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Abstract
In this paper, we study the topological properties to a C0-solution set of impulsive
evolution inclusions. The definition of C0-solutions for impulsive functional evolution
inclusions is introduced. The Rδ-property of C0-solution set is studied for compact as
well as noncompact semigroups on compact intervals. Applying the inverse limit
method, the Rδ-structure on noncompact intervals is obtained.
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1 Introduction
Impulsive differential equations and inclusions act as excellent tools to model the real
world phenomena exhibiting instantaneous change in state variables. Examples include
real-time software verification [2], chemical process plants [19], mobile robotics [8], au-
tomotive control [7], nerve impulse transmission [24], etc. For some recent works on the
topic, we refer the reader to [1, 13, 20, 34] and the references therein.

For the last few decades, many researchers contributed to the development of the sub-
ject by producing significant works on initial and boundary value problems of impulsive
differential equations and inclusions. The study of topological properties of solution sets
of differential inclusions also gained significant importance. Bothe et al. [11] discussed the
existence of integral solutions on a compact interval for the differential inclusions involv-
ing equicontinuous (not compact) semigroups. Cardinali et al. [12] proved the existence
of local and global mild solutions of semilinear evolution differential inclusions and then
studied the compactness of the set of all global mild solutions in the case of a noncompact
semigroup. In [13], Cardinali et al. focused on the compactness of the set of mild solu-
tions to semilinear impulsive evolution differential inclusions and obtained the existence
of mild solutions for semilinear impulsive evolution differential inclusion on noncompact
domains in the case of a noncompact semigroup. Gabor et al. [20, 21] showed that the so-
lution set of impulsive functional differential inclusions is an Rδ-set on compact intervals,
and then extended their work to the half-line by using the inverse limit method, when the
semigroup is noncompact. Chen et al. [15] considered nonlinear delay evolution differen-
tial inclusions and studied the Rδ-structure of C0-solution set on noncompact intervals in
the presence of a compact semigroup. For more results on topological properties of solu-
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tion sets, we refer the reader to the monographs [10, 14, 18, 23, 26, 30, 31, 39] and a series
of articles [3, 5, 6, 22, 28, 29, 32, 33, 35–38], and the references cited therein.

A strong motivation for this paper is mainly due to two reasons: there is no definition of
C0-solutions for impulsive nonlinear evolution inclusions in the related literature at the
moment. Secondly, the topological structure of C0-solutions is yet to be developed when
the semigroup is noncompact.

Our aim is to investigate topological properties of the C0-solution set to the impulsive
differential inclusions on noncompact intervals. For a preset τ > 0 and a piecewise con-
tinuous function ϕ : [–τ , 0] → E, where E is the Banach space, we study the following
problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) ∈ Au(t) + f (t), a.a. (almost all) t ∈R
+, t �= tm, m ∈N

+,

f (t) ∈ F(t, u(t), ut), a.a. t ∈ R
+, t �= tm, m ∈ N

+,

u(t) = ϕ(t), t ∈ [–τ , 0],

u(t+
m) = u(tm) + Im(utm ), m ∈N

+,

(1.1)

where A : D(A) ⊂ E → 2E is an m-dissipative operator, F : R+ × E × C([–τ , 0]; E) →
Pcv(E) is a multivalued function (Pcv(·) is defined in the next section), ϕ ∈ C([–τ , 0]; E),
ut ∈ C([–τ , 0]; E) is defined by ut(s) = u(t + s) (s ∈ [–τ , 0]) for every u ∈ PC([–τ ,∞); E),
Im : C([–τ , 0]; E) → E are impulse functions, m ∈ N, u(t+) = lims→t+ u(s), and the time
sequence (tm)m∈N is an increasing sequence of given points in [0,∞) without repeated
points.

This paper is organized as follows. Section 2 contains some notations, definitions, and
preliminary facts from multivalued analysis, while Sect. 3 describes the concept of a C0-
solution for impulsive evolution inclusions. In Sect. 4.1, we prove that the solution set
for inclusions (1.1) is a nonempty compact Rδ-set in a compact interval, when the semi-
group is compact. Then we proceed to discussing the Rδ-set on a noncompact interval by
the inverse limit method. Section 4.2 deals with the solution set for inclusions (1.1) in a
compact interval as a nonempty compact Rδ-set in the case when the semigroup is non-
compact. Then we switch onto studying the Rδ-structure of the solution set of (1.1) on a
noncompact interval.

2 Preliminaries
In this paper, the topological dual of Banach space E is denoted by E∗. For a multivalued
operator A : D(A) ⊂ E → 2E with the domain D(A), we write the range of A as R(A) =
⋃

x∈D(A) Ax.
Denote by L([a, b]; E) the Banach space consisting of all Bochner integrable func-

tions from [a, b] to E equipped with the norm ‖u‖L([a,b];E) =
∫ b

a |u(t)|dt. Denote by
C([–τ , 0]; E) the space of piecewise continuous functions x : [–τ , 0] → E with a finite
number of discontinuity points {t̂} such that t̂ �= 0 and all values x(t̂+) = limη→0+ x(t̂ + η)
and x(t̂–) = limη→0– x(t̂ + η) are finite. We equip the space C([–τ , 0]; E) with the norm
‖x‖C =

∫ 0
–τ

|x(t)|dt. Let PC([0, b]; E) denote the space of piecewise continuous functions
x : [0, b] → E with a finite number of discontinuity points {t̂} and x is continuous from
left and has right-hand limits at {t̂}. Note that the space PC([0, b]; E) is a Banach space
equipped with the norm ‖x‖PC = sup{|x(t)| : t ∈ [0, b]}. It is easy to see that C([0, b]; E) is
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a closed subspace of it. Denote by PC([0,∞); E) the space of piecewise continuous func-
tions x : [0,∞) → E with an infinite number of discontinuity points t1, t2, . . . such that
limm→∞ tm = ∞. x is continuous from left and has right-hand limits at ti, i = 1, 2, . . . .

Let Y and Z be metric spaces. P(Y ) stands for the collection of all nonempty subsets of Y .
As usual, we define Pcl(Y ) = {Ω ∈ P(Y ),Ω is closed}, Pcp(Y ) = {Ω ∈ Pcl(Y ),Ω is compact},
Pcv(Y ) = {Ω ∈ Pcl(Y ),Ω is convex}, Pcp,cv(Y ) = {Ω ∈ Pcl(Y ),Ω is compact and convex},
co(Ω) (resp., co(Ω)) be the convex hull (resp., convex closed hull in Ω) of the subset Ω .

For the multimap F : Y → P(Z), we denote the graph of F as Gra(F ). If Ω is a subset
of Z, then F–1(Ω) = {y ∈ Y : F (y) ∩ Ω �= ∅} defines the complete preimage of Ω under F .
We call F to be closed if Gra(F ) is closed in Y × Z; quasi-compact if F (Ω) is relatively
compact for any compact subset Ω ⊂ Y ; upper semi-continuous (u.s.c.) ifF–1(Ω) is closed
for any closed subset Ω ⊂ Z; and weakly upper semi-continuous (weakly u.s.c.) if F–1(Ω)
is closed for any weakly closed subset Ω ⊂ Z.

Theorem 2.1 ([27, p. 278]) Let (X,Σ) be a measure space and E be a separable Banach
space. Then a function f : X → E is measurable if and only if, for every x′ ∈ E∗, the function
x′ ◦ f : X →R is measurable with respect to Σ and the Borel σ -algebra in R.

Lemma 2.1 ([17]) Let E be reflexive. A subset K ⊂ L([0, b]; E) is weakly relatively sequen-
tially compact if and only if it is uniformly integrable.

Lemma 2.2 ([25]) Let Y and Z be metric spaces and F : Y → Pcp(Z) be a closed quasi-
compact multimap. Then F is u.s.c.

Lemma 2.3 ([11]) Let F : D ⊂ Y → P(Z) be a multimap with weakly compact and convex
values. Then F is weakly u.s.c. if and only if {xn} ⊂ D with xn → x0 ∈ D and yn ∈ F (xn)
implies yn ⇀ y0 ∈F (x0), up to a subsequence.

Lemma 2.4 ([23]) Let F : Y → Pcp(Z) be an u.s.c. multimap. If D ⊂ Y is a compact set,
then its image F (D) is a compact subset of Z.

Recall that X is an absolute retract (AR) space if, for each metric space Y and each
Ω ⊂ Pcl(Y ), there exists a continuous function h : Ω → X, which can be extended to a
continuous function h̃ : Y → X. X is an absolute neighborhood retract (ANR) space if, for
each metric space Y , each Ω ⊂ Pcl(Y ), and a continuous function h : Ω → X, there exist a
neighborhood U ⊃ Ω and a continuous extension h̃ : U → X of h.

Definition 2.1 A nonempty subset Ω of a metric space is said to be contractible if there
exist a point y0 ∈ Ω and a continuous function h : [0, 1] × Ω → Ω such that h(0, y) = y0

and h(1, y) = y for every y ∈ Ω .

Definition 2.2 A subset Ω of a metric space is called an Rδ-set if there exists a decreasing
sequence {Ωn} of compact and contractible sets such that

Ω =
∞⋂

n=1

Ωn.
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Define the Hausdorff measure of noncompactness β on each bounded subset Ω of X by

β(Ω) = inf

{

r > 0 : Ω ⊂
n⋃

i=1

Br(xi) where xi ∈ Ω

}

,

where Br(xi) is a ball of radius ≤ r centered at xj, j = 1, 2, . . . , m. It is easy to see that the
Hausdorff measure of noncompactness is monotone, nonsingular, and regular.

The following β-estimate, which is similar to that of [25, Theorem 4.2.3], will be used in
the sequel.

Lemma 2.5 Assume that E is a separable Banach space. LetF : [0, b] → P(E) be an Lp (p ≥
1)-integrable bounded multifunction such that

β
(
F (t)

) ≤ ζ (t)

for a.e. t ∈ [0, b], where ζ (t) ∈ Lp([0, b];R+). Then

β

(∫ t

0
F (τ ) dτ

)

≤
∫ t

0
ζ (τ ) dτ

for all t ∈ [0, b]. In particular, if the multifunction F : [0, b] → Pcp(E) is measurable and
Lp-integrably bounded, then the function β(F (·)) is integrable and, moreover,

β

(∫ t

0
F (τ ) dτ

)

≤
∫ t

0
β
(
F (τ )

)
dτ

for all t ∈ [0, b].

Now we state the classical Gronwall inequality, which can be found in [16].

Lemma 2.6 If

u(t) ≤ h(t) +
∫ t

t0

k(s)u(s) ds, t ∈ [t0, T),

where all the functions involved are continuous on [t0, T), T ≤ ∞, and k(t) ≥ 0, then x(t)
satisfies

u(t) ≤ h(t) +
∫ t

t0

h(s)k(s) exp

(∫ t

s
k(θ ) dθ

)

u(s) ds, t ∈ [t0, T).

If, in addition, h(t) is nondecreasing, then

u(t) ≤ h(t) exp

(∫ t

t0

k(s) ds
)

, t ∈ [t0, T).

Theorem 2.2 ([11]) Let E be a complete metric space, and ∅ �= Ω ⊂ E. Then the following
results are equivalent:

(i) Ω is an Rδ-set;
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(ii) Ω is an intersection of a decreasing sequence {Ωn} of closed contractible spaces with
β(Ωn) → 0;

(iii) Ω is compact and absolutely neighborhood contractible, i.e., Ω is contractible in
each neighborhood in Y ∈ ANR.

Definition 2.3 A multimap F : X → Pcp(E) is said to be condensing with respect to an
MNC β (β-condensing) if, for every bounded set Ω ⊂ E that is not relatively compact, we
have

β
(
F (Ω)

)
� β(Ω).

Let Ω ⊂ Pcv(E), U ⊂ Ω be a bounded (relatively) open set, β be a monotone nonsingular
MNC in E, and F : ŪΩ → Pcv(Ω) be an u.s.c. β-condensing multimap such that x /∈ F (x)
for all x ∈ ∂ΩU , where ŪΩ and ∂ΩU denote the relative closure and the relative boundary
of the set U .

In the proof of the subsequent results, we shall also use the following fixed point theorem
for a multimap.

Theorem 2.3 ([15, Theorem 2.2]) Let E be a Banach space and Ω ⊂ E be a nonempty
compact convex subset. If the multimap F : Ω → Pcp(Ω) is u.s.c. with contractible values,
then F has a fixed point.

3 Evolution inclusions governed by m-dissipative operators
Let x, y ∈ E and h ∈R \ {0}. Set

[x, y]h =
|x + hy| – |x|

h
.

Notice that the limit of [x, y]h exists for h → 0. Then we write

[x, y]+ = lim
h→0+[x,y]h

and

[x, y]– = lim
h→0–[x,y]h

.

For any x, y, z ∈ E and λ > 0, [x, y]+ and [x, y]– satisfy the following properties:
(i) [λx, y]+ = [x, y]+;

(ii) |[x, y]+| ≤ |y|;
(iii) [x, y]+ = –[x, –y]– = –[–x, y]–;
(iv) [x, y + z]+ ≤ [x, y]+ + [x, z]+ and [x, y + z]– ≥ [x, y]– + [x, z]–.

Definition 3.1 A : D(A) ⊂ E → E is m-dissipative if R(I – λA) = E for all λ > 0 and A is
dissipative, that is,

[x1 – x2, y2 – y1]+ ≥ 0 for all (xj, yj) ∈ G(A), j = 1, 2.
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Consider the following impulsive functional differential inclusions:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ [0, T], T ∈ (tN–1, tN ), t �= ti, i = 1, 2, . . . , N – 1,

u(t) = ϕ(t), t ∈ [–τ , 0],

u(t+
m) = u(tm) + Im(utm ), m = 1, . . . , N – 1.

(3.1)

Let us refer to (3.1) by (IFDI;ϕ, f ).
Since A is dissipative, we have [u(t) – x, y – Au(t)]+ ≥ 0 for x ∈ D(A), y ∈ Ax. Then

[
u(t) – x, y – Au(t)

]

+ =
[
u(t) – x, y – u′(t) + f (t)

]

+ ≥ 0.

So

[
u(t) – x, u′(t)

]

+ ≤ [
u(t) – x, y + f (t)

]

+.

By the property of [·, ·]+,

d
dt

∣
∣u(t) – x

∣
∣ ≤ [

u(t) – x, y + f (t)
]

+.

When ti–1 ≤ s ≤ t ≤ ti, integrating over s, t, we have

∣
∣u(t) – x

∣
∣ –

∣
∣u(s) – x

∣
∣ ≤

∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ .

When tj–1 ≤ s < t ≤ tj+N (N ∈N
+), integrating over s, t, we have

∫ t

s

d
dτ

∣
∣u(τ ) – x

∣
∣dτ ≤

∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ .

Then

∣
∣yu(t) – x

∣
∣ –

∣
∣u

(
t+
j+N–1

)
– x

∣
∣ +

∣
∣u(tj+N–2) – x

∣
∣ –

∣
∣u

(
t+
i–2

)
– x

∣
∣

+ · · · +
∣
∣u(tj) – x

∣
∣ –

∣
∣u(s) – x

∣
∣

≤
∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ .

Therefore,

∣
∣u(t) – x

∣
∣ –

∣
∣u(s) – x

∣
∣ ≤

∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ +
j+N–1∑

i=j

(∣
∣u

(
t+
i
)

– x
∣
∣ –

∣
∣u(ti) – x

∣
∣
)

≤
∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ +
∑

s<ti<t

(∣
∣u

(
t+
i
)

– x
∣
∣ –

∣
∣u(ti) – x

∣
∣
)

≤
∫ t

s

[
u(τ ) – x, y + f (τ )

]

+ dτ +
∑

s<ti<t

∣
∣Ii(uti )

∣
∣.
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Let �j = {tj,i}kj
i=1, j = 0, 1, 2, . . . , N , be partitions of the interval Jj, j = 0, 1, . . . , N , where

J0 = [0, t1], Jj = (tj, tj + 1], j = 1, . . . , N – 1, JN = [tN , T]

and

0 = t0,0 < t0,1 < · · · < t0,k0–1 < t0,k0 = t1,

tj < tj,0 < tj,1 < · · · < tj,kj–1 < t(kj)
j = tj+1, j = 1, . . . , N – 1,

tN < tN ,0 < tN ,1 < · · · < tN ,kN –1 < tN ,kN = T .

Let uj,i ∈ E and fj,i ∈ E, j = 0, 1, 2, . . . , N , i = 0, 1, 2, . . . , nj, satisfy the difference inclusion

⎧
⎨

⎩

xj,i–xj,i–1
tj,i–tj,i–1

∈ Axj,i + fj,i,

xj,0 = xj–1,kj–1 + I(tj–1,kj–1 ),

j = 0, 1, 2, . . . , N , i = 1, 2, . . . , kj. Let λ > 0 and suppose further that the following conditions
hold:

(i) max0≤j≤N max1≤i≤kj (tj,i – tj,i–1) ≤ λ;
(ii) ‖ϕ0 – ϕ‖ ≤ λ;

(iii)
∑N

j=0
∑kj

i=1
∫ tj,i

tj,i–1
|fj,i – f (t)|dt ≤ λ.

Define a function uλ : [0, T] → E as follows:

uλ(t) =

⎧
⎨

⎩

ϕ, t ∈ [–τ , 0],

xj,i, t ∈ (tj,i–1, tj,i) ∩ (tj, tj+1), j = 1, . . . , N , i = 1, . . . , kj,

and call it a λ-approximate solution of problem (IFDI; ϕ, f ) on the interval [–τ , T].

Definition 3.2 Let A be m-dissipative. If there exists a sequence λn > 0 and a λn-
approximate solution such that λn → 0 and un(t) → u(t) uniformly on [0, T] as n → ∞,
then u is said to be a limit solution of (3.1).

In the following, we seek the definition of C0-solution of (3.1) on [0, T]. To this aim, let
us observe that: whenever u is a strong solution of (3.1) on [0, T], we have

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) – f (t) ∈ Au(t), t ∈ [0, T], T ∈ (tN–1, tN ), t �= ti, i = 1, 2, . . . , N – 1,

u(t) = ϕ(t), t ∈ [–τ , 0],

u(t+
m) = u(tm) + Im(utm ), m = 1, . . . , N – 1.

Since A is dissipative, therefore

[
u(τ ) – x, u′(τ ) – f (τ ) – y

]

+ ≤ 0

for each x ∈ D(A), y ∈ Ax and for τ �= ti, i = 1, 2, . . . , N – 1. By the property of [·, ·]+, we have

[
u(τ ) – x, u′(τ )

]

– ≤ [
u(τ ) – x, f (τ ) + y

]

+
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for each x ∈ D(A), y ∈ Ax and for τ �= ti, i = 1, 2, . . . , N – 1. Obviously, τ → |u(τ ) – x| is
piecewise absolutely continuous on [0, T], and hence it is almost everywhere differentiable
on [0, T]. Then, for each x ∈ D(A), y ∈ Ax and for τ �= ti, i = 1, 2, . . . , N – 1, we have

[
u(τ ) – x, u′(τ )

]

– =
d–

dτ

(∣
∣u(τ ) – x

∣
∣
)

=
d

dτ

(∣
∣u(τ ) – x

∣
∣
)
.

Integrating both sides of the above inequality over [s, t] ⊂ [0, T], we get

∣
∣u(t) – x

∣
∣ ≤ ∣

∣u(s) – x
∣
∣ +

∫ t

s

[
u(σ ) – x, f (σ ) + y

]

+ dσ

+
∑

s<tm<t

(∣
∣u

(
t+
m
)

– x
∣
∣ –

∣
∣u(tm) – x

∣
∣
)
. (3.2)

Definition 3.3 Let A be m-dissipative. By a C0-solution of (3.1) on [0, T], we mean that
an element u ∈ PC([0, T]; E), u(t) = ϕ(t), t ∈ [–τ , 0], ϕ(0) ∈ D(A), u(t) ∈ D(A) for each t ∈
[0, T], and satisfies (3.2) for any (x, y) ∈ G(A) and 0 ≤ s ≤ t ≤ T .

Remark 3.1 In particular, a C0-solution also satisfies the inequality

∣
∣u(t) – x

∣
∣ ≤ ∣

∣u(s) – x
∣
∣ +

∫ t

s

[
u(σ ) – x, f (σ ) + y

]

+ dσ +
∑

s<tm<t

∣
∣Im(utm )

∣
∣ (3.3)

for any (x, y) ∈ G(A) and 0 ≤ s ≤ t ≤ T .

Now we are in a position to present an important theorem which relates a limit solution
and a C0-solution.

Theorem 3.1 Let A be dissipative. Let f ∈ L([0, T]; E), u(t) be a limit solution of (IFDI;ϕ, f ),
and v(t) be a C0-solution of (IFDI;φ, g). Then

∣
∣u(t) – v(t)

∣
∣ ≤ ∣

∣u(s) – v(s)
∣
∣ +

∫ t

s

[
u(σ ) – v(σ ), f (σ ) – g(σ )

]

+ dσ

+
∑

s<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣ (3.4)

for any s, t ∈ [0, T] with s ≤ t.

Proof Let u(t) be a limit solution of (IFDI;ϕ, f ) and v(t) be a C0-solution of (IFDI;φ, g).
By Definition 3.2, there exist a sequence λn > 0 and a λn-approximate solution such that

λn → 0 and un(t) → u(t) uniformly on [0, T] as n → ∞. Let un(t) satisfy the difference
equation

xn
j,i – xn

j,i–1

tn
j,i – tn

j,i–1
∈ Axn

j,i + f n
j,i , for tn

j,i ∈ (tj, tj+1], j = 0, 1, 2, . . . , N , i = 1, 2, . . . , kj.

We set ηn
j,i = tn

j,i – tn
j,i–1, j = 0, 1, 2, . . . , N , i = 1, 2, . . . , kj.
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Let 0 ≤ s ≤ t ≤ T . Since xn
j,i ∈ D(A) and (ηn

j,i)–1(xn
j,i – xn

j,i–1) – f n
j,i ∈ Axn

j,i, the definition of
C0-solutions yields

∣
∣v(t) – xn

j,i
∣
∣ –

∣
∣v(s) – xn

j,i
∣
∣

≤
∫ t

s

[
v(σ ) – xn

j,i, g(σ ) +
(
ηn

j,i
)–1(xn

j,i – xn
j,i–1

)
– f n

j,i
]

+ dσ

+
∑

s<tm<t

(∣
∣v

(
t+
m
)

– xn
j,i
∣
∣ –

∣
∣v(tm) – xn

j,i
∣
∣
)

≤
∫ t

s

[
v(σ ) – xn

j,i, g(σ ) – f n
j,i
]

+ dσ +
∫ t

s

[
v(σ ) – xn

j,i,
(
ηn

j,i
)–1(xn

j,i – xn
j,i–1

)]

+ dσ

+
∑

s<tm<t

(∣
∣v

(
t+
m
)

– xn
j,i
∣
∣ –

∣
∣v(tm) – xn

j,i
∣
∣
)
.

By the property of [·, ·]+, we have

[
v(σ ) – xn

j,i,
(
ηn

j,i
)–1(xn

j,i – xn
j,i–1

)]

+

≤ (
ηn

j,i
)–1(∣∣v(σ ) – xn

j,i +
(
xn

j,i – xn
j,i–1

)∣
∣ –

∣
∣v(σ ) – xn

j,i
∣
∣
)

=
(
ηn

j,i
)–1(∣∣v(σ ) – xn

j,i–1
∣
∣ –

∣
∣v(σ ) – xn

j,i
∣
∣
)
.

In consequence, we obtain

ηn
j,i
(∣
∣v(t) – xn

j,i
∣
∣ –

∣
∣v(s) – xn

j,i
∣
∣
)

+
∫ t

s

(∣
∣v(σ ) – xn

j,i
∣
∣ –

∣
∣v(σ ) – xn

j,i–1
∣
∣
)

dσ

≤ ηn
j,i

∫ t

s

[
v(σ ) – xn

j,i, g(σ ) – f n
j,i
]

+ dσ + ηn
j,i

∑

s<tm<t

(∣
∣v

(
t+
m
)

– xn
j,i
∣
∣ –

∣
∣v(tm) – xn

j,i
∣
∣
)
.

Adding the above inequalities for j = κ ,κ + 1, . . . , ι, i = 1, 2, . . . , kj, we get

ι∑

j=κ

kj∑

i=1

ηn
j,i
(∣
∣v(t) – xn

j,i
∣
∣ –

∣
∣v(s) – xn

j,i
∣
∣
)

+
∫ t

s

(∣
∣v(σ ) – xn

ι,kι

∣
∣ –

∣
∣v(σ ) – xn

κ ,0
∣
∣
)

dσ

–
∑

tn
κ ,0<tm<tn

ι,kι

∫ t

s

(∣
∣v(σ ) – u

(
t+
m
)∣
∣ –

∣
∣v(σ ) – u(tm)

∣
∣
)

dσ

≤
ι∑

j=κ+1

kj∑

i=1

ηn
j,i

∫ t

s

[
v(σ ) – xn

j,i, g(σ ) – f n
j,i
]

+ dσ

+
ι∑

j=κ+1

kj∑

i=1

ηn
j,i

∑

s<tm<t

(∣
∣v

(
t+
m
)

– xn
j,i
∣
∣ –

∣
∣v(tm) – xn

j,i
∣
∣
)
.

Thus

∫ tn
ι,kι

tn
κ ,0

(∣
∣v(t) – un(τ )

∣
∣ –

∣
∣v(s) – un(τ )

∣
∣
)

dτ

+
∫ t

s

(∣
∣v(σ ) – un

(
tn
i
)∣
∣ –

∣
∣v(σ ) – un

(
tn
j
)∣
∣
)

dσ



Zhang et al. Boundary Value Problems        (2018) 2018:182 Page 10 of 28

–
∑

tn
κ ,0<tm<tn

ι,kι

∫ t

s

(∣
∣v(σ ) – u

(
t+
m
)∣
∣ –

∣
∣v(σ ) – u(tm)

∣
∣
)

dσ

≤
∫ tn

ι,kι

tn
κ ,0

∫ t

s

[
v(σ ) – un(τ ), g(σ ) – fn(τ )

]

+ dσ dτ

+
∫ tn

ι,kι

tn
κ ,0

∑

tn
κ ,0<tm<tn

ι,kι

(∣
∣v

(
t+
m
)

– un(τ )
∣
∣ –

∣
∣v(tm) – un(τ )

∣
∣
)

dτ ,

where fn(·) is an integrable function defined almost everywhere on (0, T) by setting

fn(τ ) = f n
j,i for τ ∈ (

tn
j,i, tn

j,i+1
)

and j = 0, 1, 2, . . . , N , i = 0, 1, 2, . . . , kj – 1.

Considering the first part of the right-hand side of the above inequality, we obtain

∫ tn
ι,kι

tn
κ ,0

∫ t

s

[
v(σ ) – un(τ ), g(σ ) – fn(τ )

]

+ dσ dτ

≤
∫ tn

ι,kι

tn
κ ,0

∫ t

s

[
v(σ ) – un(τ ), g(σ ) – f (τ )

]

+ dσ dτ +
∫ tn

ι,kι

tn
κ ,0

∫ t

s

∣
∣fn(τ ) – f (τ )

∣
∣dσ dτ

≤
∫ tn

ι,kι

tn
κ ,0

∫ t

s

[
v(σ ) – un(τ ), g(σ ) – f (τ )

]

+ dσ dτ + T
∫ T

0

∣
∣fn(τ ) – f (τ )

∣
∣dτ .

We suppose that tn
κ ,0 → α and tn

ι,kι
→ β as n → ∞. Then, in the limit n → ∞, we have

∫ α

β

(∣
∣v(t) – un(τ )

∣
∣ –

∣
∣v(s) – un(τ )

∣
∣
)

dτ +
∫ t

s

(∣
∣v(σ ) – un(α)

∣
∣ –

∣
∣v(σ ) – un(β)

∣
∣
)

dσ

–
∑

β<tm<α

∫ t

s

(∣
∣v(σ ) – u

(
t+
m
)∣
∣ –

∣
∣v(σ ) – u(tm)

∣
∣
)

dσ

≤
∫ α

β

∫ t

s

[
v(σ ) – un(τ ), g(σ ) – f (τ )

]

+ dσ dτ

+
∫ α

β

∑

s<tm<t

(∣
∣v

(
t+
m
)

– un(τ )
∣
∣ –

∣
∣v(tm) – un(τ )

∣
∣
)

dτ ,

where we have used the Lebesgue dominated convergence theorem and the u.s.c. of the
functional [·, ·]+.

Define

Φ(σ , τ ) =
∣
∣v(σ ) – u(τ )

∣
∣, Υ (σ , τ ) =

[
v(σ ) – u(τ ), g(σ ) – f (τ )

]

+.

We now consider the regularizations Φn and Υn given by

Φn(t, s) =
∫ T

0

∫ T

0
ρn(t – σ , s – τ )Φ(σ , τ ) dσ dτ ,

Υn(t, s) =
∫ T

0

∫ T

0
ρn(t – σ , s – τ )Υ (σ , τ ) dσ dτ ,
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where ρ(t, s) = n2ρ(nt)ρ(ns), ρ ∈ D(R), ρ ≥ 0, suppρ ∈ [–1, +1],
∫

ρ(ξ ) dξ = 1, and ρ(t) =
ρ(–t) for all t.

Let 1
n ≤ β ≤ α ≤ T and 1

n ≤ s ≤ t ≤ T . Then the above inequality implies that

∫ α

β

(
Φn(t, τ ) – Φn(s, τ )

)
dτ +

∫ t

s

(
Φn(σ ,α) – Φn(σ ,β)

)
dσ

–
∑

β<tm<α

∫ t

s

(
Φn

(
σ , t+

m
)

– Φn(σ , tm)
)

dσ

≤
∫ α

β

dτ

∫ t

s
Υn(σ , τ ) dσ dτ +

∫ α

β

∑

s<tm<t

(
Φn

(
t+
m, τ

)
– Φn(tm, τ )

)
dτ .

As

Φn(t, τ ) – Φn(s, τ ) =
∫ t

s

∂Φn

∂σ
(σ , τ ) dσ +

∑

s<tm<t

(
Φn

(
t+
m, τ

)
– Φn(tm, τ )

)
,

Φn(σ ,α) – Φn(σ ,β) =
∫ α

β

∂Φn

∂τ
(σ , τ ) dτ +

∑

β<tm<α

(
Φn

(
σ , t+

m
)

– Φn(σ , tm)
)
,

we have

∂Φn

∂σ
(σ , τ ) +

∂Φn

∂τ
(σ , τ ) ≤ Υn(σ , τ ), for

1
n

≤ σ ≤ T ,
1
n

≤ τ ≤ T ,

and

d
dt

Φn(t, t) ≤ Υn(t, t).

Integrating over s, t, we get

Φn(t, t) – Φn(s, s) ≤
∫ t

s
Υn(σ ,σ ) dσ +

∑

s<tm<t

(
Φn

(
t+
m, t+

m
)

– Φn(tm, tm)
)
,

1
n

≤ s ≤ t ≤ T ,

which, in the limit n → ∞, yields

Φ(t, t) – Φ(s, s) ≤
∫ t

s
Υ (σ ,σ ) dσ +

∑

s<tm<t

(
Φ

(
t+
m, t+

m
)

– Φ(tm, tm)
)
, 0 ≤ s ≤ t ≤ T .

Consequently, we get

∣
∣v(t) – u(t)

∣
∣ ≤ ∣

∣v(s) – u(s)
∣
∣ +

∫ t

s

[
v(σ ) – u(σ ), g(σ ) – f (σ )

]

+ dσ

+
∑

s<tm<t

(∣
∣v

(
t+
m
)

– u
(
t+
m
)∣
∣ –

∣
∣v(tm) – u(tm)

∣
∣
)

≤ ∣
∣v(s) – u(s)

∣
∣ +

∫ t

s

[
v(σ ) – u(σ ), g(σ ) – f (σ )

]

+ dσ

+
∑

s<tm<t

∣
∣
(
v
(
t+
m
)

– v(tm)
)

–
(
u
(
t+
m
)

– u(tm)
)∣
∣
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=
∣
∣v(s) – u(s)

∣
∣ +

∫ t

s

[
v(σ ) – u(σ ), g(σ ) – f (σ )

]

+ dσ

+
∑

s<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣. �

In view of Theorem 3.1, we have the following type of uniqueness result for C0-solutions.

Corollary 3.1 Let A be dissipative. Let f ∈ L([0, T]; E), and u(t) be a limit solution of
(IFDI;ϕ, f ) on [0, T]. Then u(t) is the unique C0-solution of (IFDI;ϕ, f ) on [0, T].

Proof Let v ∈ D(A) and ṽ ∈ Av. We set v(t) ≡ v and g(t) ≡ –ṽ for t ∈ [0, T]. Then we can
easily check that v(t) is a C0-solution of (IFDI;φ, g) since A is dissipative.

Therefore inequality (3.4) with u(t) and v(t) implies that

∣
∣u(t) – v

∣
∣ –

∣
∣u(s) – v

∣
∣ ≤

∫ t

s

[
v – u(σ ), –ṽ – f (σ )

]

+ dσ +
∑

s<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣

=
∫ t

s

[
u(σ ) – v, f (σ ) + ṽ

]

+ dσ +
∑

s<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣

for 0 ≤ s ≤ t ≤ T . Thus u(t) is an integral solution of (IFDI; u0, f ).
Let v(t) be a C0-solution of (IFDI; u0, f ) on [0, T]. Then, by (3.4), we have

∣
∣u(t) – v(t)

∣
∣ ≤ ∣

∣u(0) – v(0)
∣
∣ +

∑

0<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣

=
∑

0<tm<t

∣
∣Im(utm ) – Im(vtm )

∣
∣.

When 0 ≤ t ≤ t1, it is easy to deduce that |u(t) – v(t)| = 0, that is, u(t) = v(t); when t1 ≤ t ≤
t2, we also obtain u(t) = v(t). In view of the foregoing arguments, it follows that u(t) = v(t)
for t ∈ [0, T]. This completes the proof of the corollary. �

Let x ∈ E0 := D(A), c ∈ [a, b), and f ∈ L([a, b]; E). We denote by u(·, c, x, f ) the unique
C0-solution u : [c, b] → E0 of the equation

u′(t) ∈ Au(t) + f (t)

on [c, b] with u(c) = x. We also define the unique C0-solution u : [–τ , T] → E0 of (3.1) by
u(·, [0, T],ϕ, f ) which satisfies u(t) = ϕ(t) for t ∈ [–τ , 0]. Let

S : E0 → E0 with S(t)x = u(t, 0, x, 0) for each t ≥ 0, x ∈ E0.

Then {S(t)}t≥0 is a contraction semigroup on E0 (see Barbu [9]) and is generated by A.
The semigroup {S(t)}t≥0 is called compact if S(t) is a compact operator for each t > 0.

Definition 3.4 An m-dissipative operator A : D(A) ⊂ E → P(E) is called of compact type
if for each a < b and each sequence {fn, un} in L([a, b]; E) × C([a, b]; E) such that un is a
C0-solution on [a, b] of the evolution inclusion

u′
n(t) ∈ Aun(t) + fn(t), n = 1, 2, . . . ,
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fn ⇀ f in L([a, b]; E) and un → u in C([a, b]; E), then u is a C0-solution on [a, b] of the limit
problem

u′(t) ∈ Au(t) + f (t), n = 1, 2, . . . .

Lemma 3.1 (see [31, Corollary 2.3.1]) Let X∗ be uniformly convex and A be an m-
dissipative operator generating a compact semigroup. Then A is of compact type.

The following compactness criterion is an immediate consequence of Theorem 2.3.3 of
[31].

Lemma 3.2 Let A be an m-dissipative operator generating a compact semigroup. In ad-
dition, it is assumed that B is a bounded set in E0 and F is uniformly integrable in
L([tm–1, tm]; E). Then, for each c ∈ [tm–1, tm], the C0-solution set

{
u(·, tm–1, x, f ) : x ∈ B, f ∈ F

}

is relatively compact in C([c, tm]; E). Moreover, if B is relatively compact, then the C0-
solution set is relatively compact in C([tm–1, tm]; E).

Next, for each ξ ∈ C([–τ , tm–1]; E0) and f ∈ L([tm–1, tm]; E), we define the mapping Sm
ξ :

L([tm–1, tm]; E) →PC([–τ , tm]; E0) by

Sm
ξ (f )(t) =

⎧
⎨

⎩

ξ (t), t ∈ [–τ , tm–1],

u(t, t+
m–1, ξ (tm–1) + Im–1(ξtm–1 ), f ), t ∈ [tm–1, tm].

Clearly, Sm
ξ (f ) is the unique C0-solution for the evolution inclusion

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ (tm–1, tm],

u(t) = ξ (t), t ∈ [–τ , tm–1],

u(t+
m–1) = ξ (tm–1) + Im–1(ξtm–1 ).

The following result is an immediate consequence of Lemmas 3.1 and 3.2.

Lemma 3.3 Let E∗ be uniformly convex and A be an m-dissipative operator generating a
compact semigroup. Then the following results hold.

(i) If F is uniformly integrable in L([tm–1, tm]; E) and B ∈ C([–τ , tm]; E0) is relatively
compact, then Sm

B (F ) is relatively compact in PC([–τ , tm]; E).
(ii) For each sequence {(fn, un)}∞n=1 in L([tm–1, tm]; E) ×PC([–τ , tm]; E0) such that

un = Sm
ξ (fn), n ≥ 1, fn ⇀ f and un → u, we have that u = Sm

ξ (f ).

Lemma 3.4 ([11]) Let E be a real Banach space and A be an m-dissipative operator gen-
erating an equicontinuous semigroup. Then the following results are valid.

(i) If F is uniformly integrable in L([tm–1, tm]; E), then Sm
ξ (F ) is equicontinuous in

PC([–τ , tm]; E).
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(ii) If X∗ is uniformly convex and for each sequence {fn} ⊂ L([tm–1, tm]; E) such that
|fn(t)| ≤ ψ(t) a.e. on J for all n ≥ 1 with some ψ ∈ L([tm–1, tm]), then

β
({

Sm
ξ (fn)(s) : n ≥ 1

}) ≤
∫ t

tm–1

β
({

fn(s) : n ≥ 1
})

ds on [tm–1, tm]. (3.5)

In addition, if fn ⇀ f in L([tm–1, tm]; E) and Sm
ξ (fn) → g in PC([–τ , tm]; E), then

g = Sm
ξ (fn).

Lemma 3.5 (see [31, Theorem 2.3.3]) Let E be a real Banach space and A be an m-
dissipative operator. If F is uniformly integrable in L([tm–1, tm]; E), then the following con-
ditions are equivalent:

(i) The set Sm
ξ (F ) is relatively compact in PC([–τ , tm]; E).

(ii) There exists a dense subset D in [tm–1, tm] such that, for ∀t ∈ D, the set Sm
ξ ({fn})(t) is

relatively compact in E.

From Lemmas 3.3 and 3.5, we deduce the following statement.

Lemma 3.6 Let E∗ be uniformly convex and A be an m-dissipative operator gener-
ating an equicontinuous semigroup. For each sequence {(fn, un)}∞n=1 in L([tm–1, tm]; E) ×
PC([–τ , tm]; E0), we have that un = Sm

ξ (fn), n ≥ 1, fn ⇀ f and un → u. If {fn} is uniformly
integrable and there exists a dense subset D in [tm–1, tm] such that, for each t ∈ D, the set
Sm

ξ ({fn})(t) is relatively compact in E, then u = Sm
ξ (f ).

4 Topological properties of solution sets
This section is concerned with the study of existence of C0-solution and Rδ-structure of
solution sets for problem (1.1) on compact intervals, and Rδ-structure of solution sets for
problem (1.1) on noncompact intervals.

In the sequel, we need the following assumptions.
(A1) A : D(A) ⊂ E → 2E is an m-dissipative operator with 0 ∈ A0. In addition, E0 is

convex and E∗ is uniformly convex.
(A2) The semigroup {S(t)}t≥0 is a compact semigroup.
(A3) The semigroup {S(t)}t≥0 is immediately norm continuous, i.e., it is norm

continuous for t > 0.
(F1) F(t, ·, ·) : E × C([–τ , 0]; E) → Pcv(E) is weakly u.s.c. for a.e. t ∈R

+ and
F(·, x, v) : R+ → Pcv(E) has a strongly measurable selection for each
(x, v) ∈ E0 × C([–τ , 0]; E0).

(F2) There exists a function α ∈ L1
loc(R+;R+) such that

∣
∣F(t, x, v)

∣
∣ ≤ α(t)

(
1 + |x| + ‖v‖C

)

for a.e. t ∈R
+ and each (x, v) ∈ E0 × C([–τ , 0]; E0).

(F3) For each ε > 0 and each bounded set U × D ⊂ E0 × C([–τ , 0]; E0), there exist δ > 0
and a function μ ∈ L1

loc(R+;R+) such that

β
(
F
(
t,U , Oδ(D)

)) ≤ μ(t)
(
β(U ) + sup

–τ≤θ≤0
β
(
Oε

(
D(θ )

)))
for a.e. t ≥ 0,
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where Oδ(D) denotes a δ-neighborhood of D defined as
Oδ(D) := {z ∈ C([–τ , 0]; E) : dist(z, D) < δ}.

For a fixed m > 0, we first consider the inclusion problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) ∈ Ax(t) + f (t), a.e. t ∈ [0, tm], t �= tk , k < m,

f (t) ∈ F(t, x(t), xt), a.e. t ∈ [0, tm], t �= tk , k < m,

x(t) = ϕ(t), t ∈ [–τ , 0],

x(t+
k ) = x(tk) + Ik(xtk ), k < m ∈N

+.

(4.1)

For z ∈ PC([0, tm]; E0), we can define zi ∈ C([ti, ti+1]; E0), i = 0, 1, . . . , m – 1, with zi(t) =
z(t) on (ti, ti+1] and zi(ti) = z(t+

i ). For every set K ⊂ PC([0, tm]; E0), we denote by Ki, i =
0, 1, . . . , m – 1, the set Ki = {zi : z ∈ K}. The following result is obvious.

Proposition 4.1 A set K ∈ PC([0, tm]; E0) is relatively compact in PC([0, tm]; E0) if and
only if each set Ki, i = 0, 1, . . . , m – 1 is relatively compact in C([ti, ti+1]; E0).

For any z ∈ C([tk–1, tk]; E), we define the function z[ξ ] : [–τ , tk] → E as

z[ξ ](t) =

⎧
⎨

⎩

ξ (t), for t ∈ [–τ , tk–1],

z(t), for t ∈ [tk–1, tk],
(4.2)

where ξ ∈ C([–τ , tk–1]; E) is a fixed function. Letting C([tk–1, tk]; E)[ξ ] = {z[ξ ] : z ∈ C([tk–1,
tk]; E)}, we define a multivalued operator

Pk,ξ
F : C

(
[tk–1, tk]; E

)
[ξ ] → P

(
L
(
[tk–1, tk]; E

))

by

Pk,ξ
F

(
z[ξ ]

)
=

{
f ∈ L

(
[tk–1, tk]; E

)
: f (s) ∈ F

(
s, z[ξ ], z[ξ ]s

)
a.e. s ∈ [tk–1, tk]

}
.

The following lemma will be used later.

Lemma 4.1 ([15, Lemma 3.1]) Let E be reflexive, and let the multimap F satisfy (F1) and
(F2). Then Pk,ξ

F is weakly u.s.c. with nonempty, convex, and weakly compact values.

4.1 Compact operator case
Lemma 4.2 ([15, Lemma 3.3]) Let D = E0 ×C([–τ , 0]; E0) and hypotheses (F2) and (F4) be
satisfied. Then there exists a sequence {Fn} : [0, b] ×D → Pcv(E) such that

(i) F(t, u, v) ⊂ · · · ⊂ Fn+1(t, u, v) ⊂ Fn(t, u, v) ⊂ · · · ⊂ co(F(t, B31–n (u, v))), n ≥ 1, for each
t ∈ [0, b] and x ∈ E;

(ii) |Fn(t, u, v)| ≤ α(t)(3 + |u| + ‖v‖C), n ≥ 1, for a.e. t ∈ [0, tm] and each (u, v) ∈D;
(iii) there exists X ⊂ [0, tm] with mes(X) = 0 such that, for each x∗ ∈ E∗, ε > 0 and

(u, v) ∈D, we can find N > 0 such that, for all n ≥ N ,

x∗(Fn(t, u, v)
) ⊂ x∗(F(t, u, v)

)
+ (–ε, ε);
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(iv) Fn(t, ·, ·) : D → Pcv(E) is continuous for a.e. t ∈ [0, tm] with respect to Hausdorff
metric for each n ≥ 1;

(v) for each n ≥ 1, there exists a selection gn : [0, b] ×D → E of Fn such that gn(·, u, v) is
measurable for each (u, v) ∈D, and for any compact subset D′ ⊂D, there exist
constants CV > 0 and δ > 0 such that the estimate

∣
∣gn(t, u1, v1) – gn(t, u2, v2)

∣
∣ ≤ CV α(t)

(|u1 – u2| + ‖v1 – v2‖C
)

holds for a.e. t ∈ [0, b] and each (u1, v1), (u2, v2) ∈ V with V := (D′ + Bδ(0)) ∩D;
(vi) Fn satisfies condition (F2) with Fn instead of F for each n ≥ 1 provided that E is

reflexive.

We denote by Θm(ϕ) the set of all C0-solutions of inclusion (4.1).

Theorem 4.1 Assume that (A1), (A2), (F1), and (F2) are satisfied. If Ik : E → E0, k =
1, . . . , m – 1, are continuous, then for every ϕ ∈ C([–τ , 0]; E), Θm(ϕ) is a nonempty and com-
pact subset of PC([–τ , tm]; E). Moreover, it is an Rδ-set.

Proof We complete the proof in four steps.
Step 1. Let us consider the non-impulsive inclusion problem

(P)1;ϕ

⎧
⎨

⎩

u′(t) ∈ Au(t) + F(t, u(t), ut), a.e. t ∈ [0, t1],

u(t) = ϕ(t), for t ∈ [–τ , 0].

Set

K1 =
{

u ∈PC
(
[–τ , t1]; E0

)
: u(t) = ϕ(t) for t ∈ [–τ , 0],

and
∣
∣u(t)

∣
∣ ≤ ψϕ(t) for t ∈ [0, t1]

}
,

where ψϕ ∈ C([0, t1];R+) is the unique solution of the integral equation

ψϕ(t) = ‖ϕ‖C +
∫ t

0
α(s)

(
1 + 2

∣
∣ψϕ(s)

∣
∣
)

ds, t ∈ [0, t1].

Define a multivalued mapping Γ 1 on K1 by setting

Γ 1(u) = S1
ϕ

(
P1,ϕ

F (u)
)
, u ∈ K1.

Observe that P1,ϕ
F (u) �= ∅ for every u ∈ K1 by Lemma 4.1 and hence Γ 1(u) ⊂PC([–τ , t1];

E0). Also, {z|[–τ ,0] : z ∈ Γ 1(u)} = {ϕ} for all u ∈ K1. Moreover, taking f ∈ P1,ϕ
F (x) with u ∈ K1,

for every t ∈ [0, t1], it follows from (F2) that

∣
∣S1

ϕ(f )(t)
∣
∣ ≤ ∣

∣ϕ(0)
∣
∣ +

∫ t

0

∣
∣f (s)

∣
∣ds

≤ ∣
∣ϕ(0)

∣
∣ +

∫ t

0
α(s)

(
1 +

∣
∣u(s)

∣
∣ + ‖us‖C

)
ds
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≤ ‖ϕ‖C +
∫ t

0
α(s)

(
1 + 2ψϕ(s)

)
ds

= ψϕ(t),

where we have used the condition 0 ∈ A0 and the fact ‖ut‖C ≤ ψϕ(t) for every t ∈ [0, t1]
and u ∈ K1. Hence we deduce that Γ 1(u) ⊂ K1 for every u ∈ K1.

Next we proceed to verifying that Γ 1 is u.s.c. on K1. In view of Lemma 2.2, it suffices to
show that Γ 1 is quasi-compact and closed. For all f ∈ P1,ϕ

F (K1), using (F2), we obtain

∣
∣f (t)

∣
∣ ≤ α(t)

(
1 + 2ψϕ(t1)

)
for a.e. t ∈ [0, t1],

which implies that P1,ϕ
F (K1) is integrably bounded and thus uniformly integrable. In con-

sequence, we obtain by Lemma 3.3(i) that Γ 1(K1) (= S1
ϕ(P1,ϕ

F (K1))) is relatively compact in
PC([–τ , t1]; E). This implies that Γ 1 is quasi-compact.

Let {(un, vn)} be a sequence in G(Γ 1) such that (un, vn) → (u, v) in PC([–τ , t1]; E) ×
PC([–τ , t1]; E). Since vn ∈ Γ 1(un), there exists a sequence {fn} ∈ L([0, t1]; E) satisfying
fn ∈ P1,ϕ

F (un) and vn = S1
ϕ(fn). Noticing that P1,ϕ

F is weakly u.s.c. with convex, weakly com-
pact values due to Lemma 4.1, we deduce by Lemma 2.3 that there exist f ∈ P1,ϕ

F (u) and
a subsequence of {fn}, also denoted by {fn}, such that fn ⇀ f in L([0, t1]; E). From this and
Lemma 3.3(ii), it follows that v = S1

ϕ(f ) and hence v ∈ Γ 1(u). This shows that Γ 1 is closed.
Consider the closed convex hull of Γ 1(K1) given by

K1 = co
(
Γ 1(K1)

)
.

Clearly K1 is a compact, convex set in PC([–τ , t1]; E) and Γ 1(K1) ⊂K1.
Next, we show that Γ 1 has a fixed point in K1. By Theorem 2.3, it suffices to show that

Γ 1 has compact and contractible values. Given u ∈ K1, we can easily get that Γ 1(u) is
compact in as much as the closedness and quasi-compactness of Γ 1. Set f ∗ ∈ P1,ϕ

F (u) and
u∗ = S1

ϕ(f ∗), and define a function h : [0, 1] × Γ 1(u) → Γ 1(u) as follows:

h(r, v)(t) =

⎧
⎨

⎩

v(t), t ∈ [–τ , rt1],

u(t, rt1, v(rt1), f ∗), t ∈ (rt1, t1],

for each (r, v) ∈ [0, 1] × Γ 1(u), where u(·, rt1, v(rt1), f ∗), as prescribed in Sect. 3, is the
unique C0-solution of the evolution inclusion problem

⎧
⎨

⎩

u′(t) ∈ Au(t) + f ∗(t), t ∈ (rt1, t1],

u(rt1) = v(rt1).

It is easy to see that h is well defined since v = S1
ϕ f for some f ∈ P1,ϕ

F (u); hence h(t, v) = Γ 1 f̃
with f̃ := f χ[0,rt1] + f ∗χ(rt1,t1] ∈ P1,ϕ

F (u). Also, it is clear that

h(0, y) = u∗, h(1, y) = y, on Γ 1(x).

Moreover, it follows readily that h is continuous. Thus, we obtain that Γ 1(x) is contractible.
An application of Theorem 2.3 yields that Γ 1 has a fixed point.
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We claim that the fixed point set of Γ 1 is compact. We define a mapping Γ̂ 1 on
PC([–τ , t1]; E0) by

Γ̂ 1(u) = S1
ϕ

(
P1,ϕ

F (u)
)
, u ∈PC

(
[–τ , t1]; E0

)
,

which is regarded as an extension of Γ 1. Let Θ̃1
ϕ := Fix Γ̂ 1(C([0, t1]; E0)). Then it will be

sufficient to show that u ∈ K1 whenever u ∈ Θ̃1
ϕ . Taking u ∈ Fix Γ̂ 1(C([0, t1]; E0)), it follows

that there exists f ∈ P1,ϕ
F (u) such that u = S1

ϕ(f ). Then, by (F2) and the condition 0 ∈ A0,
and using the earlier arguments, we have

∣
∣u(t)

∣
∣ ≤ ∣

∣ϕ(0)
∣
∣ +

∫ t

0

∣
∣f (s)

∣
∣ds

≤ ∣
∣ϕ(0)

∣
∣ +

∫ t

0
α(s)

(
1 +

∣
∣u(s)

∣
∣ + ‖us‖C

)
ds

≤ ‖ϕ‖C +
∫ t

0
α(s)

(
1 + 2‖us‖C

)
ds, t ∈ [0, t1],

which implies that

‖ut‖C ≤ ‖ϕ‖C +
∫ t

0
α(s)

(
1 + 2‖us‖C

)
ds, t ∈ [0, t1].

Then, for each t ∈ [0, t1], an application of Lemma 2.6 yields

‖ut‖C ≤ ‖ϕ‖C +
∫ t

0
α(s) ds + 2

∫ t

0
α(s)

(

‖ϕ‖C +
∫ s

0
α(σ ) dσ

)

exp

(

2
∫ t

s
α(σ ) dσ

)

ds

≤ ψϕ(t),

which implies that u ∈ K1. Based on the foregoing argument, we get Θ̃1
ϕ = FixΓ 1.

Moreover, as in the above proof, K1 is compact in PC([–τ , t1]; E0) and Γ 1 is closed. in
consequence, we deduce that FixΓ 1 is a compact set in PC([–τ , t1]; E0) and so is Θ̃1

ϕ (in
fact, Θ̃1

ϕ = Θ1
ϕ ).

Step 2. Let us fix z1 ∈ Θ̃1
ϕ and consider the non-impulsive inclusion problem

(P)2;z1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) ∈ Ax(t) + f (t), a.e. t ∈ (t1, t2],

f (t) ∈ F(t, u(t), ut), a.e. t ∈ (t1, t2],

u(t) = z1(t), for t ∈ [–τ , t1],

u(t+
1 ) = z1(t1) + I1(z1

t1 ).

Set

K2 =
{

u ∈PC
(
[–τ , t2]; E0

)
: u(t) = z1(t) for t ∈ [–τ , t1]

and
∣
∣u(t)

∣
∣ ≤ ψz1 (t) for t ∈ [t1, t2]

}
,

where ψz1 ∈ C([t1, t2];R+) is the unique solution of the integral equation

ψz1 (t) =
∥
∥z1∥∥

C +
∣
∣I1

(
z1

t1

)∣
∣ +

∫ t

t1

α(s)
(
1 + 2

∣
∣ψz1 (s)

∣
∣
)

ds, t ∈ [t1, t2].
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Define a multivalued mapping Γ 2 on K2 by setting

Γ 2(u) = S2
z1

(
P2,z1

F (u)
)
, u ∈ K2.

For every u ∈ K2, observe that P2,z1
F (u) �= ∅ due to Lemma 4.1 and hence Γ 1(u) ⊂

PC([–τ , t2]; E0). Also, {z|[–τ ,t1] : z ∈ Γ 2(u)} = {z1} for all u ∈ K2. Moreover, taking f ∈
P2,z1

F (u) with u ∈ K2, it follows from (F2) that, for every t ∈ [t1, t2],

∣
∣S2

z1 (f )(t)
∣
∣ ≤ ∣

∣z1(t1) + I1
(
z1

t1

)∣
∣ +

∫ t

t1

∣
∣f (s)

∣
∣ds

≤ ∣
∣z1(t1)

∣
∣ +

∣
∣I1

(
z1

t1

)∣
∣ +

∫ t

t1

α(s)
(
1 +

∣
∣u(s)

∣
∣ + ‖us‖PC[–τ ,t1]

)
ds

≤ ∥
∥z1∥∥

PC[–τ ,t1] +
∣
∣I1

(
z1

t1

)∣
∣ +

∫ t

t1

α(s)
(
1 + 2ψz1 (s)

)
ds

= ψz1 (t),

where we have used the condition 0 ∈ A0 and the fact that ‖ut‖C ≤ ψz1 (t) for every t ∈
[t1, t2] and u ∈ K2. Hence Γ 2(u) ⊂ K2 for every u ∈ K2.

Since I1 is continuous, proceeding in the same way as in Step 1, we can claim that prob-
lem (P)2;z1 has at least one C0-solution and the solution set is a compact set, say Θ̃2

z1 .
Continuing this iterative process till problem (P)m;z1,...,zm–1 , we obtain that there exist

solutions for this problem, which form a compact set, say Θ̃m
z1,...,zm–1

.
Now, every solution of (P)m;z1,...,zm–1 is a solution of (4.1), which implies that the solution

set of inclusion problem (4.1) is nonempty.
Step 3. We prove that the set of all solutions of (4.1), that is,

Θm(ϕ) =
⋃{

Θ̃m
z1,...,zm–1

: z1 ∈ Θ̃1
ϕ ; . . . ; zm–1 ∈ Θ̃m–1

z1,...,zm–2

}
(4.3)

is compact.
First of all, we define the multifunction H1 : Θ̃1

ϕ → P(C([–τ , t2]; E0)) as

H1(z1) = Θ̃2
z1 .

From Step 2, we know hat Θ̃1
ϕ is compact and H1 has compact values.

By Lemma 2.4, it suffices to prove that H1 is u.s.c. On the contrary, we assume that there
exists z̄1 ∈ Θ̃1

ϕ such that H1 is not u.s.c. in z̄1. Therefore there exist ε̄ > 0 and two sequences
{z1

n}∞n=1, z1
n → z̄1 in PC([–τ , t1]; E0), and {z2

n}∞n=1, z2
n ∈ Θ̃2

z1
n

such that

z2
n /∈ Oε̄

(
Θ̃2

z̄1
)
, n ≥ 1. (4.4)

Since {z2
n}∞n=1 is a sequence of solutions, we have

z2
n(t) = S2

z1
n

(
f 2
n
)
(t), t ∈ [–τ , t2], (4.5)

where f 2
n ∈ L([t1, t2]; E0), f 2

n (s) ∈ F(s, z2
n(s), z2

ns) for almost every s ∈ [t1, t].
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Using similar arguments as in the proof of Step 1, it can be shown that the set {z2
n}∞n=1 is

relatively compact in PC([–τ , t2]; E0). Therefore, without loss of generality, we can assume
that there exists z̄2 ∈PC([–τ , t2]; E0) such that z2

n → z̄2 in PC([–τ , t2]; E0).
Now we show that z̄2 ∈ H1(z̄1). For every n ≥ 1, we consider z2

n ∈ Θ̃2
z̄1 and the corre-

sponding function f 2
n from (4.5).

As in Step 1, we show that there exists f̄ 2 ∈ L([t1, t2]; E0) such that f 2
n → f̄ 2 ∈ L([t1, t2]; E0).

Now, by using Lemma 2.3, we have

f̄ 2(t) ∈ F
(
t, z̄2(t), z̄2

t
)
, a.e. t ∈ [t1, t2].

From the fact that the function I1 is continuous, taking the limit of both sides of (4.5), we
get

z̄2(t) = S2
z̄1

(
f̄ 2)(t), t ∈ [–τ , t2],

where f̄ 2 ∈ L([t1, t2]; E0), f̄ 2(s) ∈ F(s, z̄(s), z̄2
s ) for almost every s ∈ [t1, t], that is, z̄2 ∈ Θ̃2

z̄1 =
H1(z̄1).

The fact that z2
n → z̄2 ∈ H1(z̄1) leads to the contradiction of (4.4). Therefore, H1 is u.s.c.

By iterating this process, we can obtain the compactness of the solution set Θm(ϕ) on
[–τ , tm].

Step 4. Consider the inclusion problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ [0, tm],

f (t) ∈ Fn(t, u(t), ut), t ∈ [0, tm],

u(t) = ϕ(t), t ∈ [–τ , 0],

u(t+
k ) = u(tk) + Ik(utk ), k ∈N

+,

(4.6)

where ϕ ∈ C([–τ , 0]; E0) and multivalued functions Fn : [0, tm] × X → Pcv(X) are estab-
lished in Lemma 4.2. Let Θm

n (ϕ) denote the set of all C0-solutions of the inclusion problem
(4.6). Then we show that the set Θm

n (ϕ) is an Rδ-set.
From Lemma 4.2(ii) and (vi), it follows that {Fn} satisfies conditions (F1) and (F2) for

each n ≥ 1. Then, using the above arguments, we deduce that each set Θm
n (ϕ) is nonempty

and compact in C([–τ , tm]; E0) for each n ≥ 1. In view of Lemma 4.2(i), it is easy to verify
that Θm(ϕ) ⊂ · · · ⊂ Θm

n (ϕ) ⊂ · · · ⊂ Θm
2 (ϕ) ⊂ Θm

1 (ϕ). Using the method similar to the one
employed in [15, Theorem 3.2], we can show that Θm(ϕ) =

⋂
n≥1 Θm

n (ϕ).
Finally, in order to show that Θm(ϕ) is an Rδ-set, it suffices to verify that Θm

n (ϕ) is con-
tractible for each n ≥ 1.

Fix ū ∈ Θm
n (ϕ) and divide the interval [0, 1] into m parts: 0 < 1

m < 2
m < · · · < m–1

m < 1. For
r ∈ (0, 1

m ], consider the following problem:

⎧
⎨

⎩

u′(t) ∈ Au(t) + gn(t, u(t), ut), for a.e. t ∈ [tm – mr(tm – tm–1), tm],

u(t) = ū(t), for t ∈ [–τ , tm – mr(tm – tm–1)],
(4.7)

where gn is a measurable locally Lipschitz selection of Fn by Lemma 4.2.
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Let ũm
n,r stand for the unique solution of this problem. Then um

n,r can be defined as:

um
n,r(t) =

⎧
⎨

⎩

ū(t), for t ∈ [–τ , tm – mr(tm – tm–1)],

ũm
n,r(t), for t ∈ [tm – mr(tm – tm–1), tm],

with um
n,r ∈ Θm

n (ϕ).
Next, for r ∈ ( 1

m , 2
m ], we consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) ∈ Au(t) + gn(t, u(t), ut), for a.e. t ∈ [tm–1 – m(r – 1
m )(tm–1 – tm–2), tm],

u(t) = ū(t), for t ∈ [–τ , tm–1 – m(r – 1
m )(tm–1 – tm–2)],

u(t+
k ) = u(tk) + Ik(utk ), k = m – 1.

(4.8)

Let ũm–1
n,r stand for the unique solution of this problem. Then we obtain that um–1

n,r ∈ Θm
n (ϕ),

where

um–1
n,r (t) =

⎧
⎨

⎩

ū(t), for t ∈ [–τ , tm–1 – m(r – 1
m )(tm–1 – tm–2)],

ũm–1
n,r (t), for t ∈ [tm–1 – m(r – 1

m )(tm–1 – tm–2), tm].

Now we consider the following problem for r ∈ ( m–1
m , 1]:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + gn(t, u(t), ut), for a.e. t ∈ [t1 – m(r – m–1
m )t1, tm],

u(t) = ū(t), for t ∈ [–τ , t1 – m(r – m–1
m )t1],

u(t+
k ) = u(tk) + Ik(utk ), k = {2, 3, . . . , m – 1}.

(4.9)

Let ũ1
n,r stand for the unique solution of the above problem. Then u1

n,r can be defined as:

u1
n,r(t) =

⎧
⎨

⎩

ū(t), for t ∈ [–τ , t1 – m(r – m–1
m )t1],

ũm
n,r(t), for t ∈ [t1 – m(r – m–1

m )t1, tm],

which belongs to Θm
n (ϕ).

Finally, we define hn : [0, 1] × Θm
n (ϕ) → Θm

n (ϕ) by

hn(r, ū) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(t), r = 0,

um
n,r , r ∈ (0, 1

m ],

um–1
n,r , r ∈ ( 1

m , 2
m ],

...

u1
n,r , r ∈ ( m–1

m , 1].

(4.10)

Here the functions um
n,r , um–1

n,r , . . . , u1
n,r are determined by the choice of ū ∈ Θm

n (ϕ). We can
show that hn is continuous by applying a standard method, based on the continuous de-
pendence on initial conditions and the fact that the maps I are continuous, we can establish
the continuity for r ∈ { i

m ; i = 1, . . . , m}. By the above definition, we have that hn(0, ū) = x̄ and
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hn(1, ū) = u1
n,1, so Θm

n (ϕ) is a contractible set for each n ∈ N. Consequently, we conclude
that Θm

n (ϕ) is an Rδ-set. �

We denote by Θ(ϕ) the set of all C0-solutions of inclusion (1.1).

Theorem 4.2 Assume that (A1), (A2), (F1), and (F2) are satisfied. If Ik : E → E0, k =
1, . . . , m–1, are continuous, then Θ(ϕ) is a nonempty and compact subset ofPC([–τ ,∞); E0)
for every ϕ ∈ C([–τ , 0], E0). Moreover, it is an Rδ-set.

Proof We divide the proof in two steps.
Step 1. Besides (1.1), for each m ∈ N

+, we study problem (4.1) on the compact interval
[0, tm].

For any u ∈PC([0, tm]; E) with u(0) = ϕ(0), define u[ϕ]∗ : [–τ , tm] → E as

u[ϕ]∗(t) =

⎧
⎨

⎩

ϕ(t), for t ∈ [–τ , 0],

u(t), for t ∈ [0, tm].
(4.11)

We denote PCm = PC([0, tm]; E)[ϕ]∗ (= {u[ϕ]∗ : u ∈ PC([0, tm]; E)}) and consider the mul-
tivalued operator

P̃m,ϕ
F : PCm → P

(
L
(
[0, tm]; E

))

defined by

P̃m,ϕ
F

(
u[ϕ]∗

)
=

{
f ∈ L

(
[0, tm]; E

)
: f (s) ∈ F

(
s, u[ϕ]∗, u[ϕ]∗s

)
a.e. s ∈ [0, tm]

}
.

Next, for ϕ ∈ C([–τ , 0]; E0) and f ∈ L([0, tm]; E), we define the mapping S̃m
ϕ : L([0, tm];

E) →PCm as

S̃m
ϕ (f )(t) = u

(
t, [0, tm],ϕ, f

)
, t ∈ [–τ , tm].

Clearly, S̃m
ϕ (f ) is the unique C0-solution for the evolution inclusion with time delay of the

form

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) ∈ Au(t) + f (t), t ∈ [0, tm], t �= tk , k < m,

u(t) = ϕ(t), t ∈ [–τ , 0],

u(t+
k ) = u(tk) + Ik(utk ), k < m.

Consider the sequence of multivalued maps Γ̃ m : PCm → P(PCm) defined by

Γ̃m(z) = S̃m
ϕ

(
P̃m,ϕ

F
(
z[ϕ]∗

))

for t ∈ [–τ , tm]. Now we consider the projection pm+1
m : PCm+1 → PCm given by pm+1

m (z) =
z|[–τ ,tm].
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Observe that Γ̃ mpm+1
m = pm+1

m Γ̃ m+1, so {id, Γ̃ m} is the map of the inverse system
{PCm, pm

n }. The map {id, Γ̃ m} induces the limit map Γ̃ : PC∞ → P(PC∞) defined by

Γ ∞(z) =
{

v ∈PC∞ : v|[–τ ,tm] = S̃m
ϕ (f |[0,tm]), f ∈ Lloc

(
[0,∞); E

)

and f (t) ∈ F
(
t, u(t), ut

)
for a.e. t ∈ [0,∞)

}

for each u ∈PC∞, where

PC∞ = PC
(
[0,∞); E

)
[ϕ]∗ = lim←

{
PCm, pn

m
}

.

Note that Θ(ϕ) := Fix(Γ ∞) = lim← Θm(ϕ) is the solution set of problem (1.1). By The-
orem 4.1, for every m ≥ 1, the solution set Θm(ϕ) to (4.1) is a nonempty compact subset
of PC([0, tm]; E0). By [20, Proposition 2.3], it follows that the set Θ(ϕ) is nonempty and
compact.

Step 2. It has been established in Theorem 4.1 that the solution sets on compact intervals
are Rδ-sets (that is, for problem (4.1)). Next, we consider an inverse system similar to the
one in Step 1. Applying [4, Proposition 4.1], we deduce that the solution set for problem
(1.1) is a compact Rδ-set as claimed. �

4.2 Noncompact operator case
Theorem 4.3 Suppose that assumptions (A1), (A3), (F1), (F2), and (F3) are satisfied. If
Ik : E → E0, k = 1, . . . , m – 1, are continuous and there exist constants rk > 0 such that

β
(
Ik(D)

) ≤ rk sup
–τ≤θ≤0

β
(
D(θ )

)

for every bounded D ⊂ E, then for every ϕ ∈ C([–τ , 0]; E), Θm(ϕ) is a nonempty and compact
subset of PC([–τ , tm]; E). Moreover, it is an Rδ-set.

Proof We complete the proof in four steps.
Step 1. For the same K1, as argued in Theorem 4.1, we note that K1 is a closed and convex

subset of PC([–τ , t1]; E0). Let Kn+1 := coΓ 1(Kn) for all n ≥ 1, and K :=
⋂

n≥1 Kn. We show
that K is compact convex when K is relatively compact.

By Lemma 3.4(i), we know that K is an equicontinuous subset of C([–τ , t1]; E0), hence K
is relatively compact if β(K(t)) = 0 on [0, t1], since β(K(t)) = β({ϕ(t)}) = 0 for t ∈ [–τ , 0]. Let
ρn(t) = β(Kn(t)) for n ≥ 1 and ρ(t) = β(K(t)). Then ρn+1(t) ≤ β({S1

ϕ(f )(t) : f ∈ P1,ϕ
F (Kn)}).

In order to apply (3.5), suppose that there is a sequence {fn}∞n=1 ⊂ P1,ϕ
F (Kn) for given ε > 0

such that

β
({

S1
ϕ(f )(t) : f ∈ P1,ϕ

F (Kn)
}) ≤ 2β

({
Γ 1(fn)(t)

}∞
n=1

)
+ ε

≤ 2
∫ t

0
β
({

fn(s)
}∞

n=1

)
ds + ε.

Taking � to be large enough for the above ε > 0, by (F3), there exists δ(< ε) > 0 such that

β
({

fn(s)
}∞

n=1

)
= β

({
fn(s)

}∞
n=�

) ≤ β
(
F
({s} × {

Kn(s)
}∞

n=�
× Oδ

({
(Kn)s

}∞
n=�

)))

≤ μ(s)
(
β
({
Kn(s)

}∞
n=�

)
+ sup

–τ≤θ≤0
β
({
Kn(s + θ )

}∞
n=�

)
+ ε

)
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≤ μ(s)
(

2 sup
0≤θ≤s

β
({
Kn(θ )

}∞
n=�

)
+ ε

)

≤ μ(s)
(

2 sup
0≤θ≤s

ρn(θ ) + ε
)

,

which implies that

ρn+1(t) ≤ 4
∫ t

0
μ(s) sup

0≤θ≤s
ρn(θ ) ds + 2ε

∫ t

0
μ(s) ds + ε.

Since this is true for every ε > 0 and ρn(t) ↘ ρ(t), therefore

ρ(t) ≤ 4
∫ t

0
μ(s) sup

0≤θ≤s
ρ(θ ) ds, ρ(0) = 0.

Evidently, it implies that ρ(t) = 0 on [0, t1].
Next we show that Γ 1 is u.s.c. on K. By Lemma 2.2, it suffices to show that Γ 1 is quasi-

compact and closed. First, we prove that the multimap Γ 1 = S1
ϕP1,ϕ

F has a closed graph. Let
{vn} ⊂ K with vn → v and un ∈ Γ 1(vn) with un → u. We first prove that u ∈ Γ 1(v). By the
definition of Γ 1, there exist fn ∈ P1,ϕ

F (vn) such that

un(t) = S1
ϕ(fn)(t).

In view of (F2), {fn} is bounded in L([0, t1]; E0), and that fn ⇀ f in L([0, t1]; E0) (see
Lemma 2.1). Since P1,ϕ

F is weakly u.s.c. with weakly compact and convex values (see
Lemma 4.1), from Lemma 2.3, we have that f ∈ P1,ϕ

F (v).
Moreover, for any ε > 0, by (F3), there exists δ (< ε) > 0 such that

β
({

fn(t)
}∞

n=1

) ≤ β(F
({s} × {

vn(s)
}∞

n=1 × Oδ

({
(vn)s

}∞
n=1

))

≤ μ(t)
(
β
({

vn(t)
}∞

n=1

)
+ sup

–τ≤θ≤0
β
({

(vn)t
}∞

n=1

)
+ ε

)

≤ μ(t)
(

2 sup
0≤θ≤t

β
({

vn(θ )
}∞

n=1

)
+ ε

)

for almost every t ∈ [0, t1]. Thus the set {fn(t)}∞n=1 is relatively compact for almost every
t ∈ [0, t1]. By Lemma 3.4, we obtain

β
({

S1
ϕ(fn)(s)

}∞
n=1

) ≤
∫ t

0
β
({

fn(s)
}∞

n=1

)
ds = 0. (4.12)

Hence the set {S1
ϕ(fn)(t)}∞n=1 is relatively compact. Using Lemma 3.6, we find that u = S1

ϕ(f ),
that is, u ∈ S1

ϕ(P1,ϕ
F (v)) = Γ 1(v), demonstrating that the multimap Γ 1 is closed.

It is easy to see that Γ 1 is quasi-compact. In fact, Γ 1(K) is compact as K is closed and
compact. By Lemma 2.2, it follows that Γ 1 is u.s.c. on K.

By Theorem 2.3, we deduce that Γ 1 has at least one fixed point since Γ 1 : K → P(K) has
contractible values, which follows as in the proof of Theorem 4.1.

The following result is similar to Step 1 in Theorem 4.1 and leads to the fact that the
solution set of problem (P)1;ϕ is a nonempty compact set.
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Step 2. Following the proof in Steps 2 and 3 of Theorem 4.1, one can easily infer that the
solution set of problem (4.1) is a nonempty compact set as argued Step 1.

Step 3. As in the proof of [20], we can obtain that all solutions to (4.1) are point-
wise uniformly bounded by some constant K̄m. Let K̃m = max{1, τ }K̄m. Then |u(t)| ≤ K̃m

and ‖ut‖C ≤ K̃m for every solution x to (4.1). We define a mapping F̃ : [0, tm] × E ×
C([–τ , 0]; E) → Pcp,cv(E) by

F̃(t, u, v) =

⎧
⎨

⎩

F(t, u, v), if t ∈ [0, tm] and max{|u|,‖v‖C} ≤ K̃m,

F(t, K̃mu
|u| , K̃mv

‖v‖C ), if t ∈ [0, tm] and max{|u|,‖v‖C} ≥ K̃m,

which is integrably bounded and generates the same set of solutions on replacing F by F̃
in (4.1). Without any loss of generality, instead of (F2), we assume that

(F2)′ |F(t, u, v)| ≤ ωm(t) for every t ∈ [0, tm], where ωm ∈ L([0, tm]).
Then, similar to Step 2 in Theorem 3.5 of [20], we construct a sequence of multivalued
maps {Fn} : [0, b] ×D → Pcv(E) such that

(i) F(t, u, v) ⊂ · · · ⊂ Fn+1(t, u, v) ⊂ Fn(t, u, v) ⊂ · · · ⊂ co(F(t, B31–n (u, v))), n ≥ 1, for each
t ∈ [0, b] and x ∈ E;

(ii) |Fn(t, u, v)| ≤ ωm(t), n ≥ 1, for a.e. t ∈ [0, tm] and each (u, v) ∈D;
(iii) there exists X ⊂ [0, tm] with mes(X) = 0 such that, for each x∗ ∈ E∗, ε > 0 and

(u, v) ∈D, there exists N > 0 such that, for all n ≥ N ,

x∗(Fn(t, u, v)
) ⊂ x∗(F(t, u, v)

)
+ (–ε, ε);

(iv) Fn(t, ·, ·) : D → Pcv(E) is continuous for a.e. t ∈ [0, tm] with respect to Hausdorff
metric for each n ≥ 1;

(v) for each n ≥ 1, there exists a selection gn : [0, b] ×D → E of Fn such that gn(·, u, v) is
measurable for each (u, v) ∈D and gn(t, ·, ·) is locally Lipschitz.

We first consider problem (4.6). Let Θm
n (ϕ) denote the set of all C0-solutions of inclusion

(4.6), which is obviously nonempty in PC([–τ , tm]; E0). Moreover, by Lemma 4.2(i), we
have

Θm(ϕ) ⊂ · · · ⊂ Θm
n (ϕ) ⊂ · · · ⊂ Θm

2 (ϕ) ⊂ Θm
1 (ϕ).

Next we prove that each sequence {un} is such that un ∈ Θm
n (ϕ) for all n ≥ 1 and has

a convergent subsequence unk → u ∈ Θm(ϕ). Notice that un(t) = ϕ(t) = u(t) for all t ∈
[–τ , 0]. Now let us consider the sequence un on [0, t1]. Then

un(t) = S̃m
ϕ (fn) = S1

ϕ(fn) for t ∈ [0, t1],

where fn ∈ L1([0, t1]; E), fn(t) ∈ Fn(t, un(t), (un)t) for a.e. t ∈ [0, t1].
For � to be large enough with ε > 0, using (F3), there exists δ (< ε) > 0 such that

β
({

fn(s)
}

n≥1

)
= β

({
fn(s)

}

n≥�

) ≤ β
(
F
({s} × {

un(s)
}

n≥�
× Oδ

({
(un)s

}

n≥�

)))

≤ μ(s)
(
β
({

un(s)
}

n≥�

)
+ sup

–τ≤θ≤0
β
({

un(s + θ )
}

n≥�

)
+ ε

)
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≤ μ(s)
(

2 sup
0≤θ≤s

β
({

un(θ )
}

n≥�

)
+ ε

)

≤ μ(s)
(
2ρ̄(s) + ε

)
,

where ρ̄(s) := sup0≤θ≤s β({un(θ )}n≥–). Since

β
({

un(t)
}

n≥1

)
= β

({
S1

ϕ(fn)(t)
}

n≥1

) ≤
∫ t

0
β
({

fn(s)
}∞

n=1

)
ds,

it follows that

ρ̄(t) ≤
∫ t

0
μ(s)

(
2ρ̄(s) + ε

)
ds.

Since it holds for every ε > 0, we have

ρ̄(t) ≤ 2
∫ t

0
μ(s)ρ̄(s) ds.

By Gronwall’s inequality, we have ρ̄(t) = 0 for t ∈ [0, t1]. Then β({un(t)}n≥1) = 0 for t ∈
[0, t1]. Hence β({fn(t)}n≥1) = 0 for t ∈ [0, t1].

For t = t1, we have

β
({

un(t1) + I1
(
(un)t1

)}

n=1

)
= β

({
un(t1) + I1

(
(un)t1

)}

n=�

)

≤ β
({

un(t1)
}

n=�

)
+ β

({
I1

(
(un)t1

)}

n=�

)

≤ r1 max
(

sup
τ≤θ≤0

β
({

ϕ(θ )
})

, sup
0≤θ≤t1

β
({

u(θ )n=�

}))

= 0.

Thus every solution un has the form

un(t) = S̃m
ϕ (fn)(t) = S2

un|[–τ ,t1]
(fn)(t) for t ∈ [t1, t2],

where fn ∈ L1([t1, t2]; E), fn(t) ∈ Fn(t, un(t), (un)t) for a.e. t ∈ [t1, t2]. Analogously as be-
fore, we can show that β({un(t)}n≥1) = 0 and β({fn(t)}n≥1) = 0 for t ∈ [t1, t2]. Repeating
this progress, we find that β({un(t)}n≥1) = 0 and β({fn(t)}n≥1) = 0 for t ∈ [tm–1, tm]. Hence
β({un(t)}n≥1) = 0 and β({fn(t)}n≥1) = 0 for t ∈ [0, tm].

Since 0 ∈ A0 and |F(t, u, v)| ≤ ωm(t) for every t ∈ [0, tm], therefore, for t ≤ t′ in (0, t1), we
have

∣
∣un

(
t′) – un(t)

∣
∣ ≤ ∣

∣
∣
∣un

(
t′)∣∣ –

∣
∣un(t)

∣
∣
∣
∣ ≤

∫ t′

t

∣
∣fn(s)

∣
∣ds ≤

∫ t′

t
ω(s) ds.

Then {un} is equicontinuous in (0, t1) as ωm ∈ L([0, tm]). Similarly, it can be shown that
{un} is equicontinuous in (tk , tk+1), k = 1, 2, . . . , m – 1. By a PC-type Arzela–Ascoli theo-
rem, {un} has a convergent subsequence on [0, tm], denoted by {unk }, such that unk → u.
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We know that β({fnk (t)}n≥1) = 0. Then, from (F2)′ and the Dunford–Pettis theorem, it fol-
lows that, up to a subsequence, still denoted by {fnk }, fnk ⇀ f ∈ L1([0, tm]; E). By the con-
tinuity of impulse functions Ij, we have u(t) = S̃m

ϕ (f )(t). To prove that f (t) ∈ F(t, u(t), ut)
for a.e. t ∈ [0, tm], it is sufficient to use the closed and convex values of F , a weakly upper
semicontinuity of F(t, ·, ·), and some standard procedures based on the Mazur lemma.

Step 4. From Step 3, it follows that sup{dist(v,Θm) : v ∈ Θm
n } → 0 and that sup{dist(v,

Θm) : v ∈ Θm
n } → 0. This together with the fact that Θm is compact and Θm

n+1 ⊂ Θm
n , im-

plies that β(Θm
n ) = β(Θm

n ) ↘ 0, as n → ∞ and Θm =
⋂∞

n=1 Θm
n .

Step 5. Using the method employed in Step 4 of the proof to Theorem 4.1, it can be
shown that Θm

n (ϕ) is a contractible set for each n ∈ N. Consequently, we deduce that the
solution set of problem (4.1) is an Rδ-set. �

Theorem 4.4 Assume that conditions (A1), (A3), (F1), (F2), and (F3) hold. If Ik : E → E0,
k = 1, . . . , m – 1, are continuous and there exist constants rk > 0 such that

β
(
Ik(D)

) ≤ rk sup
–τ≤θ≤0

β
(
D(θ )

)

for every bounded D ⊂ E, then Θ(ϕ) is a nonempty and compact subset of PC([–τ ,∞); E)
for every ϕ ∈ C([–τ , 0]; E). Moreover, it is an Rδ-set.

Proof In Theorem 4.3, it has been shown that solution sets for problem (4.1) on compact
intervals are Rδ-sets. Next we consider an inverse system as in the proof of Theorem 4.2
and obtain that the solution set of problem (1.1) is an Rδ-set. �
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