(s)f

(
s, u(s)

)
ds.

For any u ∈ P ⊂ E, t, s ∈ [0, +∞), we have

G(t, s)q(s)f
(
s, u(s)

) ≤ G(t, s)q(s)ϕl(s) ≤ L
�(α)

q(s)ϕl(s).

So, for any t0 ∈ [0, +∞), we have |Tu(t) – Tu(t0)| → 0. Thus, Tu(t) =
∫ +∞

0 G(t, s)q(s)f (s,
u(s)) ds is convergent, then T : P → E is well defined. Therefore, the solution of BVP (1.1)
is equivalent to the fixed point of operator T .

If the following conditions are established, then f : [0, +∞) × [0, +∞) → [0, +∞) is
known as an L1-Carathéodory function:

(1) for each u ∈ [0, +∞), t �→ f (t, u) is measurable on t ∈ [0, +∞);
(2) for a.e. t ∈ [0, +∞), u �→ f (t, u) is continuous on u ∈ [0, +∞);
(3) for each r > 0, there exists ϕr ∈ L1[0, +∞) with ϕr(t) ≥ 0 on t ∈ [0, +∞) such that

∣
∣f

(
t,

(
1 + tα–1)u

)∣
∣ ≤ ϕr(t), for all ‖u‖ ≤ r, and a.e. t ∈ [0, +∞).

Throughout this article, we hypothesize that the condition holds:
(H1) q ∈ L1(R+) is nonnegative and

∫ ∞
0 q(s)ϕr(s) ds < ∞ for any r > 0.

Denote

f 0 = lim sup
u→0+

sup
t∈R+

f (t, (1 + tα–1)u)
u

, ρ =
�(α)

L
∫ +∞

0 q(s) ds
.
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Theorem 3.1 Assume that (H1) holds, q(t)f (t, 0) �≡ 0 in any subinterval (0, +∞), if f 0 < ρ ,
then BVP (1.1) has at least one positive solution.

Proof Step 1: We show that T : P → P.
Obviously, Tu(t) is continuous with respect to t ∈ R+. For any u ∈ P ⊂ E, there ex-

ists l > 0 such that ‖u‖ ≤ l, f is an L1-Carathéodory function. Since supt∈R+
u(t)

1+tα–1 < +∞,
then

Tu(t)
1 + tα–1 <

L
�(α)

∫ +∞

0
q(s)ϕl(s) ds < +∞.

So Tu ∈ E. Because G, f , q are nonnegative, in that way Tu(t) ≥ 0, which signifies Tu ∈ P
for any u ∈ P.

Step 2: we prove that T is a continuous operator.
Let un, u ∈ P, n = 1, 2, . . . , such that ‖un – u‖ → 0 as n → ∞, that is, un(t)

1+tα–1 → u(t)
1+tα–1 .

Then there exists r > 0 such that ‖un‖ ≤ r, ‖u‖ ≤ r. Since f is an L1-Carathéodory function,
then

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ → 0, n → ∞,

and

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ =

∣
∣
∣
∣f

(

s,
(
1 + sα–1) un(s)

1 + sα–1

)

– f
(

s,
(
1 + sα–1) u(s)

1 + sα–1

)∣
∣
∣
∣

≤ 2ϕr(s).

By using the Lebesgue dominated convergence theorem, we get

∫ +∞

0
q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds → 0, n → ∞.

So, we have

|Tun(t) – Tu(t)|
1 + tα–1 =

∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tα–1 q(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))
ds

∣
∣
∣
∣

≤
∫ +∞

0

G(t, s)
1 + tα–1 q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

≤ L
�(α)

∫ +∞

0
q(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds → 0, n → ∞.

Hence, ‖Tun – Tu‖ → 0 as n → ∞, thus T is a continuous operator.
Step 3: T is relatively compact.
Let B ⊂ P be a nonempty bounded closed subset, that is, there exists k > 0 such that

‖u‖ ≤ k for all u ∈ B, so there exists ϕk ∈ L1(R+) such that

∣
∣f

(
s, u(s)

)∣
∣ =

∣
∣
∣
∣f

(

s,
(
1 + sα–1) u(s)

1 + sα–1

)∣
∣
∣
∣ ≤ ϕk(s).



Yue and Zhang Boundary Value Problems  (2018) 2018:151 Page 8 of 13

(1) For any u ∈ B,

∣
∣
∣
∣

Tu(t)
1 + tα–1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds

∣
∣
∣
∣

≤ L
�(α)

∫ +∞

0
q(s)ϕk(s) ds

< +∞.

So, T(B) is uniformly bounded.
For notational convenience, denote

V1 =
{

z : z =
x(t)

1 + tα–1 , x ∈ T(B)
}

.

(2) For any A > 0, let I = [0, A] be a compact interval and t1, t2 ∈ I , t2 > t1.

∣
∣
∣
∣

Tu(t1)
1 + tα–1

1
–

Tu(t2)
1 + tα–1

2

∣
∣
∣
∣ ≤

∫ +∞

0

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

2

∣
∣
∣
∣q(s)f

(
s, u(s)

)
ds

+
∑∞

i=1 βi

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

∣
∣
∣
∣

tα–2
1

1 + tα–1
1

–
tα–2
2

1 + tα–1
2

∣
∣
∣
∣

×
∫ +∞

0
G1(ξi, s)q(s)f

(
s, u(s)

)
ds

≤
∫ +∞

0

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

1

∣
∣
∣
∣q(s)ϕk(s) ds

+
∫ +∞

0

∣
∣
∣
∣
G1(t2, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

2

∣
∣
∣
∣q(s)ϕk(s) ds

+
∑∞

i=1 βi

�(α)(�(α – 1) –
∑∞

i=1 βiξ
α–2
i )

∣
∣
∣
∣

tα–2
1

1 + tα–1
1

–
tα–2
2

1 + tα–1
2

∣
∣
∣
∣

×
∫ +∞

0
q(s)ϕk(s) ds.

On the other hand, we have

∫ +∞

0

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

1

∣
∣
∣
∣q(s)ϕk(s) ds

≤
∫ t1

0

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

1

∣
∣
∣
∣q(s)ϕk(s) ds

+
∫ t2

t1

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

1

∣
∣
∣
∣q(s)ϕk(s) ds

+
∫ +∞

t2

∣
∣
∣
∣
G1(t1, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

1

∣
∣
∣
∣q(s)ϕk(s) ds

≤ ϕk

∫ t1

0

(tα–1
1 – tα–1

2 ) + ((t2 – s)α–1 – (t1 – s)α–1)
1 + tα–1

1
q(s) ds

+ ϕk

∫ t2

t1

(tα–1
1 – tα–1

2 ) + (t2 – s)α–1

1 + tα–1
1

q(s) ds
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+ ϕk

∫ +∞

t2

tα–1
1 – tα–1

2

1 + tα–1
1

q(s) ds

→ 0 uniformly as t1 → t2.

Similarly, we have

∫ +∞

0

∣
∣
∣
∣
G1(t2, s)
1 + tα–1

1
–

G1(t2, s)
1 + tα–1

2

∣
∣
∣
∣q(s)ϕk(s) ds → 0 uniformly as t1 → t2.

So, we have

∣
∣
∣
∣

Tu(t1)
1 + tα–1

1
–

Tu(t2)
1 + tα–1

2

∣
∣
∣
∣ → 0 uniformly as t1 → t2.

Therefore, V1 is locally equicontinuous on R+.
(3) For any u ∈ B, we have

∫ +∞

0
q(s)f

(
s, u(s)

)
ds ≤ ϕk

∫ +∞

0
q(s) ds < +∞

and

lim
t→∞

1
1 + tα–1

∫ +∞

0
G1(t, s)q(s)f

(
s, u(s)

)
ds

= lim
t→∞

tα–1

1 + tα–1

∫ +∞

t
q(s)f

(
s, u(s)

)
ds

+ lim
t→∞

1
1 + tα–1

∫ t

0

(
tα–1 – (t – s)α–1)q(s)f

(
s, u(s)

)
ds

≤ ϕk lim
t→∞

∫ +∞

t
q(s) ds

+ ϕk lim
t→∞

∫ t

0

(tα–1 – (t – s)α–1)
1 + tα–1 q(s) ds

= 0

since limt→∞ (tα–1–(t–s)α–1)
1+tα–1 = 0 and limt→∞

∫ +∞
t q(s) ds = 0.

Thus

lim
t→∞

∣
∣
∣
∣

Tu(t)
1 + tα–1

∣
∣
∣
∣

= lim
t→∞

1
1 + tα–1

∫ +∞

0
G(t, s)q(s)f

(
s, u(s)

)
ds

= lim
t→∞

1
1 + tα–1

∫ +∞

0
G1(t, s)q(s)f

(
s, u(s)

)
ds

+ lim
t→∞

∑∞
i=1 βitα–2

(1 + tα–1)(�(α – 1) –
∑∞

i=1 βiξ
α–2
i )

∫ +∞

0

ξα–1
i

�(α)
q(s)f

(
s, u(s)

)
ds

– lim
t→∞

∑∞
i=1 βitα–2

(1 + tα–1)(�(α – 1) –
∑∞

i=1 βiξ
α–2
i )

∫ ξi

0

(ξi – s)α–1

�(α)
q(s)f

(
s, u(s)

)
ds
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≤
∑∞

i=1 βiξ
α–1
i

�(α)(�(α – 1) –
∑∞

i=1 βiξ
α–2
i )

∫ +∞

0
q(s)ϕk(s) ds

–
∑∞

i=1 βi

�(α)(�(α – 1) –
∑∞

i=1 βiξ
α–2
i )

∫ ξi

0
(ξi – s)α–1q(s)ϕk(s) ds

< +∞,

that is, for any ε > 0, there exists N > 0 such that, for all t1, t2 > N and Tu ∈ P, we have

∣
∣
∣
∣

Tu(t2)
1 + tα–1

2
–

Tu(t1)
1 + tα–1

1

∣
∣
∣
∣ < ε.

Hence, V1 is equiconvergent at infinity. So T is a completely continuous operator.
Step 4: T(B) ⊂ B.
Because f 0 < ρ , there exists r1 > 0 such that f (t,(1+tα–1)u)

u < ρu < ρr1, t ∈ R+, and u ∈ (0, r1].
Set B = {u ∈ P : ‖u‖ ≤ r1}, then, for any u ∈ B,

f
(
s, u(s)

)
= f

(

s,
(
1 + sα–1) u(s)

1 + sα–1

)

≤ ρ
u(s)

1 + sα–1 ≤ ρr1,

and

Tu(t)
1 + tα–1 =

∫ +∞

0

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds

≤ Lρr1

�(α)

∫ +∞

0
q(s) ds

= r1.

So T(B) ⊂ B. According to Lemma 2.5, we get that BVP (1.1) has at least one positive
solution. �

Theorem 3.2 f is an L1-Carathéodory function. Let F(t, u) = f (t, (1 + tα–1)u), r2 > r1 > 0,
k > 1, (H1) hold. Suppose that F satisfies one of the following conditions:

(A1) F(t, u
1+tα–1 ) ≥ r1

d for all (t, u) ∈ [ 1
k , k] × [0, r1] and F(t, u

1+tα–1 ) ≤ r2
D for all

(t, u) ∈ [0, +∞] × [0, r2];
(A2) F(t, u

1+tα–1 ) ≤ r1
d for all (t, u) ∈ [0, +∞] × [0, r1] and F(t, u

1+tα–1 ) ≥ r2
D for all

(t, u) ∈ [ 1
k , k] × [0, r2].

Then BVP (1.1) has at least one positive solution u∗ with r1 ≤ ‖u∗‖ ≤ r2.

Proof Firstly, we assume that (A1) holds.
According to Theorem 3.1, T : Pr2\Pr1 → P is a completely continuous operator. By

Lemma 2.8, the proof is as follows.
Step 1. Let u ∈ ∂Pr1 , t ∈ [0, +∞), then u(t)

1+tα–1 ≤ r1. We get the following conclusion by
using (A1):

min
t∈[ 1

k ,k]

|(Tu)(t)|
1 + tα–1 ≥

∫ +∞

0
min

t∈[ 1
k ,k]

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds

≥ λ(k)
∫ +∞

0
sup

t∈[0,+∞)

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds
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≥ λ(k)
∫ +∞

0

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds

≥ λ(k)
kα–2(1 + kα–1)�(α)

∫ k

1
k

q(s)F
(

s,
u(s)

1 + sα–1

)

ds

≥ r1

d
· λ(k)

kα–2(1 + kα–1)�(α)

∫ k

1
k

q(s) ds

= r1,

which means

‖Tu‖ ≥ ‖u‖, u ∈ ∂Pr1 .

Step 2. Let u ∈ ∂Pr1 , t ∈ [0, +∞), then u(t)
1+tα–1 ≤ r2. Using (A1) again, we get

|(Tu)(t)|
1 + tα–1 =

∫ +∞

0

G(t, s)
1 + tα–1 q(s)f

(
s, u(s)

)
ds

≤ L
�(α)

∫ +∞

0
q(s)F

(

s,
u(s)

1 + sα–1

)

ds

≤ r2

D
· L
�(α)

∫ +∞

0
q(s) ds

= r2,

which means

‖Tu‖ ≤ ‖u‖, u ∈ ∂Pr2 .

Therefore, from Lemma 2.8(i), we get a positive solution u∗ with r1 ≤ ‖u∗‖ ≤ r2 of BVP
(1.1).

Similarly, condition (A2) has the same conclusion when it is established. �

4 Example
Example 4.1 Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
9
2
0+ u(t) + e–t–t

7
2 u2 = 0, t ∈ (0, +∞),

ui(0) = 0, i = 0, 1, 2, . . . , n – 3,

D
7
2
0+ u(+∞) = 0,

D
5
2
0+ u(0) =

∑∞
i=1

2
i2 u(1 – 1

i+1 ).

(4.1)

Let α = 9
2 , q(t) = e–t , f (t, u) = e–t

7
2 u2, βi = 2

i2 , xii = 1 – 1
i+1 . It is easy to calculate that

∑∞
i=1 βiξ

α–2
i ≈ 1.643, �(α) = �( 9

2 ) ≈ 11.6319, �(α–1) = �( 7
2 ) ≈ 3.3234, where ϕr(t) = r2(1+

t 7
2 )2e–t

7
2 ∈ L1(R+), we have f (t, (1 + t 2

2 )) ≤ ϕr(t) for u ≤ r and t ∈ R+.
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Then
∫ +∞

0
q(s)ϕr(s) ds < +∞,

L = 1 +
∑∞

i=1 βiξ
α–2
i

�(α – 1) –
∑∞

i=1 βiξ
α–2
i

≈ 1.9777,

ρ =
�(α)

L
∫ +∞

0 q(s) ds
≈ 5.8815,

f 0 = lim sup
u→0+

sup
t∈R+

f (t, (1 + t 7
2 )u)

u
= lim sup

u→0+
sup
t∈R+

e–t
7
2 (1 + t 7

2 )2u2

u
= 0 < ρ.

According to Theorem 3.1, we get that (4.1) has a positive solution.

Example 4.2 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
9
2
0+ u(t) + (t0.5 + e2)–1e–π t(1.302 × 107 + u(t) + sin u(t)) = 0,

ui(0) = 0, i = 0, 1, 2, . . . , n – 3,

D
7
2
0+ u(+∞) = 0,

D
5
2
0+ u(0) =

∑∞
i=1

2
i2 u(1 – 1

i+1 ),

(4.2)

where t ∈ (0, +∞), α = 9
2 , �( 9

2 ) ≈ 11.6319, �( 7
2 ) ≈ 3.3234, βi = 2

i2 , ξi = 1 – 1
i+1 (i =

0, 1, 2, . . . , n – 3), and
∑∞

i=1 βiξ
α–2
i ≈ 1.643.

Let q(t) = t–0.5e–π t and f (t, u) = 1
1+t1.5 (1.302 × 107 + u + sin u). Obviously,

∫ +∞
0 q(s) ds = 1.

So condition (H1) holds. Set k = 2. By calculation, we have L ≈ 1.9777, λ ≈ 4.9783 × 10–3,
d ≈ 6.2653 × 10–6, and D ≈ 0.2008. Choose r1 = 1

2 and r2 = 8 × 107. Then we get

f (t, u) =
1

1 + t1.5

(
1.302 × 107 + u + sin u

)

> 1.2305 × 107 >
r1

d
≈ 7.9804 × 104

for all (t, u) ∈ [ 1
2 , 2] × [0, 1

2 ] and

f (t, u) =
1

1 + t1.5

(
1.302 × 107 + u + sin u

)

< 1.0209 × 108 <
r2

D
≈ 3.9841 × 108

for all (t, u) ∈ [0, +∞] × [0, 8 × 107].
So, according to Theorem 3.2, problem (4.2) has at least one solution.
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