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Abstract
By using the coincidence degree theorem, we obtain a new result on the existence of
solutions for a class of fractional differential equations with periodic boundary value
conditions, where a certain nonlinear growth condition of the nonlinearity needs to
be satisfied. Furthermore, we study another class of differential equations of fractional
order with periodic boundary conditions at resonance. A new result on the existence
of positive solutions is presented by use of a Leggett–Williams norm-type theorem for
coincidences. Two examples are given to illustrate the main result at the end of this
paper.
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1 Introduction
Fractional calculus is the emerging mathematical field which is devoted to studying
convolution-type pseudo-differential operators, specifically integrals and derivatives of
any arbitrary real or complex order. In recent years, the fractional calculus has been con-
sidered as the best tool for the generalization of fractional differential equations. It has be-
come more and more important in many fields of science and engineering, such as chem-
istry, biology, electricity, control theory, and image processing (see [1–4]). In addition, a
considerable amount of progress has recently been made in the study of fractional calcu-
lus, and a number of results on this subject have been now achieved. For readers new to
this subject, we cite a few proper ones of the books, and a comprehensive treatment of
this subject and its applications can be found in [5–8].

In the past few decades, boundary value problems of fractional order involving a variety
of boundary conditions have been studied by several researchers. We refer the readers to
[9–15] and the references cited therein. Moreover,the existence of solutions to the frac-
tional differential equations with anti-periodic boundary value conditions has been stud-
ied by many authors (see [16–21]). But the periodic boundary value problems for nonlin-
ear fractional differential equations are seldom considered. Recently, the existence of so-
lutions to nonlinear integer order periodic boundary value problems has been discussed
in many articles (see [22–25]). Here, we point out that a few authors have recently con-
sidered fractional problems. In these formulations, the first order derivatives are replaced
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by fractional derivatives, which causes many difficulties in solving the resulting problems.
In [26], Chen and Liu investigated the existence of solutions for the following periodic
boundary value problem:

⎧
⎨

⎩

x′′(t) = f (t, x(t), Dα
0+ x(t)), t ∈ [0, 1],

x(0) = x(1), Dα
0+ x(0) = Dα

0+ x(1),

where 0 < α < 2 is a real number, Dα
0+ is a Caputo fractional derivative, and f : [0, 1]×R

2 →
R is continuous.

In [27], Hu and Zhang gained the existence of positive solutions of fractional differential
equation with periodic boundary value conditions of the form:

⎧
⎨

⎩

Dα
0+ u(t) = f (t, u(t)), t ∈ [0, 1],

u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1),

where 2 < α < 3 is a real number, Dα
0+ is a Caputo fractional derivative, and f : [0, 1] ×R →

R is continuous.
Motivated by the work mentioned previously, this paper investigates the existence of

solutions for two kinds of periodic boundary value problems (PBVP for short) of nonlinear
fractional differential equations. The first one is described in the following form:

⎧
⎨

⎩

Dβ

0+ (p(t)Dα
0+ x(t)) = f (t, x(t), Dα

0+ x(t)), t ∈ [0, T],

x(0) = x(T), Dα
0+ x(0) = Dα

0+ x(T),
(1)

where 0 < α,β ≤ 1, Dα
0+ is the Caputo fractional derivative, f : [0, T] ×R

2 →R is continu-
ous, p(t) ∈ C1[0, T], p(0) = p(T), and there exists a positive constant M such that p(t) ≥ M
for all t ∈ [0, T].

However, the PBVP
⎧
⎨

⎩

Dβ

0+ (p(t)Dα
0+ x(t)) = h(t), t ∈ [0, T],

x(0) = x(T), Dα
0+ x(0) = Dα

0+ x(T),
(2)

is not solvable for each h ∈ C([0, T],R), and, when solvable, has no unique solution because
x(t) + c, ∀c ∈ R is a solution together with x(t). In this case, a trivial necessary condition
for the solvability of PBVP (2) is that

h =
β

Tβ

∫ T

0
(T – s)β–1h(s) ds = 0.

Furthermore, we change the range of α and take p(t) = 1, i.e., consider the following PBVP:

⎧
⎨

⎩

Dβ

0+ Dα
0+ x(t) = g

(
t, x(t), Dα

0+ x(t)
)
, t ∈ [0, T],

x(0) = x(T), x′(0) = x′(T), Dα
0+ x(0) = Dα

0+ x(T),
(3)

where 0 < β ≤ 1, 1 < α ≤ 2, α +β ≥ 2, g : [0, T]×R
2 →R is continuous. Then the existence

of solutions for this PBVP is obtained under some assumptions of function g .
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This paper is organized as follows. In Sect. 2, we establish an existence theorem of solu-
tions for PBVP (1) under nonlinear growth restriction of f . The key is an analytic technique
from the theory of coincidence degree. In Sect. 3, we obtain the existence of positive so-
lutions of (3) by Theorem 3. Two illustrative examples of nonlinear fractional problems
with periodic boundary conditions are shown in Sect. 4.

2 Existence for PBVP (1)
2.1 Preliminaries
In this subsection, as preliminaries, we firstly present some basic definitions and formula-
tions on fractional calculus. For further background knowledge of fractional calculus, we
refer the readers to [6].

Definition 1 The Riemann–Liouville fractional integral operator of order α > 0 of a func-
tion u : (0, +∞) →R is given by

Iα
0+ u(t) =

1
Γ (α)

∫ t

0
(t – s)α–1u(s) ds,

provided that the right-hand side integral is pointwise defined on (0, +∞).

Definition 2 The Caputo fractional derivative of order α > 0 of a function u : (0, +∞) →R

is given by

Dα
0+ u(t) = In–α

0+
dnu(t)

dtn =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side integral is pointwise defined on (0, +∞).

Lemma 1 ([7]) The fractional differential equation Dα
0+y(t) = 0 has solution y(t) = c0 +c1t +

· · · + cn–1tn–1, ci ∈R, i = 0, 1, . . . , n – 1, n = [α] + 1. Furthermore, for y ∈ ACn[0, T],

(
Iα

0+Dα
0+y

)
(t) = y(t) –

n–1∑

k=0

y(k)(0)
k!

tk

and

(
Dα

0+Iα
0+y

)
(t) = y(t).

Lemma 2 ([7]) The relation

Iα
a+Iβ

a+f (x) = Iα+β
a+ f (x)

is valid in the following case: β > 0, α + β > 0, f (x) ∈ L1(a, b).

Lemma 3 ([28]) Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm oper-
ator with index zero, and P : X → X, Q : Y → Y be projectors such that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Y = Im L ⊕ Im Q.

It follows that L|dom L∩ker P : dom L ∩ ker P → Im L is invertible.



Yao et al. Boundary Value Problems        (2018) 2018:172 Page 4 of 27

Denote Y = C([0, T],R) with the norm ‖y‖∞ = maxt∈[0,T] |y(t)|, X = {x|x, Dα
0+ x ∈ Y } and

XT =
{

x ∈ X|x(0) = x(T), Dα
0+ x(0) = Dα

0+ x(T)
}

with the norm ‖x‖X = max{‖x‖∞,‖Dα
0+ x‖∞}. It is easy to see that X and XT are Banach

spaces.
Define an operator L : dom L ⊂ X → Y by

Lx = Dβ

0+
(
p(t)Dα

0+ x
)
, (4)

where

dom L =
{

x ∈ XT |Dβ

0+
(
p(t)Dα

0+ x
) ∈ Y

}
.

Let Nf : X → Y be the Nemytskii operator

Nf x(t) = f
(
t, x(t), Dα

0+ x(t)
)
, ∀t ∈ [0, T]. (5)

Then PBVP (1) is equivalent to the operator equation

Lx = Nf x, x ∈ dom L.

2.2 Main result
In this subsection, by using the coincidence degree theorem, we establish a new existence
result on PBVP (1) for the nonlinear fractional differential equation under the nonlinear
growth restriction of f .

First, we show some lemmas which will play important roles in the proof of the main
result.

Consider PBVP (2) with h ∈ Y such that h = 0, and let x be a solution of PBVP (2). From
Lemma 1, we have

p(t)Dα
0+ x(t) = a + Iβ

0+ h(t) = a +
1

Γ (β)

∫ t

0
(t – s)β–1h(s) ds, ∀a ∈R, (6)

which together with the periodic boundary condition x(0) = x(T) implies that

∫ T

0
(T – s)α–1

{
a + Iβ

0+ h(s)
p(s)

}

ds = 0.

For any fixed l ∈ Y , define the function Gl(a) : R→R by

Gl(a) =
α

Tα

∫ T

0
(T – s)α–1

{
a + l(s)

p(s)

}

ds. (7)

Then we have the following lemma.



Yao et al. Boundary Value Problems        (2018) 2018:172 Page 5 of 27

Lemma 4 The function Gl(a) has the following properties:
(i) for any fixed l ∈ Y , the equation

Gl(a) = 0 (8)

has a unique solution ã(l);
(ii) the function ã : Y →R, defined in (1), is continuous and sends bounded sets into

bounded sets.

Proof (i) By (7), we have

(
Gl(a1) – Gl(a2)

)
(a1 – a2) > 0 for a1 = a2,

hence the solution of (8) is unique. To prove the existence, we will show that Cl(a) · a > 0
for |a| sufficiently large. Since

Gla · a =
α

Tα

∫ T

0
(T – s)α–1 · a + l(s)

p(s)
· a ds

=
α

Tα

∫ T

0
(T – s)α–1 · a + l(s)

p(s)
· (a + l(s)

)
ds

–
α

Tα

∫ T

0
(T – s)α–1 · a + l(s)

p(s)
· l(s) ds,

then we have

Gla · a ≥ α

Tα

∫ T

0
(T – s)α–1 · a + l(s)

p(s)
· (a + l(s)

)
ds

– ‖l‖∞
α

Tα

∫ T

0
(T – s)α–1 ·

∣
∣
∣
∣
a + l(s)

p(s)

∣
∣
∣
∣ds. (9)

From the property of p(t), we have

y · y
p(s)

≥ M
∣
∣
∣
∣

y
p(s)

∣
∣
∣
∣

∣
∣
∣
∣

y
p(s)

∣
∣
∣
∣ (10)

for any y ∈R. Thus, from (9) and (10), we obtain

Gla · a ≥ α

Tα

∫ T

0
(T – s)α–1

(

M · a + l(s)
p(s)

– ‖l‖∞
)∣

∣
∣
∣
a + l(s)

p(s)

∣
∣
∣
∣ds. (11)

Since |a| → ∞ implies that | a+l(t)
p(t) | → ∞ uniformly for t ∈ [0, T], we find from (11) that

there exists r > 0 such that

Gla · a > 0

for all a ∈ R with |a| = r. By an elementary topological degree argument, it follows that
the equation Gl(a) = 0 has a solution for each l ∈ Y , which by our previous argument is
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unique. In this way, for any l ∈ Y , we define a function ã : Y → R which satisfies

∫ T

0
(T – s)α–1

(
ã + l(s)

p(s)

)

ds = 0. (12)

To prove (ii), let Λ be a bounded subset of Y and l ∈ Λ. Then, from (12), we have

∫ T

0
(T – s)α–1

(
ã(l) + l(s)

p(s)

)

ã(l) ds = 0,

and hence

∫ T

0
(T – s)α–1

(
ã(l) + l(s)

p(s)

)
(
ã(l) + l(s)

)
ds

=
∫ T

0
(T – s)α–1

(
ã(l) + l(s)

p(s)

)

l(s) ds. (13)

Suppose that {ã(l), l ∈ Λ} is not bounded. Then, for an arbitrary A > 0, there is l ∈ Λ with
‖l‖∞ sufficiently large so that

A ≤ M
∣
∣
∣
∣
ã(l) + l(s)

p(s)

∣
∣
∣
∣,

uniformly in t ∈ [0, T]. Hence, by using (10) and (13), we find that

A
∫ T

0
(T – s)α–1

∣
∣
∣
∣
ã(l) + l(s)

p(s)

∣
∣
∣
∣ds ≤

∫ T

0
M(T – s)α–1

∣
∣
∣
∣
ã(l) + l(s)

p(s)

∣
∣
∣
∣

2

ds

≤ ‖l‖∞
∫ T

0
(T – s)α–1

∣
∣
∣
∣
ã(l) + l(s)

p(s)

∣
∣
∣
∣ds.

Thus A ≤ ‖l‖∞ , which is a contradiction. Therefore ã sends bounded sets in Y into
bounded sets in R.

Finally, we show the continuity of ã. Let {ln} be a convergent sequence in Y , say ln → l, as
n → ∞. Since {a(ln)} is a bounded sequence, any subsequence of it contains a convergent
subsequence denoted by {a(lnj )}. Let a(lnj ), as j → ∞. By letting j → ∞ in

∫ T

0
(T – s)α–1

( ã(lnj ) + lnj (s)
p(s)

)

ds = 0,

we find that

∫ T

0
(T – s)α–1

(
â + l(s)

p(s)

)

ds = 0,

and hence ã(l) = â , which shows the continuity of ã.
The proof is complete. �

Let a : Y →R be defined by

a(h) = ã
(
Iβ

0+ h
)
.
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Then, based on Lemma 4, a is a completely continuous mapping. Furthermore, by (6) and
Lemma 1, we obtain that

x(t) = x(0) + Iα
0+

(
a(h) + Iβ

0+ h(t)
p(t)

)

. (14)

Lemma 5 Let L be defined by (4), then

ker L =
{

x ∈ X|x(t) = c,∀t ∈ [0, T], c ∈ R
}

, (15)

Im L =
{

y ∈ Y
∣
∣
∣

∫ T

0
(T – s)β–1y(s) ds = 0

}

. (16)

Proof By Lemma 1, ∀b, c ∈ R, the solution of Dβ

0+ (p(t)Dα
0+ x(t)) = 0 satisfies

x(t) = c + Iα
0+

(
b

p(t)

)

.

Combining the property of p(t) with periodic boundary value conditions

Dα
0+ x(0) = Dα

0+ x(T) and x(0) = x(T),

we have b = 0. That is, (15) holds.
If y ∈ Im L, then there exists a function x ∈ dom L such that y(t) = Dβ

0+ (p(t)Dα
0+ x(t)). By

Lemma 1, we have

Dα
0+ x(t) =

Iβ

0+ y(t) + c1

p(t)
=

1
Γ (β)

∫ t
0 (t – s)β–1y(s) ds + c1

p(t)
, c1 ∈R.

From the boundary condition Dα
0+ x(0) = Dα

0+ x(T), it follows that

∫ T

0
(T – s)β–1y(s) ds = 0. (17)

On the other hand, let y ∈ Y satisfy (17) and

x(t) = Iα
0+

(
a(y) + Iβ

0+ y(t)
p(t)

)

,

then Dα
0+ x(0) = Dα

0+ x(T). From the definition of mapping a, we have

x(0) = 0 = Iα
0+

(
a(y) + Iβ

0+ y(T)
p(T)

)

= x(T).

Then we have x ∈ dom L and Lx(t) = Dβ

0+ (p(t)Dα
0+ x(t)) = y(t). So y ∈ Im L. The proof is com-

plete. �

Define projectors P : X → X and Q : Y → Y by

Px(t) = x(0), ∀t ∈ [0, T],
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Qy(t) =
β

Tβ

∫ 1

0
(T – s)β–1y(s) ds, ∀t ∈ [0, T]. (18)

Kh(t) = Iα
0+

[
a((I – Q)h) + Iβ

0+ (I – Q)h(t)
p(t)

]

, ∀t ∈ [0, T]. (19)

By (14), we can infer that the solution x ∈ XT of PBVP (2) satisfies the following abstract
equation:

x = Px + Qh + Kh. (20)

According to the proof of Lemma 5, we can also infer that the solution x of (20) is also a
solution of PBVP (2).

Notice that a(0) = ã(0) = 0, we get K(0) = 0.

Lemma 6 The operator K is a completely continuous operator.

Proof In fact, by the definition of K, it follows that

Dα
0+Kh(t) =

[
a((I – Q)h) + Iβ

0+ (I – Q)h(t)
p(t)

]

, ∀t ∈ [0, T].

Based on the continuity of Q, it follows that K and Dα
0+K are continuous in Y . That is, K

is a continuous operator.
Let Ω ⊂ Y be an arbitrary open bounded set, then K(Ω) and Dα

0+K(Ω) are bounded.
Thus, in view of the Arzelà–Ascoli theorem, it remains to verify that K(Ω) ⊂ XT is
equicontinuous.

In view of Lemma 4, we deduce that the operator [a((I – Q)h) + Iβ

0+ (I – Q)h] is bounded.
That is, there exists a positive constant M1 > 0 such that

∣
∣
[
a
(
(I – Q)h

)
+ Iβ

0+ (I – Q)h
]
(t)

∣
∣ ≤ M1, ∀h ∈ Ω , t ∈ [0, T].

For 0 ≤ t1 < t2 ≤ T , h ∈ Ω , we have

∣
∣Kh(t2) – Kh(t1)

∣
∣

=
1

Γ (α)

∣
∣
∣
∣

∫ t2

0
(t2 – s)α–1 [a((I – Q)h) + Iβ

0+ (I – Q)h]
p(s)

(s) ds

–
∫ t1

0
(t1 – s)α–1 [a((I – Q)h) + Iβ

0+ (I – Q)h]
p(s)

(s) ds
∣
∣
∣
∣

≤ M1

Γ (α)M

{∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]ds +

∫ t2

t1

(t2 – s)α–1 ds
}

=
M1

Γ (α + 1)M
[
tα
1 – tα

2 + 2(t2 – t1)α
]
.

Since tα is uniformly continuous in [0, T], by the definition ofK, we can see thatK(Ω) ⊂ Y
is equicontinuous. Likewise, it follows that [a(I –Q)+Iβ

0+ (I –Q)](Ω) ⊂ Y is equicontinuous.
This, together with the property of p(s), implies that Dα

0+K(Ω) ⊂ Y is also equicontinuous.
Thus we prove that the operator K : Y → XT is compact. The proof is complete. �
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Lemma 7 Let f : [0, T] × R
2 → R be continuous, L, Nf , Q be defined respectively by (4),

(5), (18), and Ω be an open bounded subset of XT such that dom L ∩ Ω = ∅. Assume that
the following conditions are satisfied:

(C1) for each λ ∈ (0, 1), the equation

Lx = λNf x (21)

has no solution on (dom L \ ker L) ∩ ∂Ω ;
(C2) the equation QNf x = 0 has no solution on ker L ∩ ∂Ω ;
(C3) the Brouwer degree deg(QNf |ker L,Ω ∩ ker L, 0) = 0.

Then the equation Lx = Nf x has at least one solution in dom L ∩ Ω .

Proof Let us consider the homotopic equation of Lx = Nf x as follows:

Lx = λNf x + (1 – λ)QNf x, x ∈ dom L. (22)

That is,

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (p(t)Dα
0+ x(t))

= λf (t, x(t), Dα
0+ x(t)) + (1 – λ) β

Tβ

∫ T
0 (T – s)β–1f (s, x(s), Dα

0+ x(s)) ds,

x(0) = x(T), Dα
0+ x(0) = Dα

0+ x(T).

Obviously, for λ ∈ (0, 1], if x is a solution of Eq. (21) or Eq. (22), then we have

QNf x(t) =
β

Tβ

∫ T

0
(T – s)β–1f

(
s, x(s), Dα

0+ x(s)
)

ds = 0.

It can be seen that Eq. (21) and Eq. (22) have the same solutions. Furthermore, Eq. (22) is
equivalent to the following form:

x = Gf (x,λ), (23)

where Gf : XT × [0, 1] → XT is defined by

Gf (x,λ) = Px + QNf x +
[
K ◦ (

λNf (1 – λ)QNf
)]

x

= Px + QNf x +
[
K ◦ (

λ(I – Q)Nf
)]

x.

In view of the continuity of f and Lemma 6, it is known that Gf is a completely continuous
operator.

For λ = 1, we assume that Eq. (23) does not have a solution on ∂Ω . Otherwise, the proof
is finished. Now, by hypothesis (C1), it follows that Eq. (23) has no solutions for (x,λ) ∈
∂Ω × (0, 1]. For λ = 0, Eq. (22) is equivalent to the following PBVP:

⎧
⎨

⎩

Dβ

0+ (p(t)Dα
0+ x(t)) = β

Tβ

∫ T
0 (T – s)β–1f (s, x(s), Dα

0+ x(s)) ds,

x(0) = x(T), Dα
0+ x(0) = Dα

0+ x(T).
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If x is a solution of this PBVP, we have

β

Tβ

∫ T

0
(T – s)β–1f

(
s, x(s), Dα

0+ x(s)
)

ds = 0.

In view of (15), the following equality holds:

x(t) = c ∈ ker L, ∀c ∈R.

Thus we have

(QNf |ker L)x(t) =
β

Tβ

∫ T

0
(T – s)β–1f (s, c, 0) ds = 0,

which together with hypothesis (C2) implies that x = c /∈ ∂Ω . So we prove that (23) has
no solution for (x,λ) ∈ ∂Ω × [0, 1]. Then, for each λ ∈ [0, 1], the Leray–Schauder degree
deg(I – Gf (·,λ),Ω , 0) is well defined. By the homotopy property of degree, we have that

deg
(
I – Gf (·, 1),Ω , 0

)
= deg

(
I – Gf (·, 0),Ω , 0

)
. (24)

It is clear that equation x = Gf (x, 1) is equivalent to the equation Lx = Nf x. Let us consider
the equation x = Gf (x, 1), which will have at least one solution if deg(I – Gf (·, 0),Ω , 0) = 0
holds. From now on, we will check this. By the definition of Gf , we have that

Gf (x, 0) = Px + QNf x + K(0) = Px + QNf x.

Obviously, we show that x = Gf (x, 0) = c holds for ∀c ∈R, which implies that

x – Gf (x, 0) = –
β

Tβ

∫ T

0
(T – s)β–1f (s, c, 0) ds.

That is,

I – Gf (·, 0) = –QNf |ker L.

Then, by applying the Leray–Schauder degree theory, we have

deg
(
I – Gf (·, 0),Ω , 0

)
= – deg(QNf |ker L,Ω ∩ ker L, 0),

where the right-hand side degree is the Brouwer degree.
Based on hypothesis (C3), the equation Lx = Nf x has at least one solution in dom L ∩ Ω .

The proof is complete. �

Theorem 1 Let f : [0, T] ×R
2 →R. Assume that

(Ha1) there exist nonnegative functions a, b, c ∈ Y such that

∣
∣f (t, u, v)

∣
∣ ≤ a(t) + b(t)|u| + c(t)|v|, ∀t ∈ [0, T], (u, v) ∈R

2;
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(Ha2) there exists a constant B > 0 such that either

uf (t, u, v) > 0, ∀t ∈ [0, T], v ∈R, |u| > B (25)

or

uf (t, u, v) < 0, ∀t ∈ [0, T], v ∈R, |u| > B. (26)

Then PBVP (1) has at least one solution, provided that

γ =
2Tβ

MΓ (β + 1)

[
2Tα‖b‖∞
Γ (α + 1)

+ ‖c‖∞
]

< 1. (27)

Proof Let

Ω1 =
{

x ∈ dom L \ ker L|Lx = λNf x,λ ∈ (0, 1)
}

.

For x ∈ Ω1, we get Nf x ∈ Im L. It follows from (16) that

∫ T

0
(T – s)β–1f

(
s, x(s), Dα

0+ x(s)
)

ds = 0.

By the integral mean value theorem, there exists a constant ξ ∈ (0, T) such that

f
(
ξ , x(ξ ), Dα

0+ x(ξ )
)

= 0.

So, from (Ha2), we get |x(ξ )| ≤ B. By Lemma 1, we find that

x(t) = x(ξ ) – Iα
ξ+ Dα

0+ x(ξ ) + Iα
ξ+ Dα

0+ x(t),

which together with

∣
∣Iα

ξ+ Dα
0+ x(t)

∣
∣ =

1
Γ (α)

∣
∣
∣
∣

∫ t

0
(t – s)α–1Dα

0+ x(s) ds
∣
∣
∣
∣

≤ 1
Γ (α)

∥
∥Dα

0+ x
∥
∥∞ · 1

α
tα

≤ Tα

Γ (α + 1)
∥
∥Dα

0+ x
∥
∥∞, ∀t ∈ [0, T]

and |x(ξ )| ≤ B implies that

‖x‖∞ ≤ B +
2Tα

Γ (α + 1)
∥
∥Dα

0+ x
∥
∥∞. (28)
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Combining hypothesis (Ha1) with (28), ∀t ∈ [0, T], we get

∣
∣Iβ

0+ Nf x(t)
∣
∣

≤ 1
Γ (β)

∫ t

0
(t – s)β–1∣∣f

(
s, x(s), Dα

0+ x(s)
)∣
∣ds

≤ 1
Γ (β)

∫ t

0
(t – s)β–1(a(s) + b(s)

∣
∣x(s)

∣
∣ + c(s)

∣
∣Dα

0+ x(s)
∣
∣
)

ds

≤ 1
Γ (β)

(‖a‖∞ + ‖b‖∞‖x‖∞ + ‖c‖∞
∥
∥Dα

0+ x
∥
∥∞

) · 1
β

tβ

≤ Tβ (‖a‖∞ + ‖b‖∞(B + 2Tα

Γ (α+1)‖Dα
0+ x‖∞) + ‖c‖∞‖Dα

0+ x‖∞)
Γ (β + 1)

. (29)

In fact, owing to the fact that Lx = λNf x, in view of Lemma 1, we have

x(t) = d2 + Iα
0+

[
d1 + λIβ

0+ Nf x(t)
p(t)

]

, ∀d1, d2 ∈R.

Then, by the boundary condition x(0) = x(T), it follows that

1
Γ (α)

∫ T

0
(T – s)α–1

[
d1 + λIβ

0+ Nf x(s)
p(s)

]

ds = 0.

Thus, there exists a constant η ∈ (0, T) such that d1 + λIβ

0+ Nf x(η) = 0, which implies

d1 = –λIβ

0+ Nf x(η).

As a consequence, we have

p(t)Dα
0+ x(t) = –λIβ

0+ Nf x(η) + λIβ

0+ Nf x(t).

Based on (29), it follows that

∥
∥Dα

0+ x
∥
∥∞

≤ 2Tβ

Γ (β + 1)M

[

‖a‖∞ + ‖b‖∞

(

B +
2Tα

Γ (α + 1)
∥
∥Dα

0+ x
∥
∥∞

)

+ ‖c‖∞
∥
∥Dα

0+ x
∥
∥∞

]

.

Thus, from (27), we find that

∥
∥Dα

0+ x
∥
∥∞ ≤ 2Tβ (‖a‖∞ + B‖b‖∞)

(1 – γ )Γ (β + 1)M
:= M2, (30)

which together with (28) yields that

‖x‖∞ ≤ B +
2TαM2

Γ (α + 1)
. (31)

Therefore, based on (30) and (31), we obtain that

‖x‖X = max
{‖x‖∞,

∥
∥Dα

0+ x
∥
∥∞

}
= max

{

M2, B +
2TαM2

Γ (α + 1)

}

:= M3.
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It means that Ω1 is bounded. Next, we let Ω2 = {x ∈ ker L|QNf x = 0}. For x ∈ Ω2, we have
x(t) = d, ∀d ∈R, which implies that

∫ T

0
(T – s)β–1f (s, c, 0) ds = 0.

In view of (Ha2), it follows that |d| ≤ B. Thus, we obtain

‖x‖X ≤ max{B, 0} = B.

That is, Ω2 is bounded. In addition, if (25) holds, set

Ω3 =
{

x ∈ ker L|λIx + (1 – λ)QNf x = 0,λ ∈ [0, 1]
}

.

For x ∈ Ω3, we have x(t) = c, ∀c ∈R and

λc + (1 – λ)
β

Tβ

∫ T

0
(T – s)β–1f (s, c, 0) ds = 0. (32)

If λ = 0, then |c| ≤ B since (25) holds. If λ ∈ (0, 1], we can also show that |c| ≤ B. Otherwise,
we get

λc2 + (1 – λ)
β

Tβ

∫ T

0
(T – s)β–1cf (s, c, 0) ds > 0,

which contradicts (32). So Ω3 is bounded. If (26) holds, let

Ω ′
3 =

{
x ∈ ker L| – λIx + (1 – λ)QNf x = 0,λ ∈ [0, 1]

}
.

By an argument similar to that above, we can prove that Ω ′
3 is also bounded.

Now, it remains to prove that all the conditions of Lemma 7 are satisfied. As for the
details, we refer the readers to [29].

As a consequence of Lemma 7, the operator equation Lx = Nf x has at least one solution
in domL ∩ Ω . That is, PBVP (1) has at least one solution in XT . The proof is complete. �

3 Existence for PBVP (3)
3.1 Preliminaries
In the following, we provide the necessary background definitions on Fredholm operators
and cones in a Banach space (see [28]).

Let X1, Y1 be real Banach spaces. Consider a linear mapping L1 : dom L1 ⊂ X1 → Y1 and
a nonlinear operator N1 : X1 → Y1. Assume that

(A1) L1 is a Fredholm operator of index zero; that is, Im L1 is closed and

deg ker L1 = codim Im L1 < ∞.

This assumption implies that there exist continuous projections P1 : X1 → X1 and
Q1 : Y1 → Y1 such that Im P1 = ker L1 and ker Q1 = Im L1. Moreover, since deg Im Q1 =
codim Im L1, there exists an isomorphism J : Im Q1 → ker L1. Denote by LP the restriction
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of L1 to ker P1 ∩ dom L1. Clearly, LP is an isomorphism from ker P1 ∩ dom L1 to Im L1,
we denote its inverse by Kp : Im L1 → ker P1 ∩ dom L1. It is known that the coincidence
equation L1x = Nx is equivalent to

x = (P1 + JQ1N1)x + KP(I – Q1)N1x.

Let C1 be a cone in X1 such that
(i) μx ∈ C1 for all x ∈ C1 and μ ≥ 0,

(ii) x, –x ∈ C1 implies x = θ .
It is well known that C1 induces a partial order in X1 by x � y if and only if y – x ∈ C1. The
following property is valid for every cone in a Banach space X1.

Lemma 8 Let C1 be a cone in X1. Then, for every u ∈ C1{0}, there exists a positive number
σ (u) such that

‖x + u‖ ≥ σ (u)‖u‖ for all x ∈ C1.

Let γ : X1 → C1 be a retraction; that is, a continuous mapping such that γ (x) = x for all
x ∈ C1. Set

Ψ := P1 + JQ1N1 + KP(I – Q1)N1 and Ψγ := Ψ ◦ γ .

Theorem 2 ([30]) Let C1 be a cone in X1, and let Ω1, Ω2 be open bounded subsets of X1

with Ω1 ⊂ Ω2 and C1 ∩ (Ω2\Ω1) = ∅. Assume (A1) and the following assumptions hold:
(A2) Q1N1 : X1 → Y1 is continuous and bounded and KP(I – Q1)N1 : X1 → X1 is

compact on every bounded subset of X1;
(A3) L1x = λN1x for all x ∈ C1 ∩ ∂Ω2 ∩ Im L1 and λ ∈ (0, 1);
(A4) γ maps subsets of Ω2 into bounded subsets of C1;
(A5) deg{[I – (P1 + JQ1N1)γ ]|ker L1 , ker L1 ∩ Ω2, 0} = 0;
(A6) there exists u0 ∈ C1{0} such that ‖x‖ ≤ σ (u0)‖Ψ x‖ for x ∈ C1(u0) ∩ ∂Ω1, where

C1(u0) = {x ∈ C1 : μu0 � x for some μ > 0} and σ (u0) such that
‖x + u0‖ ≥ σ (u0)‖x‖ for every x ∈ C1;

(A7) (P1 + JQ1N1)γ (∂Ω2) ⊂ C1;
(A8) Ψγ (Ω2\Ω1) ⊂ C1.

Then the equation L1x = N1x has a solution in the set C1 ∩ (Ω2\Ω1).

3.2 Main result
In this subsection, we prove the existence result for PBVP (3). We use the Banach space
Y1 = C([0, T],R) with the norm ‖y‖∞ = maxt∈[0,T] |y(t)| and denote X1 = {x|x, Dα

0+ x ∈ Y1}
with the norm ‖x‖ = max{‖x‖∞,‖Dα

0+ x‖∞}.
Define the operator L1 : dom L1 → X1 by L1x = Dβ

0+Dα
0+x, where

dom L1

=
{

x ∈ X1 : Dβ
0+Dα

0+x ∈ Y1, x(0) = x(T), x′(0) = x′(T), Dα
0+x(0) = Dα

0+x(T)
}

.
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Define the operator N1 : X1 → Y1 by N1x(t) = g(t, x(t), Dα
0+x(t)). Then problem (3) can be

written by L1x = N1x, x ∈ dom L1. For convenience, we set

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + Tβ (t–s)α+β–1

βΓ (α+β) – tαTβ–α+1(T–s)α+β–2

αβΓ (α+β–1)

– Γ (β+1)(T–s)α+2β–1

βΓ (α+2β) + Tβ+1Γ (β+1)Γ (α)(T–s)α+β–2

βΓ (α+β+1)Γ (α+β–1)

+ Tβ (T–s)α+β–1

β(β+1)Γ (α+β) – Tβ+1(T–s)α+β–2

αβ(β+1)Γ (α+β–1)

– tTβ–1(T–s)α+β–1

βΓ (α+β) + tTβ (T–s)α+β–2

αβΓ (α+β–1) + q(t),

0 ≤ s < t ≤ T ,

1 – tαTβ–α+1(T–s)α+β–2

αβΓ (α+β–1) – Γ (β+1)(T–s)α+2β–1

βΓ (α+2β)

+ Tβ+1Γ (β+1)Γ (α)(T–s)α+β–2

βΓ (α+β+1)Γ (α+β–1) + Tβ (T–s)α+β–1

β(β+1)Γ (α+β)

– Tβ+1(T–s)α+β–2

αβ(β+1)Γ (α+β–1) – tTβ–1(T–s)α+β–1

βΓ (α+β)

+ tTβ (T–s)α+β–2

αβΓ (α+β–1) + q(t),

0 ≤ t < s ≤ T ,

where

q(t) =
–αtβ + (α + β)Tβ

αΓ (α + β + 1)
tα +

Γ (β + 1)Tα

Γ (α + 2β)Γ (α + β)
–

βtTα+β–1

αΓ (α + β + 1)

– Tα+β

(
Γ (α + 1)Γ (β + 2) – βΓ (α + β)
α(β + 1)Γ (α + β)Γ (α + β + 1)

)

.

Denote a constant κ ∈ (0, 1) satisfying

κG(t, s) < 1. (33)

Lemma 9 The mapping L1 : dom L1 ⊂ X1 is a Fredholm operator of index zero. Further-
more, the operator KP : Im L1 → dom L1 ∩ ker P1 can be written by

KPy(t) =
∫ 1

0
k(t, s)y(s) ds, t ∈ [0, T],

where

k(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)α+β–1

Γ (α+β) – tα (T–s)α+β–2

αTα–1Γ (α+β–1) – Γ (β+1)(T–s)α+2β–1

TβΓ (α+2β)

+ TΓ (β+1)Γ (α)(T–s)α+β–2

Γ (α+β+1)Γ (α+β–1) + (T–s)α+β–1

(β+1)Γ (α+β)

– T(T–s)α+β–2

α(β+1)Γ (α+β–1) – t(T–s)α+β–1

TΓ (α+β) + t(T–s)α+β–2

αΓ (α+β–1) ,

0 ≤ s < t ≤ T ,

– tα (T–s)α+β–2

αTα–1Γ (α+β–1) – Γ (β+1)(T–s)α+2β–1

TβΓ (α+2β)

+ TΓ (β+1)Γ (α)(T–s)α+β–2

Γ (α+β+1)Γ (α+β–1) + (T–s)α+β–1

(β+1)Γ (α+β)

– T(T–s)α+β–2

α(β+1)Γ (α+β–1) – t(T–s)α+β–1

TΓ (α+β) + t(T–s)α+β–2

αΓ (α+β–1) ,

0 ≤ t < s ≤ T .

Proof Based on Lemma 1, the solution x(t) of Dβ
0+Dα

0+x(t) = 0 satisfies Dα
0+x(t) = c. In this

case, c should be zero by observing the definition of Dα
0+. Therefore, we have Dα

0+x(t) = 0,
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which implies x(t) = c0 + c1t, c0, c1 ∈ R. According to the boundary value conditions of (3),
we have ker L1 = {c, c ∈R} ∼= R

1.
Let y(t) ∈ Im L1 and assume that there exists a function x(t) ∈ dom L1 satisfying L1x(t) =

y(t). In view of Lemmas 1 and 2, we have

x(t) = Iα
0+

(
Iβ

0+y(t) + c0
)

+ c1 + c2t.

From Dα
0+x(0) = Dα

0+x(T), it implies that
∫ T

0 (T –s)β–1y(s) ds = 0. On the other hand, suppose
y ∈ Y1 satisfying

∫ T
0 (T – s)β–1y(s) ds = 0. Let

x(t) = Iα+β
0+ y(t) –

(
1
T

Iα+β
0+ y(T) –

1
α

Iα+β–1
0+ y(T)

)

t –
1

αTα–1 Iα+β–1
0+ y(T)tα .

By a simple calculation, we can prove x(0) = x(T), x′(0) = x′(T), Dα
0+x(0) = Dα

0+x(T), which
means x(t) ∈ dom L1. To conclude, we get

Im L1 =
{

y ∈ Y1 :
∫ T

0
(T – s)β–1y(s) ds = 0

}

.

Consider the linear operator P1 : X1 → X1 defined by

P1x(t) =
β

Tβ

∫ T

0
(T – s)β–1x(s) ds, t ∈ [0, T],

and the operator Q1 : Y1 → Y1 defined by

Q1y(t) =
β

Tβ

∫ T

0
(T – s)β–1y(s) ds, t ∈ [0, T].

For x(t) ∈ X1, we get

P1(P1x) = P1

[
β

Tβ

∫ T

0
(T – s)β–1x(s) ds

]

=
β

Tβ

∫ T

0
(T – s)β–1x(s) ds = P1x.

Hence, we have P2
1 = P1. Similarly, we can get Q2

1 = Q1. Note that Im P1 = ker L1 and ker Q1 =
Im L1. It follows from

Ind L1 = deg ker L1 – codim Im L1 = 0

that L1 is a Fredholm mapping of index zero.
It remains to prove that the operator KP is the inverse of L1|dom L1∩ker P1 .
In fact, for x(t) ∈ dom L1 ∩ ker P1, we have Dβ

0+Dα
0+x(t) = y(t). By Lemma 1, we have x(t) =

Iα
0+(Iβ

0+y(t) + c0) + c1 + c2t. According to x(0) = x(T), x′(0) = x′(T), Dα
0+x(0) = Dα

0+x(T), we get

c0 = –
Γ (α)
Tα–1 Iα+β–1

0+ y(T), c2 = –
1
T

Iα+β
0+ y(T) +

1
α

Iα+β–1
0+ y(T).

Since x(t) ∈ ker P1, i.e., β

Tβ

∫ T
0 (T – s)β–1x(s) ds = 0, we obtain

c1 = –
Γ (β + 1)

Tβ
I2β+α

0+ y(T) –
TαΓ (β + 1)
Γ (α + β + 1)

c0 –
T

β + 1
c2.
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Define an operator

KPy(t) = Iα
0+

(
Iβ

0+y(t) + c0
)

+ c1 + c2t.

Substituting c0, c1, c2 in the above equality, we obtain

KPy(t) = Iα
0+

(
Iβ

0+y(t) + c0
)

+ c1 + c2t

= Iα+β
0+ y(t) –

1
αTα–1 Iα+β–1

0+ y(T)tα –
Γ (β + 1)

Tβ
Iα+2β

0+ y(T)

+
TΓ (β + 1)Γ (α)
Γ (α + β + 1)

Iα+β–1
0+ y(T) +

1
β + 1

Iα+β
0+ y(T)

–
T

α(β + 1)
Iα+β–1

0+ y(T) –
(

1
T

Iα+β
0+ y(T) –

1
α

Iα+β–1
0+ y(T)

)

t

=
1

Γ (α + β)

∫ t

0
(t – s)α+β–1y(s) ds

–
tα

αTα–1Γ (α + β – 1)

∫ T

0
(T – s)α+β–2y(s) ds

–
Γ (β + 1)

TβΓ (α + 2β)

∫ T

0
(T – s)α+2β–1y(s) ds

+
TΓ (β + 1)Γ (α)

Γ (α + β + 1)Γ (α + β – 1)

∫ T

0
(T – s)α+β–2y(s) ds

+
1

(β + 1)Γ (α + β)

∫ T

0
(T – s)α+β–1y(s) ds

–
T

α(β + 1)Γ (α + β – 1)

∫ T

0
(T – s)α+β–2y(s) ds

–
t

TΓ (α + β)

∫ T

0
(T – s)α+β–1y(s) ds

+
t

αΓ (α + β – 1)

∫ T

0
(T – s)α+β–2y(s) ds

=
∫ T

0
k(t, s)y(s) ds.

It can be shown that L1KPy(t) = y(t), which implies KP = (L1|dom L1∩ker P1 )–1. This completes
the proof of Lemma 9. �

Lemma 10 Assume that Ω ⊂ X1 is an open bounded set such that dom(L1) ∩ Ω = ∅, then
N1 is L-compact on Ω .

Proof Based on the continuity of g , we obtain that Q1N1(Ω) and KP(I – Q1)N1(Ω)
are bounded. Hence, for x(t) ∈ Ω , t ∈ [0, T], there exists a positive constant M such
that |(I – Q1)N1x(t)| ≤ M, | 1

αTα–1 Iα+β–1
0+ (I – Q1)N1x(T)| ≤ M and | 1

T Iα+β
0+ (I – Q1)N1x(T) –

1
α

Iα+β–1
0+ (I – Q1)N1x(T)| ≤ M. In view of the Arzela–Ascoli theorem, we need only to prove

that KP(I – Q1)N1(Ω) is equicontinuous.
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For 0 ≤ t1 < t2 ≤ T , x ∈ Ω , by virtue of the definition of KP , we have

∣
∣KP(I – Q1)N1x(t2) – KP(I – Q1)N1x(t1)

∣
∣

=
∣
∣
∣
∣

[
Iα+β

0+ (I – Q1)N1x(t)
]

t=t2
+

c0

Γ (α + 1)
t2
2 + c1 + c2t2

–
[
Iα+β

0+ (I – Q1)N1x(t)
]

t=t1
–

c0

Γ (α + 1)
t2
1 – c1 – c2t1

∣
∣
∣
∣

≤ 1
Γ (α + β)

∣
∣
∣
∣

∫ t2

0
(t2 – s)α+β–1(I – Q1)N1x(s) ds

–
∫ t1

0
(t1 – s)α+β–1(I – Q1)N1x(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
αTα–1 Iα+β–1

0+ (I – Q1)N1x(T)
∣
∣
∣
∣ · ∣∣tα

2 – tα
1
∣
∣

+
∣
∣
∣
∣

(
1
T

Iα+β
0+ –

1
α

Iα+β–1
0+

)

(I – Q1)N1x(T)
∣
∣
∣
∣ · |t2 – t1|

≤ 1
Γ (α + β)

∣
∣
∣
∣

∫ t1

0

[
(t2 – s)α+β–1 – (t1 – s)α+β–1](I – Q1)N1x(s) ds

∣
∣
∣
∣

+
1

Γ (α + β)

∣
∣
∣
∣

∫ t2

t1

(t2 – s)α+β–1(I – Q1)N1x(s) ds
∣
∣
∣
∣ + M

(
tα
2 – tα

1 + t2 – t1
)

≤ M
Γ (α + β + 1)

[
tα+β
2 – tα+β

1 + (t2 – t1)α+β
]

+ M
(
tα
2 – tα

1 + t2 – t1
)
.

Notice that t and tα are uniformly continuous on [0, T]. Therefore, we have KP(I –
Q1)N1(Ω) is equicontinuous on [0, T]. The proof is completed. �

Theorem 3 Assume that
(Hb1) for t ∈ [0, T] and (u, v) ∈ [0, B] × [0, B], one has

–κ(u + v) ≤ g(t, u, v) ≤ –c1u – c2v + c3

and

g(t, u, v) ≤ –b1
∣
∣g(t, u, v)

∣
∣ + b2u + b3v + b4,

where b1, b2, b3, b4, c1, c2, c3, B are positive constants with

b1c1c2β + b1c2
1β + 8Tα+β–1b2c2

2 – 8Tα+β–1b3c1c2 > 0, (34)

Γ (3 – α)Γ (α + β) – 2κ(α – 1)Tα+2β–2 > 0, (35)

B > max

{

A1, A2,
c3

c1

}

, (36)

where

A1 =
b1c2c3β + 8b2c2c3Tα+β–1 + 8b4c1c2Tα+β–1

b1c1c2β + b1c2
1β + 8Tα+β–1b2c2

2 – 8Tα+β–1b3c1c2
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and

A2 =
c3(2α + β – 2)Tβ

Γ (3 – α)Γ (α + β) – 2κ(α – 1)Tα+2β–2 .

(Hb2) there exist r ∈ (0, B), t0 ∈ [0, T], m ∈ (0, 1), and hi(x) : (0, r] → [0, +∞), i = 1, 2,
such that g(t, u, v) ≥ h1(u) + h2(v) for t ∈ [0, T], (u, v) ∈ (0, r] × (0, r]. Moreover,
h1(u)

u and h2(v)
v are nonincreasing on (0, r] and

β

Tβ

hi(r)
r

∫ T

0
G(t0, s)(T – s)β–1 ds ≥ 1 – m

2m
, i = 1, 2.

Then problem (3) has at least one positive solution on [0, T].

Proof Firstly, conditions (A1) and (A2) of Theorem 3 are satisfied based on Lemmas 9
and 10.

Then, consider the cone C1 = {u ∈ X1 : u(t) ≥ 0, Dα
0+u(t) ≥ 0, t ∈ [0, T]}. Let Ω1 = {u ∈

X1 : m‖u‖ < |u(t)| < r, m‖u‖ < |Dα
0+u(t)| < r, t ∈ [0, T]}, Ω2 = {u ∈ X1 : ‖u‖ < B, t ∈ [0, T]}.

Obviously, Ω1 and Ω2 are bounded and

Ω1 =
{

u ∈ X1 : m‖u‖ ≤ ∣
∣u(t)

∣
∣ ≤ r, m‖u‖ ≤ ∣

∣Dα
0+u(t)

∣
∣ ≤ r, t ∈ [0, T]

} ⊂ Ω2.

Furthermore, C1 ∩ (Ω2\Ω1) = ∅. Let J = I and (γ u)(t) = |u(t)| for u ∈ X1, then γ is a retrac-
tion and maps subsets of Ω2 into bounded subsets of C1, which means that (A4) holds.

Next, we will prove that (A3) holds. Suppose that there exist x0 ∈ ∂Ω2 ∩C1 ∩dom L1 and
λ0 ∈ (0, 1) such that L1x0 = λ0N1x0, that is, Dβ

0+Dα
0+x0(t) = λ0g(t, x0(t), Dα

0+x0(t)), t ∈ [0, T].
Then assumption (Hb1) gives

Dβ
0+Dα

0+x0(t)

= λ0g
(
t, x0(t), Dα

0+x0(t)
)

≤ –λ0b1
∣
∣g

(
t, x0(t), Dα

0+x0(t)
)∣
∣ + λ0b2x0(t) + λ0b3Dα

0+x0(t) + λ0b4

= –b1
∣
∣λ0g

(
t, x0(t), Dα

0+x0(t)
)∣
∣ + λ0b2x0(t) + λ0b3Dα

0+x0(t) + λ0b4

= –b1
∣
∣Dβ

0+Dα
0+x0(t)

∣
∣ + λ0b2x0(t) + λ0b3Dα

0+x0(t) + λ0b4

≤ –b1
∣
∣Dβ

0+Dα
0+x0(t)

∣
∣ + b2x0(t) + b3Dα

0+x0(t) + b4 (37)

and

Dβ
0+Dα

0+x0(t) = λ0g
(
t, x0(t), Dα

0+x0(t)
) ≤ –λ0c1x0(t) – λ0c2Dα

0+x0(t) + λ0c3. (38)

Since Dβ
0+Dα

0+x0(t) = λ0g(t, x0(t), Dα
0+x0(t)) ∈ Im L1, based on the definition of Im L1 and

(38), we can obtain

0 =
∫ T

0
(T – s)β–1Dβ

0+Dα
0+x0(s) ds

≤
∫ T

0
(T – s)β–1(–λ0c1x0(s) – λ0c2Dα

0+x0(s) + λ0c3
)

ds, (39)
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which gives

∫ T

0
(T – s)β–1x0(s) ds ≤ –

c2

c1

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
c3Tβ

c1β
. (40)

Furthermore, (37) and (40) imply

0 =
∫ T

0
(T – s)β–1Dβ

0+Dα
0+x0(s) ds

≤
∫ T

0
(T – s)β–1[–b1

∣
∣Dβ

0+Dα
0+x0(s)

∣
∣ + b2x0(s) + b3Dα

0+x0(s) + b4
]

ds

= –b1

∫ T

0
(T – s)β–1∣∣Dβ

0+Dα
0+x0(s)

∣
∣ds + b2

∫ T

0
(T – s)β–1x0(s) ds

+ b3

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
b4Tβ

β
,

which gives

∫ T

0
(T – s)β–1∣∣Dβ

0+Dα
0+x0(s)

∣
∣ds

≤ b2

b1

∫ T

0
(T – s)β–1x0(s) ds +

b3

b1

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
b4Tβ

b1β

≤
(

–
b2c2

b1c1
+

b3

b1

)∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
b2c3Tβ

b1c1β
+

b4Tβ

b1β
. (41)

Based on the function expression of k(t, s), we get

∣
∣k(t, s)

∣
∣ ≤ 8T(T – s)α+β–2, s, t ∈ [0, T]. (42)

By virtue of (40), (41), (42), and the equation x0 = (I – P1)x0 + P1x0 = KPL1(I – P1)x0 +
P1x0 = P1x0 + KPL1x0, we have

x0 = P1x0 + KPL1x0

=
β

Tβ

∫ T

0
(T – s)β–1x0(s) ds +

∫ T

0
k(t, s)Dβ

0+Dα
0+x0(s) ds

≤ –
βc2

Tβc1

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
c3

c1

+
∫ T

0

∣
∣k(t, s)

∣
∣ · ∣∣Dβ

0+Dα
0+x0(s)

∣
∣ds

≤ –
βc2

Tβc1

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
c3

c1

+ 8T
∫ T

0
(T – s)α+β–2∣∣Dβ

0+Dα
0+x0(s)

∣
∣ds
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≤ –
βc1

Tβc2

∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
c3

c1

+ 8Tα–1
∫ T

0
(T – s)β–1∣∣Dβ

0+Dα
0+x0(s)

∣
∣ds

≤
(

–
βc1

Tβc2
–

8Tα–1b2c2

b1c1
+

8Tα–1b3

b1

)∫ T

0
(T – s)β–1Dα

0+x0(s) ds +
c3

c1

+
8b2c3Tα+β–1

b1c1β
+

8b4Tα+β–1

b1β

≤
(

–
c1

c2
–

8Tα+β–1b2c2

b1c1β
+

8Tα+β–1b3

b1β

)

B +
c3

c1

+
8b2c3Tα+β–1

b1c1β
+

8b4Tα+β–1

b1β
.

In view of (Hb1), we have

Dβ
0+Dα

0+x0(t) = λ0g
(
t, x0(t), Dα

0+x0(t)
) ≥ –λ0κ

(
x0(t) + Dα

0+x0(t)
)

(43)

and

Dβ
0+Dα

0+x0(t)

= λ0g
(
t, x0(t), Dα

0+x0(t)
) ≤ –λ0c1x0(t) – λ0c2Dα

0+x0(t) + λ0c3 ≤ c3. (44)

In addition, based on the definition of function k(t, s), we obtain

d2k(s, τ )
ds2 =

⎧
⎨

⎩

(s–τ )α+β–3

Γ (α+β–2) – (α–1)sα–2(T–τ )α+β–2

Tα–1Γ (α+β–1) , 0 ≤ τ < s ≤ T ,

– (α–1)sα–2(T–τ )α+β–2

Tα–1Γ (α+β–1) , 0 ≤ s < τ ≤ T .
(45)

Hence, on the basis of (43)–(45), we have

∫ T

0

d2k(s, τ )
ds2 Dβ

0+Dα
0+x0(τ ) dτ

=
∫ s

0

(
(s – τ )α+β–3

Γ (α + β – 2)
–

(α – 1)sα–2(T – τ )α+β–2

Tα–1Γ (α + β – 1)

)

Dβ
0+Dα

0+x0(τ ) dτ

+
∫ T

s
–

(α – 1)sα–2(T – τ )α+β–2

Tα–1Γ (α + β – 1)
Dβ

0+Dα
0+x0(τ ) dτ

≤ c3

∫ s

0

∣
∣
∣
∣

(s – τ )α+β–3

Γ (α + β – 2)
–

(α – 1)sα–2(T – τ )α+β–2

Tα–1Γ (α + β – 1)

∣
∣
∣
∣dτ

+
∫ T

s

κ(α – 1)sα–2(T – τ )α+β–2

Tα–1Γ (α + β – 1)
(
x0(τ ) + Dα

0+x0(τ )
)

dτ

≤ c3

[
sα+β–2

Γ (α + β – 1)
+

sα–2(α – 1)(Tα+β–1 – (T – s)α+β–1)
Tα–1Γ (α + β)

]

+
2κBsα–2(α – 1)(T – s)α+β–1

Tα–1Γ (α + β)

≤ Tα+β–2(2α + β – 2)c3

Γ (α + β)
+

2κB(α – 1)Tα+β–2

Γ (α + β)
.
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Therefore, by a simple calculation, we get

Dα
0+x0

= Dα
0+(P1x0 + KPL1x0)

=
1

Γ (2 – α)

∫ t

0
(t – s)1–α d2(KPL1x0)(s)

ds2 ds

=
1

Γ (2 – α)

∫ t

0
(t – s)1–α

∫ T

0

d2k(s, τ )
ds2 Dβ

0+Dα
0+x0(τ ) dτ ds

≤ 1
Γ (2 – α)

∫ t

0
(t – s)1–α ds ·

(
Tα+β–2(2α + β – 2)c3

Γ (α + β)
+

2κB(α – 1)Tα+β–2

Γ (α + β)

)

=
1

Γ (3 – α)
T2–α ·

(
Tα+β–2(2α + β – 2)c3

Γ (α + β)
+

2κB(α – 1)Tα+β–2

Γ (α + β)

)

=
1

Γ (3 – α)Γ (α + β)
Tβ · [(2α + β – 2)c3 + 2κB(α – 1)Tα+β–2].

Based on the definition of norm ‖ · ‖, we have B ≤ max{A1, A2} with

A1 =
b1c2c3β + 8b2c2c3Tα+β–1 + 8b4c1c2Tα+β–1

b1c1c2β + b1c2
1β + 8Tα+β–1b2c2

2 – 8Tα+β–1b3c1c2

and

A2 =
c3(2α + β – 2)Tβ

Γ (3 – α)Γ (α + β) – 2κ(α – 1)Tα+2β–2 ,

which contradicts (Hb1). Hence (A3) holds.
In order to prove (A5), we consider x(t) ∈ ker L1 ∩ Ω2, then x(t) ≡ c. For c ∈ [–B, B] and

λ ∈ [0, 1], we obtain

H(c,λ)

=
[
I – λ(P1 + JQ1N1)γ

]
c

= c – λ
β

Tβ

∫ T

0
(T – s)β–1|c|ds – λ

β

Tβ

∫ T

0
(T – s)β–1g

(
s, |c|, Dα

0+|c|)ds

= c – λ|c| – λ
β

Tβ

∫ T

0
(T – s)β–1g

(
s, |c|, Dα

0+|c|)ds

= c – λ
β

Tβ

∫ T

0
(T – s)β–1[g

(
s, |c|, Dα

0+|c|) + |c|]ds.

By use of the proof by contradiction, it can be shown that H(c,λ) = 0 implies c ≥ 0. Suppose
H(B,λ) = 0 for some λ ∈ (0, 1], then we have

0 = B – λB – λ
β

Tβ

∫ T

0
(T – s)β–1g

(
s, B, Dα

0+B
)

ds.

In view of (Hb1), we have

0 ≤ B(1 – λ) = λ
β

Tβ

∫ T

0
(T – s)β–1g

(
s, B, Dα

0+B
)

ds ≤ λ(–c1B + c3) < 0,
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which is a contradiction. In addition, if λ = 0, then B = 0, which is impossible. As a result,
for x ∈ ker L1 ∩ ∂Ω2 and λ ∈ [0, 1], we have H(x,λ) = 0. Thus,

deg
{[

I – (P1 + JQ1N1)γ
]

ker L1
, ker L1 ∩ Ω2, 0

}

= deg
{

H(·, 1), ker L1 ∩ Ω2, 0
}

= deg
{

H(·, 0), ker L1 ∩ Ω2, 0
}

= deg{I, ker L1 ∩ Ω2, 0}
= 1 = 0.

So (A5) holds. It remains to prove (A6). Let x0(t) ≡ 1, t ∈ [0, T], then x0 ∈ C1\{0}, C1(x0) =
{x ∈ C1 : x(t) > 0, t ∈ [0, T]}. We take σ (x0) = 1 and let x ∈ C1(x0) ∩ ∂Ω1, then 0 < ‖x‖ ≤ r
and x(t) ≥ m‖x‖ on [0, T].

For u ∈ C1(x0) ∩ Ω1, (Hb2) implies

(Ψ )x(t0)

=
[(

P1 + JQ1N1 + KP(I – Q1)N1
)
x(t)

]

t=t0

=
[
P1x(t)

]

t=t0
+

[(
JQ1N1 + KP(I – Q1)N1

)
x(t)

]

t=t0

=
β

Tβ

∫ T

0
(T – s)β–1x(s) ds

+
β

Tβ

∫ T

0
G(t0, s)(T – s)β–1g

(
s, x(s), Dα

0+x(s)
)

ds

≥ β

Tβ

∫ T

0
(T – s)β–1m‖x‖ds

+
β

Tβ

∫ T

0
G(t0, s)(T – s)β–1g

(
s, x(s), Dα

0+x(s)
)

ds

≥ m‖x‖ +
β

Tβ

∫ T

0
G(t0, s)(T – s)β–1[h1

(
x(s)

)
+ h2

(
Dα

0+x(s)
)]

ds

= m‖x‖ +
β

Tβ

∫ T

0
G(t0, s)(T – s)β–1

[
h1(x(s))

x(s)
· x(s) +

h2(Dα
0+x(s))

Dα
0+x(s)

· Dα
0+x(s)

]

ds

≥ m‖x‖ +
β

Tβ

∫ T

0
G(t0, s)(T – s)β–1

[
h1(x(s))

x(s)
+

h2(Dα
0+x(s))

Dα
0+x(s)

]

· m‖x‖ds

≥ m‖x‖ + m‖x‖ · β

Tβ

∫ T

0
G(t0, s)(T – s)β–1

[
h1(r)

r
+

h2(r)
r

]

ds

≥ m‖x‖ + m‖x‖ · 1 – m
m

= ‖x‖.

To conclude, for all x ∈ C1(x0) ∩ ∂Ω1, we have ‖x‖ ≤ σ (x0)‖Ψ x‖∞ ≤ σ (x0)‖Ψ x‖, i.e.,
(A6) holds. For x ∈ ∂Ω2, (Hb2) implies

[
(P1 + JQ1N1) ◦ γ

]
x(t)

= P1
(∣
∣x(t)

∣
∣
)

+ JQ1N1
(∣
∣x(t)

∣
∣
)
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=
β

Tβ

∫ T

0
(T – s)β–1∣∣x(s)

∣
∣ds +

β

Tβ

∫ T

0
(T – s)β–1g

(
s,

∣
∣x(s)

∣
∣, Dα

0+
∣
∣x(s)

∣
∣
)

ds

≥ β

Tβ

∫ T

0
(T – s)β–1(1 – κ)

∣
∣x(s)

∣
∣ds

≥ 0.

Thus, for x ∈ ∂Ω2, one has [(P1 + JQ1N1) ◦ γ ]x(t) ⊂ C1. Then (A7) holds.
Finally, we prove (A8). For x(t) ∈ Ω2\Ω1, based on (H2) and (33), we have

Ψγ x(t) =
[(

P1 + JQ1N1 + KP(I – Q1)N1
) ◦ γ

]
x(t)

=
(
P1 + JQ1N1 + KP(I – Q1)N1

)∣
∣x(t)

∣
∣

= P1
(∣
∣x(t)

∣
∣
)

+
[
JQ1N1 + KP(I – Q1)N1

]∣
∣x(t)

∣
∣

=
β

Tβ

∫ T

0
(T – s)β–1∣∣x(s)

∣
∣ds

+
β

Tβ

∫ T

0
G(t, s)(T – s)β–1g

(
s,

∣
∣x(s)

∣
∣, Dα

0+
∣
∣x(s)

∣
∣
)

ds

≥ β

Tβ

∫ T

0
(T – s)β–1∣∣x(s)

∣
∣ds +

β

Tβ

∫ T

0
G(t, s)(T – s)β–1(–κ

∣
∣x(s)

∣
∣
)

ds

=
β

Tβ

∫ T

0
(T – s)β–1∣∣x(s)

∣
∣
(
1 – κG(t, s)

)
ds

≥ 0.

Hence, Ψγ (Ω2\Ω1) ⊂ C1, that is, (A8) holds. Hence, applying Theorem 2, PBVP (3) has a
positive solution x∗(t) on [0, T] with r ≤ ‖x∗(t)‖ ≤ B. This completes the proof. �

4 Examples
In this section, two examples will be given to illustrate our main result.

Example 1 Consider the following PBVP for the nonlinear fractional differential equation:

⎧
⎨

⎩

D
3
4
0+ ((t2 – t + 5

4 )D
1
2
0+ x(t)) = – 8

3 + 1
24 x2(t) + te–(D

1
2
0+ x(t))2

, t ∈ [0, 1],

x(0) = x(1), D
1
2
0+ x(0) = D

1
2
0+ x(1).

(46)

According to PBVP (1), we get that p(t) = t2 – t + 5
4 , M = 1, α = 3

4 , β = 1
2 , T = 1, and

f (t, u, v) = –
8
3

+
1

24
u2 + te–v2

.

Let a(t) = 4, b(t) = 1
24 , c(t) = 0, B = 8. A simple calculation shows that ‖b‖∞ = 1

24 , ‖c‖∞ = 0,
and

uf (t, u, v) = u
(

u2 – 64
24

+ te–v2
)

> 0 (or < 0),∀t ∈ [0, 1], v ∈R, |u| > 8,

γ =
2

Γ ( 3
4 + 1)

( 2 · 1
24

Γ ( 1
2 + 1)

+ 0
)

= 0.2046 < 1.
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All assumptions of Theorem 1 are satisfied. Hence PBVP (46) admits at least one solu-
tion.

Example 2 Consider the fractional periodic boundary value problem

⎧
⎨

⎩

D0.5
0+ D1.5

0+ x(t) = g
(
t, x(t), D1.5

0+ x(t)
)
, t ∈ [0, 1],

x(0) = x(1), x′(0) = x′(1), D1.5
0+ x(0) = D1.5

0+ x(1),
(47)

where g(t, x, D1.5
0+ x) = 2

5 (1 + t2)(– 1
2 x – 1

2 D1.5
0+ x + 5

4 ).
Corresponding to PBVP (47), we have that β = 0.5, α = 1.5, T = 1, and

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– 4(1–s)1.5

3 – 7s
3 + 2ts + 7t

6 – 1
2 t2 – 2

3 t1.5 + Γ (1.5)Γ (1.5)
2 + 20

9 ,

0 ≤ s < t ≤ 1,

– 4(1–s)1.5

3 – s
3 + 2ts – 5t

6 – 1
2 t2 – 2

3 t1.5 + Γ (1.5)Γ (1.5)
2 + 20

9 ,

0 ≤ t < s ≤ 1.

By a simple calculation, we obtain G(t, s) < 2.5. Hence, we take κ = 2
5 based on (33). In

addition, we find that if t ∈ [0, 1], x ∈ [0, 60], and D1.5
0+ x ∈ [0, 60], the following inequality

holds:

–2x(t) – 2D1.5
0+ x(t) ≤ g

(
t, x(t), D1.5

0+ x(t)
) ≤ –

1
5

x(t) –
1
5

D1.5
0+ x(t) + 1,

g
(
t, x(t), D1.5

0+ x(t)
) ≤ –

∣
∣g

(
t, x(t), D1.5

0+ x(t)
)∣
∣ +

6
5

x(t) +
6
5

D1.5
0+ x(t) + 1.

So we can choose B = 60, c1 = c2 = 1
5 , c3 = 1, b1 = 1, b2 = b3 = 6

5 , b4 = 1.
Furthermore, it is easy to verify that

Γ (3 – α)Γ (α + β) – 2κ(α – 1)Tα+2β–2 = 0.4862 > 0,

b1c1c2β + b1c2
1β + 8Tα+β–1b2c2

2 – 8Tα+β–1b3c1c2 =
1

25
> 0,

A1 = 58.5, A2 = 3.085,
c3

c1
= 5 and B = 60 > max

{

A1, A2,
c3

c1

}

.

Therefore, (Hb1) is satisfied.
We take r = 0.5 ∈ [0, 60], h1(x) = x

10 , h2(D1.5
0+ x) = D1.5

0+ x
10 . By calculation, we obtain

g
(
t, x(t), D1.5

0+ x(t)
) ≥ h1(x) + h2

(
D1.5

0+ x
)

=
x(t)
10

+
D1.5

0+ x(t)
10

,
(
t, x, D1.5

0+ x
) ∈ [0, 1] × (0, 0.5]2

and

h1(x)
x

=
h2(D1.5

0+ x)
D1.5

0+ x
=

1
10

,

which is nonincreasing on (0, 0.5].
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Let t0 = 0, then we have

G(t0, s) = G(0, s) = –
4(1 – s)1.5

3
+

4(1 – s)
3

+ 1.2816 > 1.2816 > 0.

Using the given data, we have

β

Tβ

hi(r)
r

∫ 1

0
G(0, s)(1 – s)β–1 ds ≈ 0.1391 ≥ 1 – m

2m
, i = 1, 2,

holds for m = 0.8. One sees that (Hb2) is satisfied. In consequence, the conclusion of The-
orem 3 implies that problem (47) has a positive solution on [0, 1].

5 Conclusion
We have proved the existence of solutions for two classes of fractional differential equa-
tions with periodic boundary value conditions, where certain nonlinear growth conditions
of the nonlinearity need to be satisfied. The problem is issued by applying the Leggett–
Williams norm-type theorem for coincidences. We also provide examples to make our
results clear.
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