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Abstract
In this study, we discuss some theorems related to the oscillatory behavior of
nonlinear fractional difference equations equipped with well-known fractional
Riemann–Liouville difference operator. Then we give an example for the illustration of
the results obtained.
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1 Introduction and preliminaries
Fractional calculus has proved to be valuable tools in describing and solving a large num-
ber of problems in various fields of sciences and engineering [1, 2]. Their treatment from
the viewpoint of difference equations can additionally open up new perspectives. Thus we
decided to study fractional difference equations.

Up to now, many authors have investigated the oscillatory behaviors of solutions of vari-
ous equations, including differential equations, fractional differential equations, difference
equations, fractional difference equations, partial differential equations, fractional partial
differential equations and dynamic equations on time scales [3–27]. Motivated by this
work, we are concerned with the following equations:

�
(
r(t)�αx(t)

)
+ q(t)f

(
G(t)

)
= 0, (1)

where t ∈ Nt0+1–α , G(t) =
∑t–1+α

s=t0
(t – s – 1)(–α)x(s), q(t) and r(t) is positive sequences,

f : R → R is continuous function satisfies xf (x) > 0 for x �= 0 and �α denotes the Riemann–
Liouville fractional difference operator of order 0 < α ≤ 1. Throughout the study, we con-
sider

R(t) =
t–1∑

s=t0

1
r(t)

and limt→∞ R(t) = ∞.
By a solution of Eq. (1), we mean a real-valued sequence x(t) satisfying Eq. (1) for t ∈ Nt0 .

A solution x(t) of Eq. (1) is called oscillatory if for every positive integers T0 > t0 there exists
t ≥ T0 such that x(t)x(t +1) ≤ 0, otherwise it is called non-oscillatory. Equation (1) is called
oscillatory if all its solutions are oscillatory.
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Definition 1 ([28]) Let v > 0. The vth fractional sum f is defined by

�–vf (t) =
1

Γ (v)

t–v∑

s=a
(t – s – 1)v–1f (s), (2)

where f is defined for s ≡ a mod (1), �–vf is defined for t ≡ (a + v) mod (1) and t(v) =
Γ (t+1)

Γ (t–v+1) . The fractional sum �–vf maps functions defined on Na to functions defined on
Na+v, where Nt = {t, t + 1, t + 2, . . .}.

Definition 2 ([28]) Let v > 0 and m – 1 < μ < m, where m denotes a positive integer, m =
	μ
. Set v = m – μ. The μth fractional difference is defined as

�μf (t) = �m–vf (t) = �m�–vf (t), (3)

where 	μ
 is the ceiling function of μ.

2 Main result
Lemma 1 ([25]) Let x(t) be a solution of Eq. (1) and let

G(t) =
t–1+α∑

s=t0

(t – s – 1)(–α)x(s), (4)

then

�
(
G(t)

)
= Γ (1 – α)�αx(t). (5)

Theorem 1 Suppose that

∞∑

s=t0

q(s) = ∞ (6)

and

lim
t→∞ inf f (t) > 0. (7)

Then every solution of (1) is oscillatory.

Proof Suppose to the contrary that x(t) is a non-oscillatory solution of Eq. (1). Then, with-
out loss of generality, we assume that x(t) is eventually positive solution of (1) on [t0,∞),
then G(t) > 0 on [t0,∞). From (1), we have

�
(
r(t)�αx(t)

)
= –q(t)f

(
G(t)

)
< 0. (8)

That is, r(t)�αx(t) is an eventually nonincreasing sequence on [t0,∞). We claim that
r(t)�αx(t) > 0 on [t1,∞), where t1 is sufficiently large. Otherwise, assume that there exists
a t2 > t1 such that r(t)�αx(t) < 0 on [t2,∞). Then we have

r(t)�αx(t) ≤ r(t2)�αx(t2) = c < 0,
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or

�αx(t) ≤ c
r(t)

.

Then we get

�
(
G(t)

) ≤ Γ (1 – α)
c

r(t)
. (9)

Summing both sides of (9) from t2 to t – 1, we have

G(t) ≤ G(t2) + Γ (1 – α)
t–1∑

s=t2

c
r(s)

.

Letting t → ∞, we get limt→∞ G(t) = –∞, which contradicts the fact that G(t) > 0 on
[t0,∞). Hence we obtain r(t)�αx(t) > 0 on [t1,∞). Hence we obtain �αx(t) > 0 and
�(r(t)�αx(t)) < 0 on [t1,∞). Now we consider that

lim
t→∞ G(t) = k.

Then k > 0 is finite or infinite.
Case 1 k > 0 is finite.
Since f is a continuous function, we get

lim
t→∞ f

(
G(t)

)
= f (k) > 0.

This implies we have for sufficiently large t3 > t2 and t ≥ t3

f
(
G(t)

)
>

1
2

f (k). (10)

Substituting (10) in (8), we get

�
(
r(t)�αx(t)

) ≤ –q(t)
1
2

f (k)

or

�
(
r(t)�αx(t)

)
+

1
2

f (k)q(t) ≤ 0. (11)

Then summing both sides of the last inequality from t3 to t – 1, we have

r(t)�αx(t) – r(t3)�αx(t3) +
1
2

f (k)
t–1∑

s=t3

q(t) ≤ 0.

Hence we obtain for t ≥ t3

1
2

f (k)
t–1∑

s=t3

q(t) ≤ r(t3)�αx(t3),

which contradicts with (6).



Adiguzel Boundary Value Problems        (2018) 2018:178 Page 4 of 9

Case 2 k = ∞.
From the condition (7), we have

lim
t→∞ inf f

(
G(t)

)
> 0.

Then we can choose a positive constant c and sufficiently large t4 > t3 such that for t ≥ t4

f
(
G(t)

)
> c. (12)

Substituting (12) in (8),

�
(
r(t)�αx(t)

) ≤ –cq(t).

This implies

�
(
r(t)�αx(t)

)
+ cq(t) ≤ 0.

Summing the last inequality from t4 to t – 1, we get

r(t)�αx(t) – r(t4)�αx(t4) + c
∞∑

s=t4

q(s) ≤ 0.

Thus

c
∞∑

s=t4

q(s) ≤ r(t4)�αx(t4),

which contradicts (6). Then the proof is complete. �

Theorem 2 Assume that

∞∑

s=t0

R(s)q(s) = ∞. (13)

Then every bounded solution of (1) is oscillatory.

Proof Proceeding as in the proof of Theorem 1 with the assumption that x(t) is a bounded
non-oscillatory solution of (1), from (11), we have for t ≥ t0 where t0 is sufficiently large

R(t)�
(
r(t)�αx(t)

)
+

1
2

f (k)R(t)q(t) ≤ 0. (14)

Additionally we have

R(t)�
(
r(t)�αx(t)

) ≥ �
(
R(t)r(t)�αx(t)

)
–

(
�R(t)

)
r(t)�αx(t). (15)

From (14) and (15),

�
(
R(t)r(t)�αx(t)

)
–

�G(t)
Γ (1 – α)

+
1
2

f (k)R(t)q(t) ≤ 0
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and summing both sides of the last inequality from t0 to t – 1, we get

R(t)r(t)�αx(t) – R(t0)r(t0)�αx(t0) –
1

Γ (1 – α)
(
G(t) – G(t0)

)

+
1
2

f (k)
t–1∑

s=t0

R(s)q(s) ≤ 0.

That is,

1
2

f (k)
t–1∑

s=t0

R(s)q(s) ≤ G(t) – G(t0)
Γ (1 – α)

+ R(t0)r(t0)�αx(t0).

Since x(t) is bounded, we can choose a positive constant c such that

t–1∑

s=t0

R(s)q(s) ≤ c,

which is a contradiction to the assumption of the theorem. �

Theorem 3 Assume that (6), f is non-decreasing and there is a non-negative constant M
such that

lim
t→0

sup
t

f (t)
= M (16)

and there exists a r1(t) positive subsequence of r(t) such that r1(t) ≤ 1. Then the fractional
difference �αx(t) of every solution x(t) of (1) oscillates.

Proof Suppose to the contrary that Eq. (1) has a solution x(t) such that its fractional differ-
ence �αx(t) is non-oscillatory. Firstly we assume that �αx(t) is eventually negative. Then
there exists a positive integer t0 such that �αx(t) < 0 and G(t) is decreasing on [t0,∞).
This implies that x(t) is also non-oscillatory. Then we consider the following function for
t ≥ t1 ≥ t0:

ω(t) =
r(t)�αx(t)

f (G(t))
.

Thus

�ω(t) =
�(r(t)�αx(t))f (G(t)) – r(t)�αx(t)�f (G(t))

f (G(t))f (G(t + 1))

=
{r(t + 1)�αx(t + 1) – r(t)�αx(t)}f (G(t))

f (G(t))f (G(t + 1))

–
r(t)�αx(t){f (G(t + 1) – f (G(t)))}

f (G(t))f (G(t + 1))

=
r(t + 1)�αx(t + 1)f (G(t)) – r(t)�αx(t)f (G(t + 1))

f (G(t))f (G(t + 1))

=
r(t + 1)�αx(t + 1)

f (G(t + 1))
–

r(t)�αx(t)
f (G(t))
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=
r(t + 1)�αx(t + 1)

f (G(t + 1))
–

{r(t + 1)�αx(t + 1) – �(r(t)�αx(t))}
f (G(t))

=
�(r(t)�αx(t))

f (G(t))
+

r(t + 1)�αx(t + 1){f (G(t)) – f (G(t + 1))}
f (G(t))f (G(t + 1))

≤ �(r(t)�αx(t))
f (G(t))

= –q(t).

That is,

�ω(t) ≤ –q(t).

Summing both sides of last inequality from t1 to t – 1, we have

ω(t) – ω(t1) ≤ –
t–1∑

s=t1

q(s).

That is,

lim
t→∞ω(t) = –∞, (17)

thus f (G(t)) > 0 and hence

G(t) > 0. (18)

From (17), for sufficiently large t2 > t1 and t ≥ t2

ω(t) ≤ –(M + 1).

Then we obtain

ω(t) =
r(t)�αx(t)

f (G(t))
≤ –(M + 1)

or

r(t)�αx(t) + (M + 1)f
(
G(t)

) ≤ 0. (19)

Set limt→∞ G(t) = L. Then L ≥ 0. We claim that L = 0. If L > 0, then limt→∞ f (G(t)) = f (L) >
0 by the continuity of f . For sufficiently large t3 > t2 and t ≥ t3 we get

f
(
G(t)

)
>

1
2

f (L).

Substituting the last inequality in (19), we have

�αx(t) +
(M + 1)f (L)

2r(t)
≤ 0;

in other words

�G(t) +
Γ (1 – α)(M + 1)f (L)

2r(t)
≤ 0.
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Summing both sides of the last inequality from t3 to t – 1, we obtain

G(t) – G(t3) +
1
2
Γ (1 – α)(M + 1)f (L)

t–1∑

s=t3

1
r(s)

≤ 0.

This implies limt→∞ G(t) = –∞, which contradicts (18). Thus limt→∞ G(t) = 0. By the as-
sumption (16), we get

lim
t→∞ sup

G(t)
f (G(t))

≤ M.

Then for sufficiently large t4 > t3 and t ≥ t4 we obtain

G(t)
f (G(t))

< M + 1.

That is,

G(t) < (M + 1)f
(
G(t)

)
.

From (19), we obtain

r(t)�αx(t) + G(t) < 0.

Then we consider subsequence r1(t),

�αx(t) + G(t) ≤ r1(t)�αx(t) + G(t) < 0,

and we have

�G(t)
Γ (1 – α)

+ G(t) < 0

or

0 < G(t + 1) – G(t) + Γ (1 – α)G(t) < 0,

which contradicts (18). The case that �αx(t) is eventually positive can be proved in a sim-
ilar manner and so the proof is complete. �

3 Applications
Example Consider the following fractional difference equation:

�
(
t�αx(t)

)
+ t7

(t–1+α∑

s=t0

(t – s – 1)(–α)x(s)

)

exp

(t–1+α∑

s=t0

(t – s – 1)(–α)x(s)

)

= 0. (20)

This corresponds to Eq. (1) with α ∈ (0, 1], r(t) = t, q(t) = t7 and f (x) = xex. Then we have
limt→∞ R(t) = ∞, xf (x) > 0,

∞∑

s=t0

q(s) =
∞∑

s=t0

t7 = ∞,
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and

lim
t→∞ inf f (t) > 0.

Thus, (20) is oscillatory from Theorem 1.
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