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Abstract
In this manuscript, we give some sufficient conditions for existence, uniqueness and
various kinds of Ulam stability for a toppled system of fractional order boundary value
problems involving the Riemann–Liouville fractional derivative. Applying the Banach
contraction principle and the Leray–Schauder result of cone type, uniqueness and
existence results are proved for the proposed toppled system. Stability is investigated
by using the classical technique of nonlinear functional analysis. The results obtained
are well illustrated with the aid of an example.
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1 Introduction
FODEs have recently been addressed by many researchers for a variety of problems. The
aforesaid equations arise in many engineering and scientific disciplines as the mathe-
matical modeling of processes and systems in the fields of signal and image processing,
control theory, physics, blood flow phenomena, polymer rheology, electrodynamics of
complex medium, chemistry, aerodynamics, economics, biophysics, etc. For details, see
[18, 23, 24, 29–33] and the references cited therein. FODEs also serve as an excellent tool
for the description of hereditary properties of different processes and materials. More-
over, one has found that the aforesaid model real world problems are more accurate than
differential equations of integer order. In consequence, the subject of the foregoing equa-
tions are receiving great attention from the researchers. However, the theory of boundary
value problems for nonlinear FODEs is still in the initial stages and many aspects of this
theory need to be explored.

The research area which is most preferable in the field of FODEs and got incredibly much
attention from the researchers is devoted to the existence theory of solutions. Many re-
searchers have established some interesting results of the existence of solutions to bound-
ary value problems for FODEs by applying different fixed point approaches. For a detailed
study, see [1, 13, 36, 37] and the references cited therein. On the other hand, the investiga-
tion of toppled systems of the differential equations is also very significant because systems
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of this kind appear in various problems of applied nature. For details and examples, the
reader may refer to [2, 10, 15, 17, 25] and the references cited therein.

Another area of research, which has received considerable attention from the re-
searchers is stability analysis of the differential equations in the sense of Ulam and their
different kinds. The aforesaid stability was introduced by Ulam [40], in 1940. A significant
breakthrough came in the following year, when Hyers [19] gave a partial answer to Ulam’s
problem. In addition to the aforesaid investigations, many researchers have studied the
Ulam stability for differential equations of different orders; see [20, 21, 27, 28, 34, 47, 48]
and the references cited therein. In last few years, authors [41] studied various kinds of
Ulam stability for impulsive ordinary differential equations. In [46], authors studied vari-
ous kinds of the aforesaid stability for impulsive FODEs. In [43], authors studied the Ulam
stability for linear fractional equations. The above-mentioned stabilities [14] for FODEs
are quite significant in realistic problems, biology, economics and numerical analysis. For
details and examples, see [4, 5, 7, 11, 12, 26, 42, 44, 45] and the references cited therein.

Ali et al. [8], investigated existence theory and different kinds of stability in the sense of
Ulam for the following implicit fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dpu(t) – α(t, u(t), Dpu(t)) = 0;

Dp–2u(t)|t=0+ = γ1Dp–2u(t)|t=T– ,

Dp–1u(t)|t=0+ = β1Dp–1u(t)|t=T– ,

where t ∈ J = [0, T] with T > 0, 1 < p ≤ 2, β1,γ1 �= 1 and α : J × R × R → R. Nowadays,
researchers are devoting their work to the investigation of different kinds of stability in
the sense of Ulam for toppled system of FODEs. For details, see [6, 22, 38, 39]. Recently,
Ali et al. [9] investigated existence theory and different kinds of stability in the sense of
Ulam for the following implicit toppled system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDpu(t) – α(t, y(t), cDpu(t)) = 0;
cDqy(t) – χ (t, u(t), cDqy(t)) = 0;

u′(t)|t=0 = u′′(t)|t=0 = 0, u(t)|t=1 = λu(η),

y′(t)|t=0 = y′′(t)|t=0 = 0, y(t)|t=1 = λy(η),

where t ∈ J = [0, 1], 2 < p, q ≤ 3, 0 < λ,η < 1 and α,χ : J × R × R → R are continuous
functions.

Influenced from the aforesaid discussion. In this manuscript, our objective to study the
existence, uniqueness and various kinds of stability in the sense of Ulam for the given
toppled system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dpu(t) – α(t, y(t), Dpu(t)) = 0;

Dqy(t) – χ (t, u(t), Dqy(t)) = 0;

Dp–2u(t)|t=0+ = γ1Dp–2u(t)|t=T– , Dp–1u(t)|t=0+ = β1Dp–1u(t)|t=T– ,

Dq–2y(t)|t=0+ = γ2Dq–2y(t)|t=T– , Dq–1y(t)|t=0+ = β2Dq–1y(t)|t=T– ,

(1.1)

where t ∈ J = [0, T], T > 0, 1 < p, q ≤ 2 and β1,β2,γ1,γ2 �= 1. Dp, Dq are Riemann–Liouville
derivatives of fractional order and α,χ : J ×R×R →R are continuous functions.
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The manuscript is organized as follows. In Sect. 2, we present some basic materials
needed to prove our main results. In Sect. 3, we set up some appropriate conditions for
the existence and uniqueness of solutions to the proposed system (1.1) by applying some
standard fixed point principles. In Sect. 4, we built up conditions for stability in the sense
of Ulam to the solution of the proposed system (1.1). An example to illustrate our results
is presented in Sect. 5.

2 Background materials
In this section, we recall some definitions and preliminary results, which will be used
throughout the manuscript.

Definition 2.1 ([3]) The Riemann–Liouville fractional integral of order p > 0 for a func-
tion u : R+ →R is defined as

Ipu(t) =
1

Γ (p)

∫ t

0

u(s)
(t – s)1–p ds,

provided that the integral exists.

Definition 2.2 For a function u : R+ →R, the Riemann–Liouville derivative of fractional
order p > 0, n = [p] + 1, is defined as

Dpu(t) =
1

Γ (n – p)

(
d
dt

)n ∫ t

0

u(s)
(t – s)p–n+1 ds,

provided that integral on the right side exists. [p] denotes the integer part of the real num-
ber p. For more properties, the reader may refer to [3].

Lemma 2.1 The solution of the differential equation

Dpu(t) = 	(t), p > 0,

is given as

IpDpu(t) = Ip	(t) + k1tp–1 + k2tp–2 + · · · + kn–1tp–n–1 + kntp–n,

where n = [p] + 1 and ki, i = 1, 2, . . . , n, are real constants.

Lemma 2.2 Suppose E = {u(t)|u ∈ C(J)} is a Banach space endowed with a norm defined
as ‖u‖E = maxt∈J |u(t)|. Similarly, the norm defined on the product space is ‖(u, y)‖E×E =
‖u‖E + ‖y‖E. Obviously (E × E,‖(u, y)‖E×E) is a Banach space. Also, the cone Č ⊂ E × E is
defined as

Č =
{

(u, y) ∈ E × E : u(t) ≥ 0, y(t) ≥ 0
}

.

Theorem 2.1 ([16]) Suppose E a Banach space contains a cone Č and if D ⊂ Č with 0 ∈ D

is relatively open set. Let the operator T : D →D be completely continuous. Then one of the
following conditions exists:
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(1) there is u ∈ ∂D and δ ∈ (0, 1) such that u = δTu;
(2) T has a fixed point in D.

Definition 2.3 ([35]) The proposed system (1.1) is Ulam–Hyers stable, if there are Cp,q =
(Cp, Cq) > 0 such that, for some ε = (εp, εq) > 0 and for each t ∈ J and solution (u, y) ∈ E × E
of the following:

⎧
⎨

⎩

|Dpu(t) – α(t, y(t), Dpu(t))| ≤ εp,

|Dqy(t) – χ (t, u(t), Dqy(t))| ≤ εq.
(2.1)

There is a unique solution (ω,ϑ) ∈ E × E with

∣
∣(u, y)(t) – (ω,ϑ)(t)

∣
∣ ≤ Cp,qε. (2.2)

Definition 2.4 ([35]) The proposed system (1.1) is generalized Ulam–Hyers stable, if
there is Θp,q ∈ C(R+,R+) with Θp,q(0) = 0, such that, for each t ∈ J and solution (u, y) ∈ E×E
of (2.1), there is a unique solution (ϑ ,ω) ∈ E × E of (1.1), which satisfies

∣
∣(u, y)(t) – (ω,ϑ)(t)

∣
∣ ≤ Θp,q(ε). (2.3)

Definition 2.5 ([35]) The proposed system (1.1) is Ulam–Hyers–Rassias stable with re-
spect to Φp,q = (Φp,Φq) ∈ C(J,R), if there are constants CΦp ,Φq = (CΦp , CΦq ) > 0 such that,
for some ε = (εp, εq) > 0 and for each t ∈ J and solution (u, y) ∈ E × E of the following:

⎧
⎨

⎩

|Dpu(t) – α(t, y(t), Dpu(t))| ≤ Φp(t)εp,

|Dqy(t) – χ (t, u(t), Dqy(t))| ≤ Φq(t)εq,
(2.4)

there is a unique solution (ω,ϑ) ∈ E × E with

∣
∣(u, y)(t) – (ω,ϑ)(t)

∣
∣ ≤ CΦp ,ΦqΦp,q(t)ε. (2.5)

Definition 2.6 ([35]) The proposed system (1.1) is generalized Ulam–Hyers–Rassias sta-
ble with respect to Φp,q = (Φp,Φq) ∈ C(J,R), if there is constant CΦp ,Φq = (KΦp , KΦq ) > 0,
such that, for each t ∈ J and solution (u, y) ∈ E × E of the following:

⎧
⎨

⎩

|Dpu(t) – α(t, y(t), Dpu(t))| ≤ Φp(t),

|Dqy(t) – χ (t, u(t), Dqy(t))| ≤ Φq(t),
(2.6)

there is a unique solution (ϑ ,ω) ∈ E × E of (1.1), which satisfies

∣
∣(u, y)(t) – (ω,ϑ)(t)

∣
∣ ≤ CΦp ,ΦqΦp,q(t). (2.7)

Remark 2.1 We say that (u, y) ∈ E × E is a solution of (2.1), if there are ϕα ,ψχ ∈ C(J,R),
which depend upon u, y, respectively, such that

(A1) |ϕα(t)| ≤ εp, |ψχ (t)| ≤ εq, t ∈ J;
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(A2)

⎧
⎨

⎩

Dpu(t) – α(t, y(t), Dpu(t)) + ϕα(t), t ∈ J,

Dqy(t) – χ (t, u(t), Dqy(t)) + ψχ (t), t ∈ J.

3 Existence and uniqueness
In the current section, we set up conditions for the uniqueness and existence of solutions
to the proposed system (1.1).

Lemma 3.1 Let 	 ∈ C(J,R), then, for t ∈ J, the equivalent Fredholm integral equation of
the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dpu(t) = 	(t); p ∈ (1, 2],

Dp–2u(t)|t=0+ = γ1Dp–2u(t)|t=T– ,

Dp–1u(t)|t=0+ = β1Dp–1u(t)|t=T– ,

is given as

u(t) =
∫ T

0
Gp(t, s)	(s) ds,

where the Green’s function Gp(t, s) is given as

Gp(t, s) =

⎧
⎨

⎩

1
Γ (p) (t – s)p–1 + β1tp–1

(1–β1)Γ (p) + γ1tp–2[T–(1–β1)s]
(1–β1)(1–γ1)Γ (p–1) , 0 ≤ s ≤ t ≤ T,

β1tp–1

(1–β1)Γ (p) + γ1tp–2[T–(1–β1)s]
(1–β1)(1–γ1)Γ (p–1) , 0 ≤ t ≤ s ≤ T.

Proof For the proof, see Theorem 3.1 in [8]. �

So in view of Lemma 3.1, for t ∈ J, the solution of the proposed system (1.1) is equivalent
to the toppled system of integral equations given by

⎧
⎨

⎩

u(t) =
∫ T

0 Gp(t, s)α(s, y(s), Dpu(s)) ds,

y(t) =
∫ T

0 Gq(t, s)χ (s, u(s), Dqy(s)) ds.
(3.1)

We use the following notation for convenience:

v(t) = α
(
t, y(t), Dpu(t)

)
= α

(
t, y(t), v(t)

)
,

z(t) = χ
(
t, u(t), Dqy(t)

)
= χ

(
t, u(t), z(t)

)
.

Hence, for t ∈ J, (3.1) becomes

⎧
⎨

⎩

u(t) =
∫ T

0 Gp(t, s)v(s) ds,

y(t) =
∫ T

0 Gq(t, s)z(s) ds,
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where v, z ∈ E satisfies the implicit functional equations and the Green’s function Gq(t, s)
is given as

Gq(t, s) =

⎧
⎨

⎩

1
Γ (q) (t – s)q–1 + β2tq–1

(1–β2)Γ (q) + γ2tq–2[T–(1–β2)s]
(1–β2)(1–γ2)Γ (q–1) , 0 ≤ s ≤ t ≤ T,

β2tq–1

(1–β2)Γ (q) + γ2tq–2[T–(1–β2)s]
(1–β2)(1–γ2)Γ (q–1) , 0 ≤ t ≤ s ≤ T.

Lemma 3.2 The Green’s function Gp,q(t, s) = (Gp(t, s), Gq(t, s)) of the proposed system (1.1),
has the properties given by:

(i) Gp,q(t, s) is continuous over J × J;
(ii) maxt∈J |Gp(t, s)| ≤ 1

Γ (p) (T – s)p–1 + β1Tp–1

(1–β1)Γ (p) + γ1Tp–2[T–(1–β1)s]
(1–β1)(1–γ1)Γ (p–1) = Gp(T, s),

maxt∈J |Gq(t, s)| ≤ 1
Γ (q) (T – s)q–1 + β2Tq–1

(1–β2)Γ (q) + γ2Tq–2[T–(1–β2)s]
(1–β2)(1–γ2)Γ (q–1) = Gq(T, s);

(iii) maxt∈J
∫ T

0 |Gp(t, s)|ds ≤ ( Tp

Γ (p+1) + | β1Tp

(1–β1)Γ (p) | + | γ1(1+|β1|)Tp

2(1–β1)(1–γ1)Γ (p–1) |), s ∈ J,

maxt∈J
∫ T

0 |Gq(t, s)|ds ≤ ( Tq

Γ (q+1) + | β2Tq

(1–β2)Γ (q) | + | γ2(1+|β2|)Tq

2(1–β2)(1–γ2)Γ (q–1) |), s ∈ J.

Proof It is very easy to prove (i), (ii) and (iii), the reader may refer to [8]. �

For computational convenience, we introduce the notations:

Np =
Tp

Γ (p + 1)
+

∣
∣
∣
∣

β1Tp

(1 – β1)Γ (p)

∣
∣
∣
∣ +

∣
∣
∣
∣

γ1(1 + |β1|)Tp

2(1 – β1)(1 – γ1)Γ (p – 1)

∣
∣
∣
∣,

Mq =
Tq

Γ (q + 1)
+

∣
∣
∣
∣

β2Tq

(1 – β2)Γ (q)

∣
∣
∣
∣ +

∣
∣
∣
∣

γ2(1 + |β2|)Tq

2(1 – β2)(1 – γ2)Γ (q – 1)

∣
∣
∣
∣,

Ωα =
Kα

1 – Lα

, Ωχ =
Kχ

1 – Lχ

.

If u, y are the solutions of the proposed system (1.1) and t ∈ J, then

u(t) =
1

Γ (p)

∫ t

0
(t – s)p–1α

(
s, y(s), v(s)

)
ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
α
(
s, y(s), v(s)

)
ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
α
(
s, u(s), v(s)

)
ds

and

y(t) =
1

Γ (q)

∫ t

0
(t – s)q–1χ

(
s, u(s), z(s)

)
ds +

β2tq–1

(1 – β2)Γ (q)

∫ T

0
χ

(
s, u(s), z(s)

)
ds

+
γ2tq–2

(1 – β2)(1 – γ2)Γ (q – 1)

∫ T

0

[
T – (1 – β2)s

]
χ

(
s, u(s), z(s)

)
ds.

Now, we transform the proposed system (1.1) into a fixed point problem. Let an operator
T : E × E → E × E be defined as

T(u, y)(t) =

(∫ T
0 Gp(t, s)α(t, y(s), v(s)) ds

∫ T
0 Gq(t, s)χ (t, u(s), z(s)) ds

)

=

(
Tp(y, v)(t)
Tq(u, z)(t)

)

. (3.2)
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Then the solution of (1.1) coincides with the fixed point of T, where

Tp(u)(t) =
1

Γ (p)

∫ t

0
(t – s)p–1v(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
v(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
v(s) ds

and

Tq(y)(t) =
1

Γ (q)

∫ t

0
(t – s)q–1z(s) ds +

β1tq–1

(1 – β2)Γ (q)

∫ T

0
z(s) ds

+
γ2tq–2

(1 – β2)(1 – γ2)Γ (q – 1)

∫ T

0

[
T – (1 – β2)s

]
z(s) ds.

For further analysis, the following hypotheses need to hold:
(H1) For t ∈ J and y, v ∈R, there are a1, b1, c1 ∈ C(J,R+), such that

∣
∣α

(
t, y(t), v(t)

)∣
∣ ≤ a1(t) + b1(t)

∣
∣y(t)

∣
∣ + c1(t)

∣
∣v(t)

∣
∣

with a∗
1 = supt∈J a1(t), b∗

1 = supt∈J b1(t) and c∗
1 = supt∈J c1(t) < 1.

Similarly, for t ∈ J and u, z ∈R, there are a1, b2, c2 ∈ C(J,R+), such that

∣
∣χ

(
t, u(t), z(t)

)∣
∣ ≤ a2(t) + b2(t)

∣
∣u(t)

∣
∣ + c2(t)

∣
∣z(t)

∣
∣

with a∗
2 = supt∈J a2(t), b∗

2 = supt∈J b2(t) and c∗
2 = supt∈J c2(t) < 1.

(H2) For all y, v, y, v ∈ R and for each t ∈ J there exist constants Kα > 0, 0 < Lα < 1, such
that

∣
∣α(t, y, v) – α(t, y, v)

∣
∣ ≤ Kα|y – y| + Lα|v – v|.

Similarly, for all u, z, u, z ∈R and for each t ∈ J there exist constants Kχ > 0, 0 < Lχ <
1, such that

∣
∣χ (t, u, z) – χ (t, u, z)

∣
∣ ≤ Kχ |u – u| + Lχ |z – z|.

Theorem 3.1 Let α,χ : J×R×R →R and (H1) hold. Then the operator T : Č → Č defined
in (3.2) is completely continuous.

Proof In view of continuity of α,χ and Gp,q(t, s), T is also continuous for all (y, z) ∈ Č.
Suppose B ⊆ Č is a bounded set. So, for every y ∈ B, we have

∣
∣Tp(u)(t)

∣
∣ =

∣
∣
∣
∣

1
Γ (p)

∫ t

0
(t – s)p–1v(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
v(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
v(s) ds

∣
∣
∣
∣. (3.3)
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Now by (H1) with ‖y‖ ≤ ξp, then

∣
∣v(t)

∣
∣ =

∣
∣α

(
t, y(t), v(t)

)∣
∣

≤ a1(t) + b1(t)
∣
∣y(t)

∣
∣ + c1(t)

∣
∣v(t)

∣
∣

≤ a∗
1 + b∗

1ξp + c∗
1‖v‖E.

So, we obtain

‖v‖E ≤ a∗
1 + b∗

1ξp

1 – c∗
1

= Υp. (3.4)

Now by using (iii) of Lemma 3.2 and (3.4) in (3.3), we get

∥
∥Tp(u)

∥
∥

E ≤ Np · Υp. (3.5)

In the same fashion, we obtain

∥
∥Tq(y)

∥
∥

E ≤ Mq · Υq, (3.6)

where

Υq =
a∗

2 + b∗
2ξq

1 – c∗
2

with ‖u‖ ≤ ξq. Thus from (3.5) and (3.6), we get

∥
∥Tp(u)

∥
∥

E +
∥
∥Tq(y)

∥
∥

E ≤ Np · Υp + Mq · Υq = M0,

which yields

∥
∥T(u, y)

∥
∥

E×E ≤ M0.

Thus, T is uniformly bounded. Now we prove the operator T is equi-continuous. For this
purpose, suppose t1 < t2 ∈ J and u ∈ B, then

∣
∣Tp(u)(t1) – Tp(u)(t2)

∣
∣

=
∣
∣
∣
∣

1
Γ (p)

∫ t1

0

[
(t1 – s)p–1 – (t2 – s)p–1]v(s) ds –

1
Γ (p)

∫ t2

t1

(t2 – s)p–1v(s) ds

+
β1(tp–1

1 – tp–1
2 )

(1 – β1)Γ (p – 1)

∫ T

0
v(s) ds

∣
∣
∣
∣

≤ Υp

(∣
∣
∣
∣

1
Γ (p + 1)

[
2(t2 – t1)p –

(
tp

2 – tp
1
)]

∣
∣
∣
∣ +

∣
∣
∣
∣
β1(tp–1

2 – tp–1
1 )T

(1 – β1)Γ (p – 1)

∣
∣
∣
∣

)

. (3.7)

In the same fashion, we can show that

∣
∣Tq(y)(t1) – Tq(y)(t2)

∣
∣

≤ Υq

(∣
∣
∣
∣

1
Γ (q + 1)

[
2(t2 – t1)q –

(
tq

2 – tq
1
)]

∣
∣
∣
∣ +

∣
∣
∣
∣
β2(tq–1

2 – tq–1
1 )T

(1 – β2)Γ (q – 1)

∣
∣
∣
∣

)

. (3.8)
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The right hand sides of (3.7) and (3.8) approach zero, when t1 → t2. So by the Arzela–
Ascoli theorem, we infer that T is equi-continuous and uniformly equi-continuous. Also,
it is very easy to prove T(B) ⊂ B. Therefore, T is completely continuous. �

Theorem 3.2 Under the hypothesis (H2) and

Np · Ωα + Mq · Ωχ < 1. (3.9)

The proposed system (1.1) has a unique solution.

Proof Let u, u ∈ Č and consider

∣
∣Tp(u)(t) – Tp(u)(t)

∣
∣

=
∣
∣
∣
∣

1
Γ (p)

∫ t

0
(t – s)p–1 ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
ds

∣
∣
∣
∣

∣
∣v(s) – v(s)

∣
∣, (3.10)

where

v(t) = α
(
t, y(t), v(t)

)
,

v(t) = α
(
t, y(t), v(t)

)
.

By using (H2)

∣
∣v(t) – v(t)

∣
∣ =

∣
∣α

(
t, y(t), v(t)

)
– α

(
t, y(t), v(t)

)∣
∣

≤ Kα

∣
∣y(t) – y(t)

∣
∣ + Lα

∣
∣v(t) – v(t)

∣
∣,

we obtain

∣
∣v(t) – v(t)

∣
∣ ≤ Ωα

∣
∣y(t) – y(t)

∣
∣. (3.11)

Put (3.11) in (3.10) and taking a maximum over J, we get

∥
∥Tp(u) – Tp(u)

∥
∥

E ≤ (Np · Ωα)‖y – y‖E. (3.12)

In the same fashion, we can obtain

∥
∥Tq(y) – Tq(y)

∥
∥

E ≤ (Mq · Ωχ )‖u – u‖E. (3.13)

So from (3.12) and (3.13), we get

∥
∥T(u, y) – T(u, y)

∥
∥

E×E ≤ (Np · Ωα + Mq · Ωχ )
∥
∥(u, y) – (u, y)

∥
∥

E×E.

Thus, T is contraction. Therefore, by Banach’s contraction principle, T has a fixed point.
So, we infer that the proposed toppled system (1.1) has a unique solution. �
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Theorem 3.3 In view of continuity of the functions α, χ and supposing (H1):
(H3) A1 =

∫ T
0 Gp(T, s)a1(s) ds,B1 =

∫ T
0 Gp(T, s)[b1(s) + c1(s)] ds < 1,

A2 =
∫ T

0 Gq(T, s)a2(s) ds,B2 =
∫ T

0 Gq(T, s)[b2(s) + c2(s)] ds < 1
hold. Then the proposed system (1.1) has at least one solution.

Proof Let a set D, define as

D =
{

(u, y) ∈ E × E :
∥
∥(u, y)

∥
∥

E×E < RD

}
,

where max{ 2A1
1–2B1

, 2A2
1–2B2

} < RD. Furthermore, the operator defined by T : D → Č in (3.2) is
completely continuous. Suppose (u, y) ∈ D then, by definition of D, we have ‖(u, y)‖E×E <
RD;

∥
∥Tp(y, v)

∥
∥

E ≤ max
t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣
∣
∣α

(
s, y(s), v(s)

)∣
∣ds

≤ max
t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣a1(s) ds

+ max
t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣
[
b1(s)

∣
∣y(s)

∣
∣ + c1(s)

∣
∣v(s)

∣
∣
]

ds

≤
∫ T

0
Gp(T, s)a1(s) ds + RD

∫ T

0
Gp(T, s)

[
b1(s) + c1(s)

]
ds

= A1 + RDB1 ≤ RD

2
.

Also

∥
∥Tq(y, v)

∥
∥

E ≤ RD

2
.

Therefore,

∥
∥T(u, y)

∥
∥

E×E ≤ RD.

So T(y, z) ∈ D. Thus, in the light of Theorem 3.1, T : D → D is completely continuous.
Now, we consider an eigenvalue problem defined as

(u, y) = δT(u, y), 0 < δ < 1. (3.14)

So in view of the solution (u, y) of (3.14), we obtain

‖u‖E =
∥
∥δTp(y, v)

∥
∥

E

≤ max
t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣
∣
∣α

(
s, y(s), v(s)

)∣
∣ds

≤ max
t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣a1(s) ds + max

t∈J

∫ T

0

∣
∣Gp(t, s)

∣
∣
[
b1(s)

∣
∣y(s)

∣
∣ + c1(s)

∣
∣v(s)

∣
∣
]

ds
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≤
∫ T

0
Gp(T, s)a1(s) ds + RD

∫ T

0
Gp(T, s)

[
b1(s) + c1(s)

]
ds

= A1 + RDB1 ≤ RD

2
.

Similarly

‖y‖E ≤ RD

2
.

Thus

∥
∥(u, y)

∥
∥

E×E ≤ RD. (3.15)

From equation (3.15), we get (u, y) /∈ ∂D. So, in view of Theorem 2.1, T has at least one fixed
point lies in D. This shows there is at least one solution of the proposed system (1.1). �

4 Stability results
In this section, we will investigate the stability results in the sense of Ulam for the proposed
system (1.1).

Lemma 4.1 Consider (u, y) ∈ E × E be the solution of (2.1), then for t ∈ J we have
⎧
⎨

⎩

|u(t) – m(t)| ≤ Npεp,

|y(t) – n(t)| ≤ Mqεq.

Proof By (A2) of Remark 2.1 and for t ∈ J, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dpu(t) = α(t, y(t), Dpu(t)) + ϕα(t),

Dqy(t) = χ (t, u(t), Dqy(t)) + ψχ (t),

Dp–2u(t)|t=0+ = γ1Dp–2u(t)|t=T– , Dp–1u(t)|t=0+ = β1Dp–1u(t)|t=T– ,

Dq–2y(t)|t=0+ = γ2Dq–2y(t)|t=T– , Dq–1y(t)|t=0+ = β2Dq–1y(t)|t=T– .

(4.1)

So in view of Lemma 2.1, for t ∈ J the solution of (4.1) will be of the given form,
⎧
⎨

⎩

u(t) =
∫ T

0 Gp(t, s)α(s, y(s), Dpu(s)) ds +
∫ T

0 Gp(t, s)ϕα(s) ds,

y(t) =
∫ T

0 Gq(t, s)χ (s, u(s), Dqy(s)) ds +
∫ T

0 Gq(t, s)ψχ (s) ds.
(4.2)

From the first equation of system (4.2), we have

u(t) =
1

Γ (p)

∫ t

0
(t – s)p–1v(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
v(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
v(s) ds

+
1

Γ (p)

∫ t

0
(t – s)p–1ϕα(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
ϕα(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
ϕα(s) ds. (4.3)



Ali et al. Boundary Value Problems        (2018) 2018:175 Page 12 of 16

For computational convenience, we use m(t) for the sum of terms which are free of ϕα , so
we have

m(t) =
1

Γ (p)

∫ t

0
(t – s)p–1v(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
v(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
v(s) ds.

So from the above and taking the absolute value, (4.3) becomes

∣
∣z(t) – m(t)

∣
∣ ≤

∣
∣
∣
∣

1
Γ (p)

∫ t

0
(t – s)p–1ϕα(s) ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
ϕα(s) ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
ϕα(s) ds

∣
∣
∣
∣.

Using (iii) of Lemma 3.2 and (A1) of Lemma 2.1, we get

∣
∣u(t) – m(t)

∣
∣ ≤ Npεp.

Performing a similar procedure for the second equation of system (4.2), we have

∣
∣y(t) – n(t)

∣
∣ ≤ Mqεq. �

Theorem 4.1 Under the hypothesis (H2) and if

� = 1 – NpΩα · MqΩχ > 0 (4.4)

holds, then the proposed system (1.1) is stable in the sense of Ulam–Hyers.

Proof Let (u, y) ∈ E × E be the solution of (2.1) and (ω,ϑ) ∈ E × E be the unique solution
to the system given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dpω(t) – α(t,ϑ(t), Dpω(t)) = 0;

Dqϑ(t) – χ (t,ω(t), Dqϑ(t)) = 0;

Dp–2ω(t)|t=0+ = γ1Dp–2ω(t)|t=T– , Dp–1ω(t)|t=0+ = β1Dp–1ω(t)|t=T– ,

Dq–2ϑ(t)|t=0+ = γ2Dq–2ϑ(t)|t=T– , Dq–1ϑ(t)|t=0+ = β2Dq–1ϑ(t)|t=T– ,

(4.5)

where t ∈ J. Then in view of Lemma 2.1, for t ∈ J, we have the solution of (4.5)

⎧
⎨

⎩

ω(t) =
∫ T

0 Gp(t, s)α(s,ϑ(s), Dpω(s)) ds,

ϑ(t) =
∫ T

0 Gq(t, s)χ (s,ω(s), Dqϑ(s)) ds.
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Consider

∣
∣u(t) – ω(t)

∣
∣ ≤ ∣

∣u(t) – m(t)
∣
∣ +

∣
∣m(t) – ω(t)

∣
∣

≤ Npεp +
∣
∣
∣
∣

1
Γ (p)

∫ t

0
(t – s)p–1 ds +

β1tp–1

(1 – β1)Γ (p)

∫ T

0
ds

+
γ1tp–2

(1 – β1)(1 – γ1)Γ (p – 1)

∫ T

0

[
T – (1 – β1)s

]
ds

∣
∣
∣
∣

∣
∣v(s) – vω(s)

∣
∣, (4.6)

where v, vω ∈ E are of the form

v(t) = α
(
t, y(t), v(t)

)
,

vω(t) = α
(
t,ϑ(t), vω(t)

)
.

By (H2), we get

∣
∣v(t) – vω(t)

∣
∣ =

∣
∣α

(
t, y(t), v(t)

)
– α

(
t,ϑ(t), vω(t)

)∣
∣

≤ Kα

∣
∣y(t) – ϑ(t)

∣
∣ + Lα

∣
∣v(t) – vω(t)

∣
∣.

We obtain

∣
∣v(t) – vω(t)

∣
∣ ≤ Ωα

∣
∣y(t) – ϑ(t)

∣
∣. (4.7)

Using (iii) of (3.2) and (4.7) in (4.6), we get

‖u – ω‖E ≤ Npεp + NpΩα‖y – ϑ‖E (4.8)

and similarly we have

‖y – ϑ‖E ≤ Mqεq + MqΩχ‖u – ω‖E, (4.9)

where z, zϑ ∈ E, in the form

z(t) = χ
(
t, y(t), z(t)

)
,

zϑ (t) = χ
(
t,ω(t), zϑ (t)

)
.

We write (4.8) and (4.9) as

‖u – ω‖E – NpΩα‖y – ϑ‖E ≤ Npεp,

‖y – ϑ‖E – MqΩχ‖u – ω‖E ≤ Mqεq,
[

1 –NpΩα

–MqΩχ 1

][
‖u – ω‖E

‖y – ϑ‖E

]

≤
[

Npεp

Mqεq

]

.

Solving the above inequality, we have

[
‖u – ω‖E

‖y – ϑ‖E

]

≤
[

1
�

NpΩα

�
MqΩχ

�
1
�

][
Npεp

Mqεq

]

,
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where

� = 1 – NpΩα · MqΩχ > 0.

Further simplification gives

‖u – ω‖E ≤ Npεp

�
+

MqNpΩαεq

�
,

‖y – ϑ‖E ≤ Mqεq

�
+

MqNpΩχεp

�
,

from which we have

‖u – ω‖E + ‖y – ϑ‖E ≤ Npεp

�
+

Mqεq

�
+

MqNpΩαεq

�
+

MqNpΩχεp

�
. (4.10)

Let max{εp, εq} = ε, then from (4.10) we have

∥
∥(u, y) – (ω,ϑ)

∥
∥

E×E ≤ Cp,qε, (4.11)

where

Cp,q =
[

Np

�
+

Mq

�
+

MqNpΩα

�
+

MqNpΩχ

�

]

. �

Remark 4.1 By setting Θp,q(ε) = Cp,qε, Θp,q(0) = 0 in (4.11), then by Definition 2.4 the
proposed system (1.1) is generalized Ulam–Hyers stable.

(H4) Suppose Φp,Φq ∈ (J,R+) are increasing functions. Then there are ΛΦp ,ΛΦq > 0,
such that, for each t ∈ J, the given inequalities

IpΦp(t) ≤ ΛΦpΦp(t)

and

IqΦq(t) ≤ ΛΦqΦq(t)

hold.

Remark 4.2 Under the hypothesis (H4) and (4.4) and by using Definitions 2.5 and 2.6, one
can repeat the process of Lemma 4.1 and Theorem 4.1, system (1.1) will be Ulam–Hyers–
Rassias and generalized Ulam–Hyers–Rassias stable.

5 Example
Example 5.1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D 5
4 u(t) – 2+|y(t)|+|D 5

4 u(t)|
70et+12(1+|y(t)|+|D 5

4 u(t)|)
= 0,

D 5
4 y(t) – 1

50 (t cos u(t) – u(t) sin(t)) – |D 5
4 y(t)|

25+|D 5
4 y(t)|

= 0,

D –3
4 u(t)|t=0+ = 1

2 D –3
4 u(t)|t=1– , D 1

4 u((t))|t=0+ = –D 1
4 u(t)|t=1– ,

D –3
4 y(t)|t=0+ = 1

2 D –3
4 y(t)|t=1– , D 1

4 y(t)|t=0+ = –D 1
4 y(t)|t=1– ,

(5.1)
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where t ∈ [0, 1]. From system (5.1), we can see p = q = 5
4 , T = 1, γ1 = γ2 = 1

2 and β1 = β2 =
–1. Also, we can easily find Kα = Lα = 1

70e12 and Kχ = Lχ = 1
25 . Therefore

Np · Ωα + Mq · Ωχ ≈ 0.08847 < 1.

Hence, system (5.1) has a unique solution. Moreover, condition (4.4) also is satisfied. Thus,
system (5.1) is Ulam–Hyers stable, generalized Ulam–Hyers stable, Ulam–Hyers–Rassias
stable and generalized Ulam–Hyers–Rassias stable.

6 Conclusion
We have derived necessary conditions for the existence, uniqueness and different kinds of
stability in the sense of Ulam for the solutions of the proposed toppled system (1.1). The
required results have been obtained by using classical fixed point theory due to Banach and
Leray–Schauder of cone type. Additionally, we have established appropriate conditions
for various kinds of Ulam stability to the solutions of the proposed toppled system (1.1).
For the justification, we have presented an example which supported the main theoretical
results.
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