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Abstract
In this paper, a low order nonconforming mixed finite element method (MFEM) is
studied with EQrot

1 element and zero order Raviart–Thomas (R–T) element for a class
of nonlinear reaction–diffusion equations. On the one hand, a priori bound is proved
using Lyapunov functional, which leads to the global existence and uniqueness of the
approximation solutions. Further, the superclose estimates of order O(h2) for original
variable u in broken H1 norm and the flux p =∇u in (L2)2 norm are obtained
respectively for a semi-discrete scheme. On the other hand, a linearized
Crank–Nicolson fully-discrete scheme is established and the superclose estimates of
order O(h2 + τ 2) are also obtained unconditionally by making full use of the special
characters of the above mixed finite elements (MFEs) and two different splitting
techniques, which are used to deal with the consistency errors and nonlinear terms,
respectively. These approaches circumvent the restrictive condition on a time step
size arising as an inverse inequality used to prove a posteriori bounds in L∞ norm,
which is necessary for nonlinear problems for the conventional finite element
analysis. What is more, the corresponding global superconvergent results are derived
through interpolated postprocessing techniques. Finally, numerical results are
provided to confirm the theoretical analysis. Here h is the subdivision parameter and
τ is the time step.

Keywords: Reaction–diffusion equation; Mixed finite element method; Linearized
fully discrete scheme; Superconvergence

1 Introduction
Consider the following nonlinear reaction–diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u + f (u) = 0, (x, t) ∈ � × (0, T],

u(x, t) = 0, (x, t) ∈ ∂� × (0, T],

u(x, 0) = u0, x ∈ �,

(1)

where x = (x, y), 0 < T < ∞, and � ∈R
2 is a rectangle with the boundary ∂�. u0 is a given

function. Equation (1) arises in cell dynamics behavior [1], ecological invasion [2], chem-
ical reaction modeling [3], and so forth. The mathematical nature of Equation (1) is de-
termined by a kinetic function f (·), and its analytical properties were widely investigated
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by many researchers. For example, the case f (u) = u – u2 was studied initially by Fisher
(1937) and Kolmogorov et al. (1937) [4], the case f (u) = u(u – α)(1 – u), α ∈ (0, 1) was
studied by Fife and McLeod (1977) [5], and the case f (u) = u3 – u was studied by Sherratt
and Marchant (1996) [6]. However, it is quite difficult to construct the exact solutions for
partial differential equations (PDEs). This restraints practical applications of PDEs. There-
fore, the numerical methods for solving PDEs are highly desired. In this work, we focus on
MFEM with EQrot

1 element and zero order Raviart–Thomas (R–T) element for nonlinear
reaction–diffusion equation (1) with reaction term f (u) = u3 – u.

In the past several decades, numerous efforts have been devoted to the development
of efficient numerical methods for solving the reaction–diffusion equations. For example,
[7–10] presented finite difference methods in one and multi-dimensions. [11, 12] studied
finite element methods. Since the pioneering work of Raviart and Thomas [13], MFEMs
have had many attractive features over the conventional Lagrange FEMs. For instance,
MFEMs conserve mass locally, which is of crucial importance in numerical methods for
flow coupled to transport [14]. By introducing ∇u as an extra variable, mixed methods
can produce accurate flux approximations. There are numerous applications of MFEMs
for general linear and nonlinear reaction–diffusion equations, see [15–21]. A two-grid
method for expanded MFEMs of semilinear reaction–diffusion equations was investigated
by [22, 23].

To the best of our knowledge, the above interesting works analyzed the optimal error
estimates for conforming (mixed) finite elements, and the function f (u) requires different
conditions. For example, the function f (u) is a smooth function of u ∈ R in [20], |f | ≤ k,
and | ∂f

∂u | ≤ k(k is a positive constant) in [16, 17], f is twice continuously differential on
� with bounded derivatives up to the second order in [21], and f is a triple continuously
differential function with bounded derivatives up to the third order in [15, 22, 23]. All
these strong assumptions on f make nonlinear equation (1) almost a linear one and the
error between f (u) and f (uh) can be bounded by

∥
∥f (u) – f (uh)

∥
∥

0 =
∥
∥f ′(μu,uh )(u – uh)

∥
∥

0 ≤ max
x∈R

∣
∣f ′(x)

∣
∣‖u – uh‖0 ≤ L|‖u – uh‖0,

where L is a positive constant independent of u, uh and the mesh size h (uh stands for
numerical solution). Clearly, these assumptions on f cannot be satisfied in most applica-
tions. For instance, f (u) = u3 – u is frequently used in phase field problems and nonlinear
Schrödinger equations. Thus, all the previous results are not applicable. To eliminate the
strong assumptions of f , one must derive a uniform boundedness of uh in certain strong
norms. A so-called a posteriori bound in L∞ norm was used to derive optimal error es-
timates of conventional (mixed) FEMs, time step size restrictions were also required to
circumvent the difficulties caused by nonlinear term f (u) [24]. The time step restrictions
may lead to the use of an unnecessarily small time step and make the computations much
more time-consuming. In order to avoid such defects, the so-called splitting technique
was introduced in [25, 26] and was later used in [27–35], where a corresponding time-
discrete system was constructed to split the error into two parts, the temporal error and
the spatial error.

In this paper, we may develop another approach to study the unconditional superconver-
gence analysis for Equation (1) with a new low order nonconforming MFEM introduced
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in [36, 37], which is different from the conventional MFEM used in [13, 15–21, 38]. To
circumvent the difficulties caused by nonlinear terms f (u) and to relax the restrictions of
f (u), we use a novel splitting technique to split the nonlinear term f (u) into different parts,
use the ‖ · ‖0,2p norm to estimate the splitting terms. Through a sharp estimate, we derive
the desired results. On the other hand, there exists the consistency error for nonconform-
ing elements, which also leads to losing error order and causes time step restrictions. For
example, EQrot

1 nonconforming FE, the consistency error of this element is only estimated
as follows:

∑

K

∫

∂K

∂u
∂n

ϕh ds ≤ Ch2|u|3‖ϕh‖1,h ≤ Ch|u|3‖ϕh‖0.

Only order O(h) result can be deduced (ϕh belongs to EQrot
1 finite element space). There-

fore, another novel splitting argument for consistency error is also developed, by which
the consistency errors are split into different parts and the time steps are transferred for
one part of the integral to another. This technique also removes time step restrictions.

The paper is organized as follows. In Sect. 2, a brief description of nonconforming MFEs
is introduced and some useful high accuracy results are given. In Sect. 3, a priori bound is
proved using Lyapunov functional, which leads to the global existence and uniqueness of
the approximation solutions. Further, the superclose estimates of order O(h2) for original
variable u in broken H1 norm and the flux p = ∇u in (L2)2 norm are obtained respectively
for a semi-discrete scheme. In Sect. 4, a linearized Crank–Nicolson fully-discrete scheme
is established and the superclose estimates of order O(h2 + τ 2) are obtained. In Sect. 5, the
superconvergence estimates are derived through interpolated postprocessing techniques.
In Sect. 6, some numerical results are provided to show the validity of the theoretical
analysis. Finally, conclusions and discussions are summarized in Sect. 7.

2 Construction of mixed finite elements
Let � ⊂ R

2 be a convex polygon with boundary ∂� parallel to the coordinate axes, �h be
a rectangular subdivision. For any given K ∈ �h, let the four vertices and edges be Ai(x, y)
(i = 1, 2, 3, 4. mod(4)) and li = AiAi+1 (i = 1, 2, 3, 4. mod(4)), respectively. The MFE spaces
Mh and Wh are taken as [39]:

Mh =
{

ϕh;ϕh|K ∈ span
{

1, x, y, x2, y2},
∫

F
[ϕh] ds = 0, F ⊂ ∂K ,∀K ∈ �h

}

,

Wh =
{

wh =
(
w1

h, w2
h
)
; wh|K ∈ Q1,0(K) × Q0,1(K),∀K ∈ �h

}
,

where Qij = span{xrys, 0 ≤ r ≤ i, 0 ≤ s ≤ j}. [ϕh] stands for jump of ϕh across the edge F if
F is an internal edge, and [ϕh] = ϕh if F is a boundary edge.

Let Ih : u ∈ H1(�) → Ihu ∈ Mh and �h = (	1
h,	2

h) : w = (w1, w2) ∈ (H1(�))2 → �hw =
(	1

hw1,	2
hw2) ∈ Wh be the associated interpolation operators on Mh and Wh, respectively,

which satisfy Ih|K = IK , �h|K = (	1
h|K ,	2

h|K ) = �K = (	1|K ,	2|K ),

∫

K
(u – IK u) dx = 0,

∫

li
(u – IK u) ds = 0, i = 1, 2, 3, 4,
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and
∫

li
(w – �K w) · ni ds = 0, i = 1, 2, 3, 4,

where ni is the unit outward normal vector to boundary li (i = 1, 2, 3, 4).
The following results play an important role in the forgoing superconvergence analysis.

Equations (2), (3), and (4) can be found in [40, 41], and [42], respectively.
For u ∈ H3(�), ϕh ∈ Mh, wh ∈ Wh, there hold

(p – �hp, wh) ≤ Ch2|p|2‖wh‖0, (2)
(∇h(u – Ihu),∇hϕh

)

h = 0, (3)

and

∑

K

∫

∂K
p · nϕh ds ≤ Ch2|p|2‖ϕh‖1,h, (4)

where ∇h denotes the gradient operator defined piecewisely, (u, v)h =
∑

K
∫

K uv dx dy,
‖ · ‖1,h = (

∑
K | · |1,K )1/2 is a norm on Mh. C denotes a generic positive constant, which is

independent of h, τ , but may depend on u and f .

3 Superclose analysis for a semi-discrete scheme
In this section, we will present a spatial discrete scheme for Equation (1), discuss the ex-
istence, uniqueness, stability of the approximate solution uh, and derive the superclose
estimates.

Let p = –∇u, then Equation (1) can be put in the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + ∇ · p + f (u) = 0, (x, t) ∈ � × (0, T],

p + ∇u = 0, (x, t) ∈ � × (0, T],

u(x, t) = 0, (x, t) ∈ ∂� × (0, T],

u(x, 0) = u0, x ∈ �,

(5)

and the corresponding weak formulation is to find {u, p} : (0, T] → H1
0 (�) × (L2(�))2 such

that

⎧
⎪⎪⎨

⎪⎪⎩

(ut ,ϕ) – (p,∇ϕ) + (f (u),ϕ) = 0, ∀ϕ ∈ H1
0 (�),

(p, w) + (∇u, w) = 0, ∀w ∈ (L2(�))2,

u(x, 0) = u0, x ∈ �.

Consider the approximation of (5): to seek {uh, ph} ∈ Mh × Wh such that

⎧
⎪⎪⎨

⎪⎪⎩

(uht ,ϕh) – (ph,∇hϕh)h + (f (uh),ϕh) = 0, ∀ϕh ∈ Mh,

(ph, �wh) + (∇huh, wh)h = 0, ∀wh ∈ Wh,

uh(x, 0) = Ihu0, x ∈ �.

(6)
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Remark 1 Compared with the classical mixed finite element approximation schemes stud-
ied by [13, 15–21, 38], the gradient in our scheme belongs to the simple square integrable
space (L2(�))2 avoiding the use of the complex space H(div;�). Obviously, the regularity
required on the solution p = –∇u is reduced.

Theorem 1 Problems (6) are uniquely solvable and there holds

‖uh‖1,h ≤ C. (7)

Proof In terms of the bases {ϕi}r1
i=1 for Mh and {ψ j}r2

j=1 for Wh, we can suppose that

uh =
r1∑

i=1

ui(t)ϕi, ph =
r2∑

j=1

pj(t)ψ j.

Then problem (6) can be written as follows: Find ui(t) and pj(t), i = 1, 2, . . . , r1, j =
1, 2, . . . , r2, such that, ∀t ∈ [0, t],

⎧
⎪⎪⎨

⎪⎪⎩

(a) A dU(t)
dt – BP(t) + F(U(t)) = O,

(b) CP(t) + B′U(t) = 0,

(c) U(0) = U0,

(8)

where

U(t) =
(
u1(t), u2(t), . . . , ur1 (t)

)′, P(t) =
(
p1(t), p2(t), . . . , pr2 (t)

)′,

U0 =
(
u1(0), u2(0), . . . , ur1 (0)

)′, A =
(
(ϕi,ϕj)

)

r1×r1
,

B =
(
(∇hϕi,ψ j)h

)

r1×r2
, C =

(
(ψ i,ψ j)

)

r2×r2
,

F(U) =

((

f

( r1∑

k=1

uk(t)ϕk

)

,ϕi

))

r1×1

.

Since the matrices A, C are positive definite, we can derive from (8(b))

P(t) = –C–1B′U(t). (9)

Substituting (9) into (8(a)), we get

⎧
⎨

⎩

A dU(t)
dt + BC–1B′U(t) + F(U(t)) = O,

U(0) = U0.
(10)

Clearly, (10) presents nonlinear ordinary differential equations with locally Lipschitz con-
tinuity on F. The Picard theorem ensures that system (10) admits a unique local solution
U(t) on a certain maximal subinterval (0, th] of [0, T]. For proving the global existence, we
need a priori bounds to continue beyond th. To do this, we introduce a new Lyapunov
functional L(ϕ):

L(ϕ) =
1
2

(∇hϕ,∇hϕ)h +
(
F(ϕ), 1

)
. (11)
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Moreover, taking {vh, wh} = {uht ,∇huht} in (6) and adding the first two equations, we have

dL(uh)
dt

= –‖uht‖2
0 ≤ 0.

Integrating both sides with respect to time variable from 0 to t, we have

L(uh) ≤ L
(
uh(0)

)
,

which implies that

‖∇huh‖0 ≤
√∥

∥∇huh(x, 0)
∥
∥2

0 + 2
(
F
(
uh(x, 0)

)
, 1

) ≤ C.

Thus, we conclude the global existence of a solution U(t) to (10). Then we can also get P(t)
from (9). In other words, problem (6) is uniquely solvable. �

Remark 2 The key to the proof of (7) is the construction of a Lyapunov functional L(ϕ),
which is not an easy thing for the general function f (·), and allows us to get rid of the
assumption on boundedness of numerical solution ‖uh‖0,∞, which is usually necessary
and inevitable in the traditional finite element analysis.

In this paper, the following inequality will be always used [43]:

‖ϕh‖0,2p ≤ C‖ϕh‖1,h, ∀ϕh ∈ Mh, p ∈ N
+. (12)

Theorem 2 Let {u, p} and {uh, ph} be the solutions of (5) and (6), respectively. Assume that
u, ut ∈ H3(�) holds. Then we have

‖Ihu – uh‖1,h ≤ Ch2
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2

, (13)

‖�hp – ph‖0 ≤ Ch2
{

‖p‖2 +
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2}

. (14)

Proof We decompose the error as follows: u – uh = (u – Ihu) + (Ihu – uh) � η + ξ , p – ph =
(p – �hp) + (�hp – ph) � ρ + θ . Subtracting (6) from (5) gives

⎧
⎪⎪⎨

⎪⎪⎩

(a) (ξt ,ϕh) – (θ ,∇hϕh)h = –(ηt ,ϕh) + (ρ,∇hϕh)h – (f (u) – f (uh),ϕh)

–
∑

K
∫

∂K p · nϕh ds,

(b) (θ , wh) + (∇hξ , wh)h = –(ρ, wh) – (∇hη, wh)h.

(15)

On the one hand, taking {ϕh, wh} = {ξt ,∇hξt} in the equations of (15), we have

‖ξt‖2
0 +

1
2

d
dt

‖∇hξ‖2
0 = –(ηt , ξt) – (∇hη,∇hξt)h –

(
f (u) – f (uh), ξt

)

–
∑

K

∫

∂K
p · nξt ds. (16)
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Firstly, it is easy to check that

∣
∣(ηt , ξt)

∣
∣ ≤ C‖ηt‖0‖ξt‖0 ≤ Ch4‖ut‖2

2 +
1
2
‖ξt‖2

0, (17)

and by use of (3) and (4), respectively, we derive

(∇hη,∇hξt)h = 0, (18)
∑

K

∫

∂K
p · nξt ds =

d
dt

∑

K

∫

∂K
p · nξ ds –

∑

K

∫

∂K
pt · nξ ds

≤ Ch4‖pt‖2
2 + C‖ξ‖2

1,h +
d
dt

∑

K

∫

∂K
p · nξ ds. (19)

Secondly, by virtue of (12) and (7), we have

(
f ′(u)ut – f ′(uh)uht , ξ

)

=
(
3u2ut – 3u2

hut + 3u2
hut – 3u2

huht – (ut – uht), ξ
)

=
(
3ut

(
u2 – u2

h
)
, ξ

)
+

(
3u2

h(ut – uht), ξ
)

– (ut – uht , ξ )

≤ C‖ut‖0,∞‖u – uh‖0‖u + uh‖0,4‖ξ‖0,4

+ C‖ut – uht‖0‖uh‖2
0,8‖ξ‖0,4 + C‖ut – uht‖0‖ξ‖0

≤ C‖u – uh‖0‖ξ‖1,h + C‖ut – uht‖0‖ξ‖1,h + C‖ut – uht‖0‖ξ‖0

≤ C
(‖η‖2

0 + ‖ηt‖2
0
)

+ C‖ξ‖2
1,h +

1
2
‖ξt‖2

0

≤ Ch4(‖u‖2
2 + ‖ut‖2

2
)

+ C‖ξ‖2
1,h +

1
2
‖ξt‖2

0, (20)

which implies that

(
f (u) – f (uh), ξt

)
=

d
dt

[(
f (u) – f (uh), ξ

)]
–

(
f ′(u)ut – f ′(uh)uht , ξ

)

≤ Ch4(‖u‖2
2 + ‖ut‖2

2
)

+ C‖ξ‖2
1,h +

1
2
‖ξt‖2

0

+
d
dt

[(
f (u) – f (uh), ξ

)]
. (21)

Substituting (17)–(19) and (21) into (16), then integrating from 0 to t, together with
ξ (x, 0) = 0, leads to

‖ξ‖2
1,h ≤ Ch4

∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds + C
∫ t

0
‖ξ‖2

1,h ds

– 2
∑

K

∫

∂K
p · nξ ds – 2

(
f (u) – f (uh), ξ

)
. (22)

Similar to (20), we derive

∣
∣
(
f (u) – f (uh), ξ

)∣
∣ =

∣
∣(u – uh)

(
u2 + uuh + u2

h
)
, ξ ) – (u – uh, ξ )

∣
∣

≤ C‖u – uh‖0
(‖u‖2

0,8 + ‖u‖0,8‖uh‖0,8 + ‖uh‖2
0,8

)‖ξ‖0,4
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+ ‖u – uh‖0‖ξ‖0

≤ C‖u – uh‖0‖ξ‖1,h + ‖u – uh‖0‖ξ‖0

≤ Ch4‖u‖2
2 +

1
8
‖ξ‖2

1,h, (23)

and by virtue of (4), we have

∑

K

∫

∂K
p · nξ ds ≤ Ch4‖p‖2

2 +
1
8
‖ξ‖2

1,h. (24)

Finally, substituting (23)–(24) into (22), then applying Gronwall’s inequality yields

‖ξ‖1,h ≤ Ch2
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2

. (25)

On the other hand, choosing wh = θ in the second equation in (15), employing (2)–(3)
and (25), we derive

‖θ‖0 ≤ Ch2
{

‖p‖2 +
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2}

. (26)

The proof is completed. �

Remark 3 With the help of (7) and (12), we derive the estimates for |(f (u)– f (uh), ξ )|, which
are different from those in [24].

4 Superclose analysis for a linearized Crank–Nicolson fully-discrete scheme
In this section, we will establish a linearized Crank–Nicolson fully-discrete scheme by
MFEM and analyze superclose and superconvergence results. Let {tn : tn = nτ ; 0 ≤ n ≤ N}
be a uniform partition of [0, T] with the time step τ = T/N , tn– 1

2
= 1

2 (tn + tn–1) and un =
u(x, tn). For a sequence of functions {σ n}N

n=0, we denote

∂̄tσ
n =

σ n – σ n–1

τ
, σ̄ n =

σ n + σ n–1

2
, n = 1, 2, . . . , N ,

σ̂ n =
3
2
σ n–1 –

1
2
σ n–2, n = 2, . . . , N .

With these notations, the linearized Crank–Nicolson fully-discrete approximation to (5)
reads as follows: for n ≥ 2, find {Un

h , Pn
h} ∈ Mh × Wh such that

⎧
⎨

⎩

(∂̄tUn
h ,ϕh) – (P̄n

h,∇hϕh)h = –(f (Ûn
h ),ϕh), ∀ϕh ∈ Mh,

(P̄n
h, wh) + (∇hŪn

h , wh)h = 0, ∀wh ∈ Wh.
(27)

For n = 1, {U1
h , P1

h} can be determined by

⎧
⎨

⎩

(∂̄tUn
h ,ϕh) – (P̄1

h,∇hϕh)h = –(f ( U1,0
h +U0

h
2 ),ϕh), ∀ϕh ∈ Mh,

(P̄1
h, wh) + (∇hŪ1

h , wh)h = 0, ∀wh ∈ Wh,
(28)
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together with

⎧
⎨

⎩

( U1,0
h –U0

h
τ

,ϕh) – ( P1,0
h +P0

h
2 ,∇hϕh)h = –(f (U0

h ),ϕh), ∀ϕh ∈ Mh,

( P1,0
h +P0

h
2 , wh) + ( ∇hU1,0

h +∇hU0
h

2 , wh)h = 0, ∀wh ∈ Wh,
(29)

where U0
h = Ihu0 and P0

h = �h∇u0. In what follows, the pervading strategy throughout the
error analysis is splitting the error into a sum of two terms:

u1 – U1,0
h =

(
u1 – Ihu1) +

(
Ihu1 – U1,0

h
)
� η1 + ξ 1,0,

un – Un
h =

(
un – Ihun) +

(
Ihun – Un

h
)
� ηn + ξn, n = 0, 1, 2, . . . , N ,

pn – Pn
h =

(
pn – �hpn) +

(
�hpn – Pn

h
)
� ρn + θn, n = 0, 1, 2, . . . , N .

Now, we are ready to present our main results in the following theorem.

Theorem 3 Suppose that equations (5) have unique solutions {un, pn} satisfying u, ut ∈
L∞(0, T ; H3(�)) ∩ L2(0, T ; H3(�)), utt ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H2(�)), uttt ∈ L∞(0, T ;
H1(�)), then the fully-discrete equations (27)–(29) admit unique finite element solutions
{Un

h , Pn
h}. Further, there exist τ0 > 0 and h0 > 0 such that, when τ ≤ τ0, h ≤ h0,

∥
∥Ihun – Un

h
∥
∥

1,h +
∥
∥�hp̄n – P̄n

h
∥
∥

0 ≤ C0
(
h2 + τ 2), (30)

where C0 is a positive constant independent of τ and h.

Proof First of all, we prove the existences and uniqueness of solutions of system (27)–(29).
If {Un

h , Pn
h} is given for n = 0, 1, 2, . . . , m – 1, then the fully-discrete linear equations (27)

have unique solutions {Um
h , Pm

h } when, and only when, the corresponding homogeneous
equations

⎧
⎨

⎩

1
τ

(h,ϕh) – (�h,∇hϕh)h = 0,

(�h, wh) + (∇hh, wh)h = 0
(31)

only have zero solutions. In fact, choosing {ϕh, wh} = {h,∇hh} in the above equations,
we have

1
τ

‖h‖2
0 + ‖∇hh‖2

0 = 0,

we immediately get h = 0. Taking wh = �h in the second equation of (31), we have

‖�h‖0 ≤ ‖∇hh‖0 = 0,

which implies that �h = 0. Thus, the homogeneous equation (31) has only zero solutions,
which implies that the solutions of (27) exist and are unique. Similarly, we can get the
existence and uniqueness of the solutions of (28) and (29).
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Next, we prove estimates (30) by using mathematical induction. For any given n ≥ 1,
t = tn– 1

2
, any given {ϕh, wh} ∈ Mh × Wh, the weak form of (5) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

(∂̄tun,ϕh) – (p̄n,∇hϕh)h = –(f (un– 1
2 ),ϕh) + (Rn

2,ϕh) – (Rn
3,∇hϕh)h

–
∑

K
∫

∂K pn– 1
2 · nϕh ds,

(p̄n, wh) + (∇hūn, wh)h = (Rn
3, wh) + (∇hRn

4, wh)h,

(32)

where

Rn
2 = ∂̄tun – un– 1

2
t , Rn

3 = p̄n – pn– 1
2 , Rn

4 = ūn – un– 1
2 .

In fact, by Taylor’s expansion, we have

∥
∥Rn

2
∥
∥2

0 = (2τ )–2
∥
∥
∥
∥

∫ tn– 1
2

tn–1

(t – tn–1)2uttt(s) ds +
∫ tn

tn– 1
2

(t – tn)2uttt(s) ds
∥
∥
∥
∥

2

0

≤ Cτ 3
∫ tn

tn–1

∥
∥uttt(s)

∥
∥2

0 ds ≤ Cτ 4‖uttt‖2
L∞(0,T ;L2(�)), (33)

and

∥
∥∇hRn

4
∥
∥2

0 =
1
4

∥
∥
∥
∥

∫ tn– 1
2

tn–1

(t – tn–1)∇hutt(s) ds –
∫ tn

tn– 1
2

(t – tn)∇hutt(s) ds
∥
∥
∥
∥

2

0

≤ Cτ 3
∫ tn

tn–1

∥
∥∇hutt(s)

∥
∥2

0 ds. (34)

By U0
h = Ihu0, we can derive that

∥
∥u0 – U0

h
∥
∥

0,p = ‖u0 – Ihu0‖0,p ≤ Ch2‖u0‖2,p, 1 ≤ p < ∞. (35)

When n = 1, on the one hand, subtracting (29) from (32), taking {ϕh, wh} = { ξ1,0

τ
,∇h

ξ1,0

τ
},

and noting that ξ 0 = 0, we have

2τ
∥
∥∂̄tξ

1,0∥∥2
0 +

∥
∥ξ 1,0∥∥2

1,h = 2τ
(
R1

2, ∂̄tξ
1,0) – 2τ

(
∂̄tη

1, ∂̄tξ
1,0)

– 2τ
∑

K

∫

∂K
p

1
2 · n∂̄tξ

1,0 ds – 2τ
(
f
(
u

1
2
)

– f
(
U0

h
)
, ∂̄tξ

1,0)

– 2τ
(∇hη̄

1, ∂̄t∇hξ
1,0)

h + 2τ
(∇hR1

4, ∂̄t∇hξ
1,0)

h �
6∑

i=1

Fi. (36)

By (33) and (34), F1, F2, F6 can be estimated as

F1 + F2 + F6 ≤ Cτ
(∥
∥R1

2
∥
∥2

0 +
∥
∥∂̄tη

1∥∥2
0

)
+ τ

∥
∥∂̄tξ

1,0∥∥2
0 + C

∥
∥∇hR1

4
∥
∥2

0

∥
∥∇hξ

1,0∥∥
0

≤ Cτ 4(‖uttt‖2
L∞(0,T ;L2(�)) + ‖utt‖2

L2(0,T ;H1(�))
)

+ Ch4‖ut‖2
L2(0,T ;H2(�)) + τ

∥
∥∂̄tξ

1,0∥∥2
0 +

1
4
∥
∥ξ 1,0∥∥2

1,h.
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And by use of (3) and (4), respectively, we can see that

F5 = 0, F3 = 2
∑

K

∫

∂K
p

1
2 · nξ 1,0 ds ≤ Ch4‖p‖2

L∞(0,T ;H2(�)) +
1
4
∥
∥ξ 1,0∥∥2

1,h.

To estimate F4 and circumvent the time step size restrictions caused by the nonlinear term
f (u), we introduce a novel splitting technique which splits F4 into different parts, and by
use of (35), we derive

∣
∣
(
f (u0) – f

(
U0

h
)
, ∂̄tξ

1,0)∣∣

=
∣
∣
((

(u0)3 – u0
)

–
((

U0
h
)3 – U0

h
)
, ∂̄tξ

1,0)∣∣

=
∣
∣
((

u0 – U0
h
)3, ∂̄tξ

1,0) – 3
((

u0 – U0
h
)2u0, ∂̄tξ

1,0)

+ 3
((

u0 – U0
h
)
u2

0, ∂̄tξ
1,0) –

(
u0 – U0

h , ∂̄tξ
1,0)∣∣

≤ C
∥
∥u0 – U0

h
∥
∥3

0,6

∥
∥∂̄tξ

1,0∥∥
0 + C

∥
∥u0 – U0

h
∥
∥2

0,4‖u0‖0,∞
∥
∥∂̄tξ

1,0∥∥
0

+ C
∥
∥u0 – U0

h
∥
∥

0‖u0‖2
0,∞

∥
∥∂̄tξ

1,0∥∥
0 + Ch2‖u0‖2

∥
∥∂̄tξ

1,0∥∥
0

≤ Ch4 +
1
2
∥
∥∂̄tξ

1,0∥∥2
0.

Thus,

F4 = –2τ
(
f
(
u

1
2
)

– f (u0), ∂̄tξ
1,0) – 2τ

(
f (u0) – f

(
U0

h
)
, ∂̄tξ

1,0)

≤ Cτ
∥
∥f

(
u

1
2
)

– f (u0)
∥
∥2

0 +
τ

2
∥
∥∂̄tξ

1,0∥∥2
0 – 2τ

(
f (u0) – f

(
U0

h
)
, ∂̄tξ

1,0)

≤ Cτ 3‖ut‖2
L∞(0,T ;L2(�)) + Ch4 + τ

∥
∥∂̄tξ

1,0∥∥2
0.

Substituting the above estimates Fi (i = 1, 2, . . . , 6) into (36), there exist C1, τ1 such that
when τ ≤ τ1, there holds

∥
∥ξ 1,0∥∥2

1,h ≤ C1
(
h4 + τ 3), (37)

and with the help of (12), we have

∥
∥ξ 1,0∥∥2

0,2k ≤ 1 (38)

when τ ≤ τ2 = 3√1/2CC1, h ≤ h1 = 4√1/2CC1.
On the other hand, we estimate ‖ξ 1‖2

1,h. Subtracting (28) from (32), taking {ϕh, wh} =
{ ξ1

τ
,∇h

ξ1

τ
}, and noting that ξ 0 = 0, we have

2τ
∥
∥∂̄tξ

1∥∥2
0 +

∥
∥ξ 1∥∥2

1,h = 2τ
(
R1

2, ∂̄tξ
1) – 2τ

(
∂̄tη

1, ∂̄tξ
1)

– 2τ
∑

K

∫

∂K
p

1
2 · n∂̄tξ

1 ds – 2τ

(

f
(
u

1
2
)

– f
(

U1,0
h + U0

h
2

)

, ∂̄tξ
1
)

– 2τ
(∇hη̄

1, ∂̄t∇hξ
1)

h + 2τ
(∇hR1

4, ∂̄t∇hξ
1)

h �
6∑

i=1

Gi. (39)
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Similar to the estimates Fi (i = 1, 2, 3, 5, 6), Gi (i = 1, 2, 3, 5, 6) can be estimated as follows:

G1 + G2 + G6 ≤ Cτ 4(‖uttt‖2
L∞(0,T ;L2(�)) + ‖ptt‖2

L∞(0,T ;L2(�))
)

+ Ch4‖ut‖2
L2(0,T ;H2(�)) + τ

∥
∥∂̄tξ

1∥∥2
0 +

1
4
∥
∥ξ 1∥∥2

1,h,

G3 ≤ Ch4‖p‖2
L∞(0,T ;H2(�)) +

1
4
∥
∥ξ 1∥∥2

1,h, G5 = 0.

Now we estimate G4. In order to get rid of the time step restriction, we rewrite G4 as
follows:

G4 = –2τ

(

f
(
u

1
2
)

– f
(

u1 + u0

2

)

, ∂̄tξ
1
)

– 2τ

(

f
(

u1 + u0

2

)

– f
(

U1,0
h + U0

h
2

)

, ∂̄tξ
1
)

= –2τ

(

f
(
u

1
2
)

– f
(

u1 + u0

2

)

, ∂̄tξ
1
)

– 2τ

((
u1 + u0

2
–

U1,0
h + U0

h
2

)3

, ∂̄tξ
1
)

+ 6τ

((
u1 + u0

2
–

U1,0
h + U0

h
2

)2 u1 + u0

2
, ∂̄tξ

1
)

– 6τ

((
u1 + u0

2
–

U1,0
h + U0

h
2

)(
u1 + u0

2

)2

, ∂̄tξ
1
)

+ 2τ

(
u1 + u0

2
–

U1,0
h + U0

h
2

, ∂̄tξ
1
)

�
5∑

i=1

G4i,

G41 ≤ Cτ

∥
∥
∥
∥f

(
u

1
2
)

– f
(

u1 + u0

2

)∥
∥
∥
∥

2

0
+

τ

2
∥
∥∂̄tξ

1∥∥2
0 ≤ Cτ 4 +

τ

2
∥
∥∂̄tξ

1∥∥2
0. (40)

By use of (37) and (38), and noting that ξ 0 = 0, we derive

5∑

i=2

G4i ≤ Cτ
(∥
∥η1∥∥3

0,6 +
∥
∥ξ 1,0∥∥3

0,6 +
∥
∥η0∥∥3

0,6

)∥
∥∂̄tξ

1∥∥
0

+ Cτ
(∥
∥η1∥∥2

0,4 +
∥
∥ξ 1,0∥∥2

0,4 +
∥
∥η0∥∥2

0,4

)
∥
∥
∥
∥

u1 + u0

2

∥
∥
∥
∥

0,∞

∥
∥∂̄tξ

1∥∥
0

+ Cτ
(∥
∥η1∥∥

0 +
∥
∥ξ 1,0∥∥

0 +
∥
∥η0∥∥

0

)
∥
∥
∥
∥

u1 + u0

2

∥
∥
∥
∥

2

0,∞

∥
∥∂̄tξ

1∥∥
0

+ Cτ
(∥
∥η1∥∥

0 +
∥
∥ξ 1,0∥∥

0 +
∥
∥η0∥∥

0

)∥
∥∂̄tξ

1∥∥
0

≤ C
(
τ 4 + h4) +

τ

2
∥
∥∂̄tξ

1∥∥2
0,

which together with (40) implies that

G4 ≤ C
(
τ 4 + h4) + τ

∥
∥∂̄tξ

1∥∥2
0.
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Substituting the above estimates Gi (i = 1, 2, . . . , 6) into (39), then by Gronwall’s inequality,
there exist C2, τ3 > 0, when τ ≤ τ3, such that

∥
∥ξ 1∥∥2

1,h ≤ C2
(
h4 + τ 4). (41)

Moreover, subtracting the second equation of (28) from the second equation of (32) and
choosing wh = θ̄

1, we have

∥
∥θ̄

1∥∥2
0 = –

(∇hξ
1, θ̄1)

h –
(
ρ̄1, θ̄1) –

(∇hη
1, θ̄1)

h +
(

R1
3, θ̄1) +

(∇hR1
4, θ̄1)

h. (42)

Using the Cauchy–Schwarz inequality, there holds

∣
∣
(∇hξ

1, θ̄1)

h +
(

R1
3, θ̄1) +

(∇hR1
4, θ̄1)

h

∣
∣

≤ (∥
∥∇hξ

1∥∥
0 +

∥
∥R1

3
∥
∥

0 +
∥
∥∇hR1

4
∥
∥

0

)∥
∥θ̄

1∥∥
0. (43)

Employing (2) and (3), respectively, we can see that

∣
∣
(
ρ̄1, θ̄1)∣∣ ≤ Ch2∥∥p̄1∥∥

2

∥
∥θ̄

1∥∥
0 (44)

and

∣
∣
(∇hη

1, θ̄1)

h

∣
∣ = 0, (45)

respectively. With the above estimates of (33)–(34) and (41)–(45), there exist C3, τ4 > 0,
when τ ≤ τ4, such that

∥
∥θ̄

1∥∥2
0 ≤ C3

(
h4 + τ 4). (46)

Now, we assume that (30) holds for m ≤ n – 1. By use of (12) again, we have

∥
∥ξm∥

∥2
0,2k ≤ CC0

(
h4 + τ 4), (47)

which implies that

∥
∥ξm∥

∥2
0,2k ≤ 1, (48)

when τ ≤ τ5 = 4√1/2CC0, h ≤ h2 = 4√1/2CC0.
In the following, we prove that (30) also holds for m = n. From (27) and (32), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (∂̄tξ
n,ϕh) – (θ̄n,∇hϕh)h = (Rn

2,ϕh) – (Rn
3,∇hϕh)h – (∂̄tη

n,ϕh)

+ (ρ̄n,∇hϕh)h –
∑

K
∫

∂K pn– 1
2 · nϕh ds

– (f (un– 1
2 ) – f (Ûn

h ),ϕh),

(b) (θ̄n, wh) + (∇hξ
n, wh)h = –(ρ̄n, wh) – (∇hη

n, wh)h

+ (Rn
3, wh) + (∇hRn

4, wh)h.

(49)
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Choosing {ϕh, wh} = {∂̄tξ
n, ∂̄t∇hξ

n} in (49), replacing n by i, and summing up from 2 to n,
we can derive the following error equation:

2τ

n∑

i=2

∥
∥∂̄tξ

i∥∥2
0 +

∥
∥ξn∥∥2

1,h

=
∥
∥ξ 1∥∥2

1,h + 2τ

n∑

i=2

(
Ri

2, ∂̄tξ
i) – 2τ

n∑

i=2

(
∂̄tη

i, ∂̄tξ
i)

– 2τ

n∑

i=2

∑

K

∫

∂K
pi– 1

2 · n∂̄tξ
i ds – 2τ

n∑

i=2

(
f
(
ui– 1

2
)

– f
(
Ûi

h
)
, ∂̄tξ

i)

– 2τ

n∑

i=2

(∇hη̄
i, ∂̄t∇hξ

i)

h + 2τ

n∑

i=2

(∇hRi
4, ∂̄t∇hξ

i)

h �
7∑

j=1

Ej. (50)

Now we estimate the terms on the right-hand side of (50).
Similar to (33)–(34), we obtain

∥
∥∂̄t∇hRi

4
∥
∥2

0 ≤ Cτ 4‖uttt‖2
L∞(0,T ;H1(�))

and

(∇hRi
4, ∂̄t∇hξ

i)

h = ∂̄t
(∇hRi

4,∇hξ
i)

h –
(
∂̄t∇hRi

4,∇hξ
i–1)

h,

then E2, E3, and E7 can be estimated as

E2 + E3 ≤ Cτ

n∑

i=2

(∥
∥Ri

2
∥
∥2

0 +
∥
∥∂̄tη

i∥∥2
0

)
+ τ

n∑

i=2

∥
∥∂̄tξ

i∥∥2
0

≤ Cτ 4‖uttt‖2
L∞(0,T ;L2(�)) + Ch4‖ut‖2

L2(0,T ;L2(�)) + τ

n∑

i=2

∥
∥∂̄tξ

i∥∥2
0,

and

E7 ≤ Cτ 4(‖utt‖2
L∞(0,T ;H1(�)) + ‖uttt‖2

L∞(0,T ;H1(�))
)

+ C
∥
∥ξ 1∥∥2

1,h + Cτ

n∑

i=2

∥
∥ξ i–1∥∥2

1,h,

respectively. Note that

∑

K

∫

∂K
pi– 1

2 · n∂̄tξ
i ds =

1
τ

(∑

K

∫

∂K
pi– 1

2 · nξ i ds –
∑

K

∫

∂K
pi– 3

2 · nξ i–1 ds
)

–
∑

K

∫

∂K

pn– 1
2 – pn– 3

2

τ
· nξn–1 ds

≤ 1
τ

(∑

K

∫

∂K
pi– 1

2 · nξ i ds –
∑

K

∫

∂K
pi– 3

2 · nξ i–1 ds
)

+ Ch4‖pt‖2
L2(0,T ;H2(�)) + C

∥
∥ξn–1∥∥2

1,h,
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which together with (4) yields

E4 ≤ –
(∑

K

∫

∂K
pn– 1

2 · nξn ds –
∑

K

∫

∂K
p

1
2 · nξ 1 ds

)

+ Ch4‖pt‖2
L2(0,T ;H2(�)) + C

n∑

i=2

∥
∥ξ i–1∥∥2

1,h

≤ Ch4‖pt‖2
L2(0,T ;H2(�)) + Cτ

n∑

i=2

∥
∥ξn–1∥∥2

1,h +
2
5
∥
∥ξn∥∥2

1,h + C
∥
∥ξ 1∥∥2

1,h.

By use of (47)–(48), with the same argument of G4, we can see that

E5 ≤ Cτ 4 + Ch4 + τ

n∑

i=2

∥
∥∂̄tξ

i∥∥2
0.

Thanks to (3), we have

E6 = 0.

Then, substituting the above estimates Ej (j = 1, 2, . . . , 7) into (50) and employing the dis-
crete Gronwall’s inequality, there exist C4, τ6 > 0, when τ ≤ τ6, such that

∥
∥ξn∥∥2

1,h ≤ C4
(
h4 + τ 4). (51)

Let wh = θ̄
n in the second equation of (49), and with similar arguments of (42)–(46), we

deduce that
∥
∥θ̄

n∥∥2
0 ≤ C5

(
h4 + τ 4), (52)

where C5 is independent of h and τ . Thus, (30) holds for m = n if we take C0 ≥ ∑5
i=1 Ci,

i = 1, 2, . . . , 5, h0 ≤ min1≤i≤2 hi, and τ0 ≤ min1≤i≤6 τi. The induction is closed and the proof
of Theorem 3 is completed. �

5 Superconvergence analysis
In order to get global superconvergence results, we merge four small elements into a big
one K̄ =

⋃4
i=1 Ki and define the following interpolated postprocessing operators I2h and

�2h as in [39]. The operators I2h and �2h have the following properties, respectively:
⎧
⎪⎪⎨

⎪⎪⎩

I2hIhu = I2hu, ∀u ∈ H2(�),

‖I2hu – u‖1,h ≤ Ch2|u|3, ∀u ∈ H3(�),

‖I2huh‖1,h ≤ C‖uh‖1,h, ∀uh ∈ Mh,

(53)

and
⎧
⎪⎪⎨

⎪⎪⎩

�2h�hp = �2hp, ∀p ∈ (H1(�))2,

‖�2hp – p‖0 ≤ Ch2‖p‖2, ∀p ∈ (H2(�))2,

‖�2hph‖0 ≤ C‖ph‖0, ∀ph ∈ Wh.

(54)

Then we can deduce the following global superconvergence results.
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Theorem 4 Under the assumptions of Theorems 2 and 3, respectively, we have the follow-
ing results:

(a) For a semi-discrete case,

‖I2huh – u‖1,h

≤ Ch2
{

‖u‖3 +
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2}

, (55)

‖�2hph – p‖0

≤ Ch2
{

‖p‖2 +
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2}

. (56)

(b) For a Crank–Nicolson fully-discrete case,

∥
∥I2hUn

h – un∥∥
1,h +

∥
∥�2hP̄n

h – p̄n∥∥
0 = O

(
h2 + τ 2). (57)

Proof In fact, by the triangle inequality and (53), we have

‖I2huh – u‖1,h ≤ ‖I2huh – I2hIhu‖1,h + ‖I2hIhu – u‖1,h

=
∥
∥I2h(uh – Ihu)

∥
∥

1,h + ‖I2hu – u‖1,h

≤ C‖uh – Ihu‖1,h + Ch2‖u‖3

≤ Ch2
{

‖u‖3 +
[

‖u‖2
2 + ‖p‖2

2 +
∫ t

0

(‖u‖2
2 + ‖ut‖2

2 + ‖pt‖2
2
)

ds
]1/2}

,

and with the similar arguments, we also derive the results (56) and (57). This completes
the proof. �

Remark 4 For the linearized Crank–Nicolson scheme, we derive the required superclose
and superconvergence results unconditionally due to two key methods: one is a new split-
ting technique for the consistency error, such as E4. If we use traditional technique in E4,
when τ = O(h), by (4) and the inverse inequality, we have

E4 =
∑

K

∫

∂K
pn– 1

2 · n∂̄tξ
n ds

≤ Ch2∥∥pn– 1
2
∥
∥

2

∥
∥∂̄tξ

n∥∥
1,h

≤ Ch
∥
∥pn– 1

2
∥
∥

2

∥
∥ξn – ξn–1∥∥

1,h,

only the estimate of order O(h) is derived; another is the sharp estimates for nonlinear
terms by using (12), which leads to weakened restriction for the reaction term f (u) to
be more “nonlinear”. From these points of view, it is not an easy thing to develop a good
scheme and get superclose estimates.
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6 Numerical results
In this section, we provide a numerical example to verify the correctness of the theoretical
analysis. Consider the following parabolic equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u – f (u) = g(x, t), (x, t) ∈ � × (0, T],

u = 0, (x, t) ∈ ∂� × (0, T],

u(x, 0) = u0, x ∈ �,

(58)

with � = [0, 1] × [0, 1], f (u) = u3 – u, and g(x, t) is chosen corresponding to the exact so-
lution u = etxy(1 – x)(1 – y).

We solve the above equation by the linearized Crank–Nicolson MFEM (27)–(29) and
divide � into m × m uniform rectangles with m × m = 20 × 20, 40 × 40, 80 × 80. The error
results with respect to t = 0.25, 0.50, 0.75, and 1 are listed in Tables 1–8. Tables 1–4 show
that when h → 0, ‖un –Un‖1,h is convergent to the optimal order O(h) and ‖Un – Ihun‖1,h is
convergent to order O(h2). At the same time, Tables 5–8 show that when h → 0, ‖pn – Pn

h‖0

is convergent to the optimal order O(h) and ‖Pn
h –�hpn‖0 is convergent to the order O(h2).

Numerical results coincide with our theoretical analysis.

Table 1 Numerical results at t = 0.25 with τ = 5h

m×m ‖un – Un
h‖1,h Order ‖Un

h – Ihu
n‖1,h Order

20× 20 0.0087 – 0.4060× 10–3 –
40× 40 0.0044 0.9999 0.1012× 10–3 2.0043
80× 80 0.0022 1.0000 0.0253× 10–3 1.9996

Table 2 Numerical results at t = 0.5 with τ = 5h

m×m ‖un – Un
h‖1,h Order ‖Un

h – Ihu
n‖1,h Order

20× 20 0.0112 – 0.5226× 10–3 –
40× 40 0.0056 0.9999 0.1308× 10–3 1.9984
80× 80 0.0028 1.0000 0.0327× 10–3 1.9996

Table 3 Numerical results at t = 0.75 with τ = 5h

m×m ‖un – Un
h‖1,h Order ‖Un

h – Ihu
n‖1,h Order

20× 20 0.0144 — 0.6725× 10–3 —
40× 40 0.0072 0.9999 0.1679× 10–3 2.0021
80× 80 0.0036 1.0000 0.0420× 10–3 1.9996

Table 4 Numerical results at t = 1.0 with τ = 5h

m×m ‖un – Un
h‖1,h Order ‖Un

h – Ihu
n‖1,h Order

20× 20 0.0185 – 0.8608× 10–3 –
40× 40 0.0092 0.9999 0.2154× 10–3 1.9988
80× 80 0.0046 1.0000 0.0539× 10–3 1.9997

Table 5 Numerical results at t = 0.25 with τ = 5h

m×m ‖pn – Pn
h‖0 Order ‖�hpn – Pn

h‖0 Order

20× 20 0.0087 – 0.3948× 10–3 –
40× 40 0.0044 0.9998 0.0988× 10–3 1.9980
80× 80 0.0022 0.9999 0.0247× 10–3 1.9995
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Table 6 Numerical results at t = 0.5 with τ = 5h

m×m ‖pn – Pn
h‖0 Order ‖�hpn – Pn

h‖0 Order

20× 20 0.0112 – 0.5102× 10–3 –
40× 40 0.0056 0.9998 0.1277× 10–3 1.9980
80× 80 0.0028 0.9999 0.0319× 10–3 1.9995

Table 7 Numerical results at t = 0.75 with τ = 5h

m×m ‖pn – Pn
h‖0 Order ‖�hpn – Pn

h‖0 Order

20× 20 0.0144 – 0.6548× 10–3 –
40× 40 0.0072 0.9998 0.1639× 10–3 1.9980
80× 80 0.0036 0.9999 0.0410× 10–3 1.9995

Table 8 Numerical results at t = 1.0 with τ = 5h

m×m ‖pn – Pn
h‖0 Order ‖�hpn – Pn

h‖0 Order

20× 20 0.0185 – 0.8402× 10–3 –
40× 40 0.0092 0.9998 0.2103× 10–3 1.9980
80× 80 0.0046 0.9999 0.0526× 10–3 1.9995

Table 9 Convergence results of ‖Unh – Ihun‖1,h with h = 1
128 and τ = kh

t k = 1 k = 4 k = 8 k = 16

t = 0.25 8.2423× 10–6 1.7780× 10–5 1.0060× 10–4 4.3915× 10–4

t = 1 1.7553× 10–6 3.7559× 10–5 2.1234× 10–4 9.0638× 10–4

Table 10 Convergence results of ‖Unh – Ihun‖1,h with h = 1
128 and τ = kh

t k = 1 k = 4 k = 8 k = 16

t = 0.25 8.2563× 10–6 1.7347× 10–5 9.8167× 10–5 4.2847× 10–4

t = 1 1.7147× 10–5 3.6645× 10–5 2.0720× 10–4 8.8446× 10–4

To show the unconditional stability, we test the linearized MFEM, h = 1
128 , and the large

time steps τ = h, 4h, 8h, and 16h, respectively. We present the numerical results in Tables 9
and 10, which suggest that the scheme is stable for large time steps.

7 Conclusion
In this paper, we have established unconditional error estimates for a low order noncon-
forming MFEMs of a two-dimensional nonlinear reaction–diffusion equation. A striking
feature of our analysis is that we control the Lp norm of ϕh ∈ M by broken H1 norm ‖ϕh‖1,h,
which leads to the superclose and superconvergence unconditionally with nonconform-
ing MFEM. Some new splitting techniques for the consistency error terms and nonlinear
terms may play a crucial role in the error estimates. It should be noted that extension
to a three-dimensional nonlinear reaction–diffusion equation can also be obtained with
slight change of notations. The techniques developed in this work can be used to analyze
MFEMs of more general nonlinear parabolic systems.
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