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A new approach of superconvergence

analysis of a low order nonconforming MFEM
for reaction—-diffusion equation
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5?35??%?3222% Abstract

éf;g;i;)mgéhﬁgfﬁS;Sersity’ In this paper, a low order nonconforming mixed finite element method (MFEM) is
Pingdingshan, PR. China studied with £Q'°* element and zero order Raviart-Thomas (R-T) element for a class

of nonlinear reaction—diffusion equations. On the one hand, a priori bound is proved
using Lyapunov functional, which leads to the global existence and uniqueness of the
approximation solutions. Further, the superclose estimates of order O(h?) for original
variable u in broken H' norm and the flux p = Vu in (L?)? norm are obtained
respectively for a semi-discrete scheme. On the other hand, a linearized
Crank-=Nicolson fully-discrete scheme is established and the superclose estimates of
order O(h” + T?) are also obtained unconditionally by making full use of the special
characters of the above mixed finite elements (MFEs) and two different splitting
techniques, which are used to deal with the consistency errors and nonlinear terms,
respectively. These approaches circumvent the restrictive condition on a time step
size arising as an inverse inequality used to prove a posteriori bounds in L>° norm,
which is necessary for nonlinear problems for the conventional finite element
analysis. What is more, the corresponding global superconvergent results are derived
through interpolated postprocessing techniques. Finally, numerical results are
provided to confirm the theoretical analysis. Here h is the subdivision parameter and
T is the time step.

Keywords: Reaction-diffusion equation; Mixed finite element method; Linearized
fully discrete scheme; Superconvergence

1 Introduction

Consider the following nonlinear reaction—diffusion equation:

ur—Au+f(u)=0, (x,t)eQx(0,T],
u(x,t) =0, (x,£) € 92 x (0, T, (1)

u(x,0) = uy, X €,

where x = (x,7),0< T <00, and Q € R?isa rectangle with the boundary 9€2. u is a given
function. Equation (1) arises in cell dynamics behavior [1], ecological invasion [2], chem-
ical reaction modeling [3], and so forth. The mathematical nature of Equation (1) is de-
termined by a kinetic function f(-), and its analytical properties were widely investigated
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by many researchers. For example, the case f () = u — u?

(1937) and Kolmogorov et al. (1937) [4], the case f(u) = u(u — &)(1 — u), o € (0,1) was
studied by Fife and McLeod (1977) [5], and the case f(u) = u® — u was studied by Sherratt

and Marchant (1996) [6]. However, it is quite difficult to construct the exact solutions for

was studied initially by Fisher

partial differential equations (PDEs). This restraints practical applications of PDEs. There-
fore, the numerical methods for solving PDEs are highly desired. In this work, we focus on
MFEM with EQ** element and zero order Raviart-Thomas (R-T) element for nonlinear
reaction—diffusion equation (1) with reaction term f(z) = u® — u.

In the past several decades, numerous efforts have been devoted to the development
of efficient numerical methods for solving the reaction—diffusion equations. For example,
[7-10] presented finite difference methods in one and multi-dimensions. [11, 12] studied
finite element methods. Since the pioneering work of Raviart and Thomas [13], MFEMs
have had many attractive features over the conventional Lagrange FEMs. For instance,
MFEMs conserve mass locally, which is of crucial importance in numerical methods for
flow coupled to transport [14]. By introducing Vu as an extra variable, mixed methods
can produce accurate flux approximations. There are numerous applications of MFEMs
for general linear and nonlinear reaction—diffusion equations, see [15-21]. A two-grid
method for expanded MFEMs of semilinear reaction—diffusion equations was investigated
by [22, 23].

To the best of our knowledge, the above interesting works analyzed the optimal error
estimates for conforming (mixed) finite elements, and the function f(u) requires different
conditions. For example, the function f (i) is a smooth function of u € R in [20], |f| < k,
and |%| < k(k is a positive constant) in [16, 17], f is twice continuously differential on
Q with bounded derivatives up to the second order in [21], and f is a triple continuously
differential function with bounded derivatives up to the third order in [15, 22, 23]. All
these strong assumptions on f make nonlinear equation (1) almost a linear one and the

error between f(u) and f(u;) can be bounded by
1) = £ @) o = 1 Gt o= 00| = max |00 s = o = Ll = o,

where L is a positive constant independent of u, u;, and the mesh size / (i), stands for
numerical solution). Clearly, these assumptions on f cannot be satisfied in most applica-

tions. For instance, f () = 1®

—u is frequently used in phase field problems and nonlinear
Schrédinger equations. Thus, all the previous results are not applicable. To eliminate the
strong assumptions of f, one must derive a uniform boundedness of u;, in certain strong
norms. A so-called a posteriori bound in L* norm was used to derive optimal error es-
timates of conventional (mixed) FEMs, time step size restrictions were also required to
circumvent the difficulties caused by nonlinear term f (i) [24]. The time step restrictions
may lead to the use of an unnecessarily small time step and make the computations much
more time-consuming. In order to avoid such defects, the so-called splitting technique
was introduced in [25, 26] and was later used in [27-35], where a corresponding time-
discrete system was constructed to split the error into two parts, the temporal error and
the spatial error.

In this paper, we may develop another approach to study the unconditional superconver-

gence analysis for Equation (1) with a new low order nonconforming MFEM introduced
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in [36, 37], which is different from the conventional MFEM used in [13, 15-21, 38]. To
circumvent the difficulties caused by nonlinear terms f(x) and to relax the restrictions of
f(u), we use a novel splitting technique to split the nonlinear term f(x) into different parts,
use the || - ||o,2, norm to estimate the splitting terms. Through a sharp estimate, we derive
the desired results. On the other hand, there exists the consistency error for nonconform-
ing elements, which also leads to losing error order and causes time step restrictions. For
example, EQ"** nonconforming FE, the consistency error of this element is only estimated

as follows:

ou
Z/ S onds < CHlulslgnllin < Chlulsllgallo
K K

Only order O(h) result can be deduced (g;, belongs to EQ* finite element space). There-
fore, another novel splitting argument for consistency error is also developed, by which
the consistency errors are split into different parts and the time steps are transferred for
one part of the integral to another. This technique also removes time step restrictions.
The paper is organized as follows. In Sect. 2, a brief description of nonconforming MFEs
is introduced and some useful high accuracy results are given. In Sect. 3, a priori bound is
proved using Lyapunov functional, which leads to the global existence and uniqueness of
the approximation solutions. Further, the superclose estimates of order O(/?) for original
variable u in broken H' norm and the flux p = Vu in (L?)? norm are obtained respectively
for a semi-discrete scheme. In Sect. 4, a linearized Crank—Nicolson fully-discrete scheme
is established and the superclose estimates of order O(#? + 72) are obtained. In Sect. 5, the
superconvergence estimates are derived through interpolated postprocessing techniques.
In Sect. 6, some numerical results are provided to show the validity of the theoretical

analysis. Finally, conclusions and discussions are summarized in Sect. 7.

2 Construction of mixed finite elements

Let Q C R? be a convex polygon with boundary <2 parallel to the coordinate axes, I', be
a rectangular subdivision. For any given K € I'y, let the four vertices and edges be A;(x,y)
(i =1,2,3,4.mod(4)) and [; = A;A;,1 (i = 1,2,3,4.mod(4)), respectively. The MFE spaces
M, and W), are taken as [39]:

My, = {(ph;(ph|1< € span{l,x,y,xz,yZ},/ lonlds =0,F C 0K,VK € Fh},
f

W), = {wy, = (w),, w},); Walx € Quo(K) x Qo1(K),VK € T},

where Q;; = span{x’y’,0 < r < i,0 < s < j}. [p;] stands for jump of ¢} across the edge F if
F is an internal edge, and [¢;] = ¢, if F is a boundary edge.

Let I, : u € H'(2) — Iyu € My and I, = (IT}, I17) : w = (W', w?) € (H'(R))* > M,w =
(H}lwl, Hin) € W), be the associated interpolation operators on M, and W}, respectively,
which satisfy 1|k = Ix, Dl = (I} 1k, T3 |x) = O = (ITY ¢, TI2 (),

/(u—IKu)dx:(), f(u—IKu)ds:O, i=1,2,3,4,
K

li
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and

/(W—HKW)-n,»ds:O, i=1,2,3,4,
li

where n; is the unit outward normal vector to boundary /; (i = 1,2, 3,4).

The following results play an important role in the forgoing superconvergence analysis.
Equations (2), (3), and (4) can be found in [40, 41], and [42], respectively.

For u € H3(R), ¢, € My, wy, € W), there hold

(p - I,p, wy,) < CI2|plalwillo, )

(Vi(w = Inw), Vign),, = 0, 3)
and

Z/ p - ng;, ds < CH2|plallgnllip (4)

< JoK

where V, denotes the gradient operator defined piecewisely, (u,v), = Y [i uvdxdy,
I~ e = g |- lLx)? is a norm on M. C denotes a generic positive constant, which is
independent of /4, 7, but may depend on « and f.

3 Superclose analysis for a semi-discrete scheme

In this section, we will present a spatial discrete scheme for Equation (1), discuss the ex-
istence, uniqueness, stability of the approximate solution u;, and derive the superclose
estimates.

Let p = —Vu, then Equation (1) can be put in the form

u+V-p+fu)=0, xt)eQx(0,T],

p+Vu=0, (x,t) e 2 x(0,T], )
u(x,t) =0, (x,t) € 02 x (0, T7,
u(x,0) = uo, XeQ,

and the corresponding weak formulation is to find {u, p} : (0, T] — Hj(2) x (L*(R))* such
that

(utr (0) - (p’ V(p) + (f(bt), (/7) = 07 V(p € H(%(Q);
(p,w) + (Vu,w) =0, Yw e (L2(R))?%,

u(x,0) = uy, X e Q.

Consider the approximation of (5): to seek {uy, p,} € Mj, x W), such that

(ne> on) — P> Vion)n + (f(un), on) =0, Yo, € My,
P> Wn) + (Vitty, Wy)y, = 0, vYw, € Wy, (6)

up(x,0) = Inuo, xeQ.
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Remark1 Compared with the classical mixed finite element approximation schemes stud-
ied by [13, 15-21, 38], the gradient in our scheme belongs to the simple square integrable
space (L%(R2))? avoiding the use of the complex space H(div; £2). Obviously, the regularity
required on the solution p = —Vu is reduced.

Theorem 1 Problems (6) are uniquely solvable and there holds
lunllin < C. @)

Proof In terms of the bases {¢;};!; for M}, and {101-}121 for W), we can suppose that
r 2
wi=Y wie,  py=y_pOY;
i=1 j=1

Then problem (6) can be written as follows: Find u;(t) and p;(t), i = 1,2,...,r1, j =
1,2,...,r, such that, V¢ € [0, £],

(@) A% _BP(t) + F(U()) = O,
(b) CP(t) + BU(t) =0, (8)
(c) U(0) = Uy,
where
U@) = (110, ma(®),...,un (8)) . P(&) = (010, 2(8)s..., Py (1))
Uo = (41(0), 4(0), ..., 1y, (0)) A= (0u9)),, r,

B= ((Vh(/’h ’l,/)h)rlxrz’ C= (('/,i’wj))rzxrz’

F(U) = ((f(Z uk(t)wk),go,)) :
k=1 ryx1

Since the matrices A, C are positive definite, we can derive from (8(b))
P(t) = -CIBU(2). (9)
Substituting (9) into (8(a)), we get

AYY 4 BCIB'U(t) + F(U(t) = O,
U(0) = U,.

(10)

Clearly, (10) presents nonlinear ordinary differential equations with locally Lipschitz con-
tinuity on F. The Picard theorem ensures that system (10) admits a unique local solution
U(t) on a certain maximal subinterval (0, #,] of [0, T']. For proving the global existence, we
need a priori bounds to continue beyond ¢,. To do this, we introduce a new Lyapunov
functional L(p):

L) = 3 (Vip, Vil + (E(9),1). (11)



Zhang and Wang Boundary Value Problems (2018) 2018:169 Page 6 of 20

Moreover, taking {vy, Wy} = {ups, Viup,} in (6) and adding the first two equations, we have

dL(up)
i ~llune I < 0.

Integrating both sides with respect to time variable from 0 to ¢, we have
L(uh) = L(I/lh(o)),

which implies that

IVhnlo = /| V26406, 0)|2 + 2(E(1s46,0)), 1) < C.

Thus, we conclude the global existence of a solution U(¢) to (10). Then we can also get P(t)
from (9). In other words, problem (6) is uniquely solvable. d

Remark 2 The key to the proof of (7) is the construction of a Lyapunov functional L(¢),
which is not an easy thing for the general function f(-), and allows us to get rid of the
assumption on boundedness of numerical solution ||y ||o,c0, which is usually necessary
and inevitable in the traditional finite element analysis.

In this paper, the following inequality will be always used [43]:

lenllozy < Clienllin  Youn € My, p e N™. (12)

Theorem 2 Let {u, p} and {uy, p,} be the solutions of (5) and (6), respectively. Assume that
u,u; € H3(Q) holds. Then we have

t 1/2
IIIhM—Mhlll,hSChz[IIMII§+ ||P||§+/ (3 + Nlaell3 + IIPtllg)dS} , (13)
0

t 1/2
||th—ph||osc112{||puz+[||u||§+||p||§+/(||u||%+||ut||%+||pt||%)ds] } (14)
0

Proof We decompose the error as follows: u — uy, = (u — Iyu) + (lyu —up) 2 n+&,p—p, =
(p—T,p) + (TI,p — p,) £ p + 0. Subtracting (6) from (5) gives

@  (Enon) — 0, Ve = =5 on) + (0, Vion)n — (f () — f (un), on)
-2k faKp -ngy ds, (15)
(b) @, wy) + (Vié,wp)n = —(p, wi) — (Vin, wp)p.

On the one hand, taking {¢y,, w;} = {£&;, Vi&:} in the equations of (15), we have

1d

1115 + 571V I3 =~ &) = (Vi ViEdn — (F@) — f(un), &)
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Firstly, it is easy to check that

1
|(6,&)| < ClincllollEdllo < Ch*|lue 3 + 5 [EATS (17)

and by use of (3) and (4), respectively, we derive

(thi Vhft)h = 0! (18)
d

E ponéds:—g /p~n§ds—§ /p~m§ds
e /M( ' dt < JoK < JoK !

d

4 2 2
- . X 1
< CHIp I+ CIE R v 3 /Mp né ds 19)

Secondly, by virtue of (12) and (7), we have

(f’(u)ut —f/(uh)uht»g)
= (Suzut - SM,%ut + 3uflut - 3ufluht — (s — upy), “g‘)
= (But(lf - ui),é) + (3uf,(ut - uht),é) — (uy — upg, &)
< Cllutllooollze — unllollze + unlloallé lloa
+ Clltr = e llo|un G 11 lloa + Cllste — unellolI€ llo

< Cllu = upllol€ Nl + Cllate = tpellol€ 1 + Cllzey = wrello € o
< C(Inlig + ImelIg) + Clg N, + %nstn%
< CH*(llull3 + luel3) + CIENT , + %nan%, (20)
which implies that
(f () = f (), &) = %[(f(u) ~f (), )] = (' @ue ~ ' (w)uape, § )
< CH*(lull3 + llweli3) + CUENT, + %nstn%
+ %[(f(u) —f(un),€)]. (21)

Substituting (17)—(19) and (21) into (16), then integrating from 0 to ¢, together with
£(x,0) = 0, leads to

t t
Ie12, = O [t o bl 1 B) s+ C [ el ds
23" [ peng ds-2(70 £ ) 22
K 7oK

Similar to (20), we derive

[(F () = f (), €) | = | (e — ) (0 + viaa + 143,), €) — (4 — 1y, €) |

2 2
< Cllu— unllo(Nullgg + Nulloglunllos + llnligg) 1€ lloa

Page 7 of 20
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+ [lue—unlloll€llo

< Cllue = upllollg 1o + lue = unllolI§ o

1
< Ch*|ull3 + 3 IEN3 (23)

and by virtue of (4), we have
a2 L L2
> [ penzds < CitlplE + glel, (24)
< JoK

Finally, substituting (23)—(24) into (22), then applying Gronwall’s inequality yields

1/2

t
&1, < Ch2[|lu||§ +llpll3 +/ (lleell3 + Neaels + 1P 113) dS] . (25)
0

On the other hand, choosing wj, = 8 in the second equation in (15), employing (2)—(3)
and (25), we derive

t 1/2
||0||0§Ch2{||P||2+ [IIMII%+|IPII§+/ (||u||§+||ut||§+llpt||§)d8] } (26)
0

The proof is completed. O

Remark 3 With the help of (7) and (12), we derive the estimates for |(f («) —f (uy), €)|, which
are different from those in [24].

4 Superclose analysis for a linearized Crank-Nicolson fully-discrete scheme

In this section, we will establish a linearized Crank—Nicolson fully-discrete scheme by
MFEM and analyze superclose and superconvergence results. Let {¢, : £, = nt;0 <n < N}
be a uniform partition of [0, 7] with the time step t = T/N, tn_% = %(tn +t,_1) and " =
u(x, t,). For a sequence of functions {o”}\ ,, we denote

With these notations, the linearized Crank—Nicolson fully-discrete approximation to (5)
reads as follows: for n > 2, find {U}, P} € Mj, x W), such that

@}, 1) — (P, Vi = —(F ), 1), Von € My,

_ - (27)
(P, wy) + (VLI W)y, = O, Yw, € Wy,
Forn=1, {LII,P}I} can be determined by
= =1 uud
0:Uy;, on) = (P, Vion)n = =(fF (-25—"2), on), Yo € My, (28)

(‘3111: W) + (Vh[[ﬁ;wh)h =0, Ywy, € Wy,
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together with
y0_0 p10, p0
(=2, ) = (2, Vi) = ~(F(UD), 1), Yopu € M, (29)
1,0, p0 1,0 0
(e ;Ph,Wh) + (wywh)h =0, Yw), € W),

where U} = Iug and P) = I1,Vuo. In what follows, the pervading strategy throughout the

error analysis is splitting the error into a sum of two terms:

u = Uy = (' = Lut) + (' - U°) 2t + £,
w' = Uy = (u" - L") + (L' - Uj) £ 0" + ", n=0,1,2,...,N,

p'-P,=(p"-Mp") + (up" -P;) £ p" +6", n=0,1,2,...,N.
Now, we are ready to present our main results in the following theorem.

Theorem 3 Suppose that equations (5) have unique solutions {u”,p"} satisfying u,u, €
L>®(0, T; H3(R)) N L2(0, T; H3(R)), uy € L°°(0, T; H2(Q)) N L*(0, T; HX(R)), uy € L°°(0, T;
HY(R)), then the fully-discrete equations (27)—(29) admit unique finite element solutions
{U}}, P,}. Further, there exist 1o > 0 and hy > 0 such that, when Tt < 1o, h < hy,

[ " = W]+ [ T0B" = P < Co(h? + 2), (30)
where Cy is a positive constant independent of T and h.
Proof First of all, we prove the existences and uniqueness of solutions of system (27)—(29).
If {U};, P} is given for n = 0,1,2,...,m — 1, then the fully-discrete linear equations (27)

have unique solutions {U/}", P’} when, and only when, the corresponding homogeneous

equations

(@, 0n) — (Wi, Vign)n =0,
(¥, wy) + (Vi ®p,wy), =0

(31)

only have zero solutions. In fact, choosing {¢y, w;} = {®}, V;,®;} in the above equations,

we have
1 2 2
ZI®allo + Vi ®Prll =0,

we immediately get ®;, = 0. Taking wj, = ¥}, in the second equation of (31), we have
¥rllo < IIViParllo =0,

which implies that ¥, = 0. Thus, the homogeneous equation (31) has only zero solutions,

which implies that the solutions of (27) exist and are unique. Similarly, we can get the

existence and uniqueness of the solutions of (28) and (29).
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Next, we prove estimates (30) by using mathematical induction. For any given n > 1,
t=t,_ 1, any given {¢y, wy,} € M;, x Wy, the weak form of (5) can be rewritten as follows:

B, o) = (B, Vi = —(F ("~ 2), p) + (RS, on) — (RS, Vign)n
- Yk foc P2 - ngnds, (32)

", wp) + (V" wy), = (RS, wy,) + (ViRY, Wi,
where
Ry=du—u >, Ri=p"-p'%,  Rj=i'-u'

In fact, by Taylor’s expansion, we have

t 1 tn 2
2 - "=
IR -eo?| [ -t dss [ @t uds
n-1 tn,% 0
tn
2
<0 [ ) ds = Cr iy oy (33)
n-1
and
2 1 [4d b 2
“ ViR ”0 =7 H/ (& = tu-1) Vit () ds — / (& = t0) Vi (s) ds
4 -1 tn,l 0
2
s [ 2
<Crt || Vit (s) ||0 ds. (34)
-1
By U} = I,uo, we can derive that
|0 = Uiy, = o = Inttollo,y < CH?llupll2ps 1< p < 0. (35)

When 7 = 1, on the one hand, subtracting (29) from (32), taking {¢y, w;} = {g, VhET'},
and noting that £° = 0, we have

203 g + 6115, = 2 (R, 8i5™) ~ 21 (Bun', i)

Y / pb o ndE0 ds - 2t (F(ub) - F(UD), 3EM)
K YK
6
=27 (Vaii', 9 VaE ™), + 27 (ViRy, 0, Vi), £ > F.. (36)
i=1

By (33) and (34), F;, F,, Fs can be estimated as

Fov Byv Fo< Ce([RYE + |30’ [7) + |63 + Cwild 3] 9™
= CT4(””“tniw(o,ﬁﬂ(m) + ”u””%Z(O,T;Hl(Q)))

- 1
+ Ch e o ey + 238" g + 21871
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And by use of (3) and (4), respectively, we can see that
1 1 2
F5=0, F3= 22/ p> - ng™0ds < CHUIP | foeio rey) *+ 7 167 1
< JoK

To estimate F, and circumvent the time step size restrictions caused by the nonlinear term
f(u), we introduce a novel splitting technique which splits F, into different parts, and by

use of (35), we derive
|(f (o) 1 (L), 8:£™) |
= |(((w0)? o) = ((uf)” - Up), 3 )|
= (0 = UR)” 815 °) = 3((1 = U)o, 315 )
+3((uo — Uy ug, 9,£™°) - (u° - U, 0,6"0)|
< Clluo = Up o415y + Clluo - UR g sllmollose | 3]
+ Clluo — U o015 06 |95, + CHlloll2 ]| 9:6
<Gt 38
Thus,
Fy= =27 (f () - f(uo), 3:6™°) — 27 (F (o) —f (ULY), 3:6™°)
< Celf(ed) = )|} v 5 136 20 (/) (UF), 3™)
@) tCHt +T Hétgl'oni.

3 2
= Ct ” ut”LOC(O,T;LZ

Substituting the above estimates F; (i = 1,2,...,6) into (36), there exist C, 77 such that

when 17 < 14, there holds
|61, < Ci(ht + 7). (37)
and with the help of (12), we have
&5 <1 (38)
when t < 1y = J1/2CCy, h < hy = J1/2CC;.
On the other hand, we estimate ||& 1”%,;1' Subtracting (28) from (32), taking {¢n, wi} =
{i—l, Vh%}, and noting that £° = 0, we have

20| g + &5, = 20 (R5, ) ~ 20 (3’ 88)

10, 770
—21:2/ p%-nétglds—Zr(f(u%)—f<Uh 2+Uh>,5t§1>
< Jox

6

=20 (Viit', 0 Vi), + 27 (VaRy, 0, ViE"), £ ) Gi. (39)
i=1
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Similar to the estimates F; (i = 1,2,3,5,6), G; (i = 1,2, 3,5, 6) can be estimated as follows:

Gl + G2 + G6 < Ct4(”uttt”ioo(o,T;LZ(Q)) + ”ptt”ioow,T;LZ(Q)))
- 1
+ Ch4||ut”§2(0,T;H2(Q)) tT ” 98" ”(2) 2 HEI ”ih’

G < Ch [Pl Gs =0.

1
o,1;H2(Q) T 2 ”51 “ih’

Now we estimate G,. In order to get rid of the time step restriction, we rewrite G, as

follows:
1,,,0
6= -2e(r(u) - (5 ) )

() ()

=2 (p(uh) - (S5 ) s

W +u® U+ U\
_2’(< R h)’a‘él)
W +u® WO+ U\ U+ -
+ 671 - ,0:&
2 2 2
W +u® WU\ (ut +u®\ -
- 67 - ,0:&
2 2 2
Lo Ul >
+2r<” - h,at@)éZGM,
i-1

. 1, ,0\ (2 _ _
rd) -5 (5 )|+ 31l < et Sag: 0

By use of (37) and (38), and noting that £° = 0, we derive

5
-G = Cr([n' g + 16 o6+ 1n°lo0) 1366

i=2
ul +u _
+Cr([n' G, + 162050+ 1n°150) | = |3:6],
0,00
1 1,0 0 el - 1
+Ce([ntlo+ 1676 + 1n°]0) | — |9:* ],
0,00

+Cr([n* o+ 1800+ o) 38

< C(e + i)+ 53 o
which together with (40) implies that

Gy <C(t* +h*) + r||5t$1||(2).
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Substituting the above estimates G; (i = 1,2,...,6) into (39), then by Gronwall’s inequality,
there exist Cy, 73 > 0, when © < 73, such that

l6']}, < Ca(* +7%). (41)

Moreover, subtracting the second equation of (28) from the second equation of (32) and

choosing wy, = 51, we have
16%]2= (Vg 8"), - (88") - (Vin',68), + (RL.68") + (V4RLE"),. (42)
Using the Cauchy—Schwarz inequality, there holds

(V4g',8"), + (RL,8') + (V4RL,6'), |

< (19" o+ R + | VRE] o) 16° - (43)
Employing (2) and (3), respectively, we can see that
(2",6")] < cr?p], 18", (44)
and
|(Vun',8),| =0, (45)

respectively. With the above estimates of (33)—(34) and (41)—(45), there exist Cs, 74 > 0,

when 1 < 14, such that

8" < Ca(h* + %), (46)
Now, we assume that (30) holds for 7 < 1 — 1. By use of (12) again, we have

&7 lo < CColh* + ), 47)
which implies that

& foe <1 (48)

when 1 < 15 = 1/2CCy, h < hy = J1/2CC,,.

In the following, we prove that (30) also holds for m = n. From (27) and (32), we have

@) (3&" on) = 0", Vg = (R, on) — (R, Vipn)n — (B, 1)

+ (0", Vo = Dk [ox P - gy ds

—(f2) £ (T7), o), (49)
(b) (0", wy) + (Vue™, wy)y = —(B", wy,) — (Vi W)

+ (R, wy) + (ViR W)y
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Choosing {¢;, wy,} = {9,£",3,V,,£"} in (49), replacing # by i, and summing up from 2 to 7,

we can derive the following error equation:

n
20y o]+ &,
i=2
n

=815, + 20 Y (R E) — 20 Y (5, 8.57)
=2

i=2

_thZ/ 2.nd,E ds — 21 Z(f l -£(U;), 3,&")

i=2 K
7
—2zz Viit', 3, Vi') +2rZ ViR, 0, ViE"), £ > E;. (50)
i=2 i=2 j=1

Now we estimate the terms on the right-hand side of (50).
Similar to (33)—(34), we obtain

”atvth HO =< CT ”uttt”Loc 0,T;HL(Q))

and

(ViRY, 0:ViE"), = 0 (ViR ViE"), — (0:ViRy, ViE™),,

then E,, E3, and E; can be estimated as

BBy <o Y (IR s [ 2) + o ZH %'

i=2

n
- . 2
< Cr*luarl oo o 720y + CH e 20 rip2 ey + T D136
and

n
E7 < C (It o a1 ) * N1t oo iz ay) + CEM N+ CT D&

i=2

respectively. Note that
Z/ pi*% -nd,Elds = —(Z/ p"2 - ng! ds—Z/ -ng- 1cis)
< JoK

3
n-2 _ on-3
— E / M . n%‘”_l ds
K

T
K
1 ;1 . . 3 .
<- p "2 -n&'ds— / p2 - ngt ds)
T (;/Z;K ; aK

+ TP a0 ey *+ CIE" [

Page 14 of 20
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which together with (4) yields
1 1
E,<- / p* 3 -ng"ds— / p? -nélds)
4 2 : i-112
+ CH P20 72y + CZHE I L
i=2

n
2
= Ch4”pf”i2(0,T;H2(Q)) +Ct Z”E}H ”ih *3 |&" ”ih +Clgt ”fh
i=2
By use of (47)—(48), with the same argument of G4, we can see that
n
Es<Crt+Cht+1y |as];.
i=2
Thanks to (3), we have
E¢=0.

Then, substituting the above estimates E; (j = 1,2,...,7) into (50) and employing the dis-
crete Gronwall’s inequality, there exist Cy, 7 > 0, when t < 14, such that

le" |}, < Ca(i* +2%). (51)

Let w, =@" in the second equation of (49), and with similar arguments of (42)—(46), we
deduce that

675 = Cs (' + %), (52)

where Cs is independent of / and t. Thus, (30) holds for m = n if we take Cy > 21'5:1 C,
i=1,2,...,5, hp <min;j<;<; h;, and 7y < min;<;<¢ 7;. The induction is closed and the proof
of Theorem 3 is completed. d

5 Superconvergence analysis

In order to get global superconvergence results, we merge four small elements into a big
one K = Uil K; and define the following interpolated postprocessing operators I, and
IT,; as in [39]. The operators I, and Ty, have the following properties, respectively:

Lylyu = Lyu, Yu € H*(Q),
| onte — ull1 < Ch*|uls, Vu € H3(R), (53)

onunllin < Clluplliy,  Yup € My,

and
I, I1,p = yp, vp € (H'(Q))?,
TP - pllo < CH2|IPll2, VP € (H*(R2))%, (54)
ITIanpyllo < CliPyllos vp, € Wp.

Then we can deduce the following global superconvergence results.
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Theorem 4 Under the assumptions of Theorems 2 and 3, respectively, we have the follow-
ing results:

(a) For a semi-discrete case,

Lot — ull1n

- ¢ q1/2
< CI?{lulls + | )3 + ||p||§+/ (3 + Nluell3 + P N3) ds | ¢, (55)
L 0 i
[ 2npy, = Pllo
- ¢ ~1/2
< CrRIIplla + | llulls + ||pII§+/ (13 + Nt 13 + P, 113) ds . (56)
L 0 i
(b) For a Crank—Nicolson fully-discrete case,
|ty — ||, + | TPy, =P = O + 7°). (57)

Proof In fact, by the triangle inequality and (53), we have

onttn — ulln < | onten — Iopdpuel 1 p + londpve — w1 p
= | Ln(uun — Inu) “Lh + [ lontt = |1,

2
< Cllup = Iyl 1n + Ch™|lulls

t 1/2
=< Ch2{||u||3 + [IluH% +llpll3 +/ (llzell3 + Neeells + 1P, 113) dS} }
0

and with the similar arguments, we also derive the results (56) and (57). This completes
the proof. d

Remark 4 For the linearized Crank—Nicolson scheme, we derive the required superclose
and superconvergence results unconditionally due to two key methods: one is a new split-
ting technique for the consistency error, such as E,. If we use traditional technique in Ej,

when t = O(h), by (4) and the inverse inequality, we have

1 —
E, = / p" 2 -noE"ds
; IK '
2 n—1 N en
= ar ez, 9",
-1 n n-1
= Chlp™ 2,7 =&,
only the estimate of order O(/) is derived; another is the sharp estimates for nonlinear
terms by using (12), which leads to weakened restriction for the reaction term f(u) to

be more “nonlinear” From these points of view, it is not an easy thing to develop a good

scheme and get superclose estimates.

Page 16 of 20
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6 Numerical results
In this section, we provide a numerical example to verify the correctness of the theoretical

(2018) 2018:169

analysis. Consider the following parabolic equation:

ur— Au—f(u) = g(x, t),

u=0,

M(X, 0) = Uo,

with € = [0,1] x [0,1], f(u) = u® — u, and g(x, ) is chosen corresponding to the exact so-

(x,t) e 2 x (0,77,

(x,2) € 92 x (0, T,

X e,

lution u = e‘xy(1 — x)(1 - ).

We solve the above equation by the linearized Crank—Nicolson MFEM (27)—(29) and
divide €2 into m x m uniform rectangles with m x m = 20 x 20,40 x 40,80 x 80. The error
results with respect to ¢ = 0.25,0.50,0.75, and 1 are listed in Tables 1-8. Tables 1-4 show
thatwhen/ — 0, ||u” — U" |1, is convergent to the optimal order O(h) and || U" — [u” ||1, is
convergent to order O(h?). At the same time, Tables 5-8 show that when # — 0, |p” —=P}!|lo
is convergent to the optimal order O() and ||P}; — I1;,p" || is convergent to the order O(h?).

Numerical results coincide with our theoretical analysis.

Table 1 Numerical results at t = 0.25 with T = 5h

Table 2 Numerical results at t = 0.5 with T = 5h

Table 3 Numerical results at t = 0.75 with T = 5h

Table 4 Numerical results at t = 1.0 with T =5h

Table 5 Numerical results at t = 0.25 with T =5h

lu"=Ulh,  Order |Up =Ihu™llhy - Order
0.0087 - 04060 x 102 -
0.0044 09999  0.1012x 1073 2.0043
0.0022 1.0000 00253 x 1073 1.9996
lu" = Ul Order U7 =Ihu"llhp - Order
0.0112 - 05226 x 103 -
0.0056 09999  0.1308 x 1073 19984
0.0028 1.0000 00327 x 1073 1.9996
lu"=Uplh,  Order lUR = It hn Order
0.0144 — 06725x 107 —
0.0072 09999  0.1679 x 1073 2.0021
0.0036 1.0000 00420 x 1073 1.9996
lu"=Ulll1p  Order  JUZ=Ipu Il Order
0.0185 - 08608 x 103 -
0.0092 09999 02154 x 1073 1.9988
0.0046 1.0000 00539 x 107 1.9997
lp"-P)llo  Order  |Hpp"—PJlo  Order
0.0087 - 03948 x 102 -
0.0044 09998 00988 x 10 1.9980
0.0022 09999 00247 x 107 1.9995

Page 17 of 20
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Table 6 Numerical results at t = 0.5 with T =5h

mxm  |p"=Plllo Order  |Hyp"-P}lo  Order

20x20 00112 - 05102 x 102 -
40 x 40  0.0056 09998  0.1277 x 1073 1.9980
80 x 80  0.0028 09999 00319 x 1073 1.9995

Table 7 Numerical results at t = 0.75 with T =5h

mxm  [p"-Pjllo Order  [[Hp"-Plllo  Order

20x 20 00144 - 06548 x 102 —
40 x40  0.0072 09998  0.1639 x 1073 1.9980
80 x 80  0.0036 09999 00410 x 1073 1.9995

Table 8 Numerical results at t = 1.0 with T =5h

mxm  |p"-Plllo Order  |Iup"-P]llo  Order

20x20 00185 - 08402 x 102 -
40 x40  0.0092 09998 02103 x 1072 1.9980
80 x 80  0.0046 09999 00526 x 1073 1.9995

Table 9 Convergence results of ||Uj]7 —Ipu" Iy p with h = 11@ and T =kh

t k=1 k=4 k=8 k=16
t=025 82423 x10° 17780107 10060 x 10™* 43915 x 107
t=1 17553 x 10 37559 x 107> 21234 x 107 9.0638 x 107

Table 10 Convergence results of [|U} — Ipu" |l 4 with h = 11@ and T =kh

t k=1 k=4 k=8 k=16
t=025 82563 x 100 17347 x107° 98167 x 10 42847 x 107*
t=1 17147 x 107 36645 x 107 20720 x 10°% 88446 x 1074

To show the unconditional stability, we test the linearized MFEM, & = ﬁ, and the large
time steps © = h,44,8h, and 16/, respectively. We present the numerical results in Tables 9
and 10, which suggest that the scheme is stable for large time steps.

7 Conclusion

In this paper, we have established unconditional error estimates for a low order noncon-
forming MFEMs of a two-dimensional nonlinear reaction—diffusion equation. A striking
feature of our analysis is that we control the L# norm of ¢;, € M by broken H' norm ||¢||1,4,
which leads to the superclose and superconvergence unconditionally with nonconform-
ing MFEM. Some new splitting techniques for the consistency error terms and nonlinear
terms may play a crucial role in the error estimates. It should be noted that extension
to a three-dimensional nonlinear reaction—diffusion equation can also be obtained with
slight change of notations. The techniques developed in this work can be used to analyze

MFEMs of more general nonlinear parabolic systems.
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