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Abstract
In this paper, we study the following superlinear p-Kirchhoff-type equation:

{
M(

∫
R2N

|u(x)–u

https://doi.org/10.1186/s13661-018-1100-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-1100-1&domain=pdf
http://orcid.org/0000-0002-5858-063X
mailto:zuojiabin88@163.com


Zuo et al. Boundary Value Problems        (2018) 2018:180 Page 2 of 13

(M2) There existsθ ∈ [1, N
N–ps ), such that

θM̃(t) = θ

∫ t

0
M(s) ds ≥M(t)t, ∀t ∈R

+
0 .

In the study of the problems (1.1), the following Ambrosetti–Rabinowitz condition [11]
is used widely:

0 < μG(x, t) = μ

∫ t

0
g(x, τ ) dτ ≤ g(x, t)t, x ∈ Ω , t ≥ r, (AR)

where μ > pθ and r > 0.
It is well known that (AR) condition is very important for variational method, but cannot

be satisfied in many cases. There have been some contributions attempting to replace this
condition by new ones, we can consult the references [12–16]. Motivated by this work, in
this paper we investigate the existence of infinitely many solutions of problem (1.1) without
the (AR) condition. Our result extends Theorem 1 of [17] and Theorem 1.1 of [18].

We assume that g : Ω ×R is a continuous function satisfying:
(g1) There exist constants1 < η1 < η2 < · · · < ηm < p < α < p∗

s , and functionsv0(x) ∈
Lβ (Ω), wherep∗

s = pN
N–ps ,

1
α

+ 1
β

= 1, vi(x) ∈ L
α

α–ηi (Ω), i = 1, . . . , m, andvm+1 > 0 is a

constant such that

∣∣g(x, u)
∣∣ ≤ ∣∣v0(x)

∣∣ +
m∑

i=1

∣∣vi(x)
∣∣|u|ηi–1 + vm+1|u|α–1, (x, u) ∈ Ω ×R.

(g2) There are two constantsμ > pθ and
0 > 0 such that

G(x, t) =
∫ t

0
g(x, s) ds ≤ 1

μ
g(x, t)t + 
0|t|p for anyx ∈ Ω , t ∈R.

(g3) lim|t|→∞ G(x,t)
|t|pθ → +∞ uniformly for x ∈ Ω .

(g4) g(x, t) is odd fort, i.e.g(x, –t) = –g(x, t) for anyx ∈ Ω and t ∈R.

Remark (i) Note that condition (g2) is different from the (AR) condition, and is weaker
than the condition of [17, 19] and [18].

(ii) The function g(x, t) = |t|pθ–2t ln(1 + |t|) satisfies the conditions (g2) and (g3), but it
does not satisfy the (AR) condition.

Now we state our main result.

Theorem 1.1 Set s ∈ (0, 1), N > ps. If (M1)–(M2) and (g1)–(g4) hold. Then, for any λ ∈ R,
the problem (1.1) has infinitely many weak solutions {uk} in X0 with unbounded energy.

The definition of weak solution will be given in the next section. The framework of this
paper is as follows. In Sect. 2 we give the variational framework. Section 3 verifies the
Cerami condition. In Sect. 4, we establish the existence of infinitely many weak solutions
for problem (1.1) by the fountain theorem.
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2 Variational framework
In this section, we first review some basic variational frameworks and main Lemmas that
will be used in the next section for problem (1.1). Denote W = R

2N\O, where O = C(Ω) ×
C(Ω) ⊂R

2N , and C(Ω) = R
N\Ω . Define a normed linear space X by

X =
{

u ∈ Lp(Ω)
∣∣∣ ∫

W

|u(x) – u(y)|p
|x – y|N+ps dx dy < ∞

}

with norm

‖u‖X = ‖u‖Lp(Ω) +
(∫

W

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p
.

Then X is a normed linear space and C∞
0 (Ω) ⊂ X (see [10], Lemma 2.1). Define a subspace

X0 ⊂ X by

X0 =
{

u ∈ X : u(x) = 0 a.e. in R
N\Ω}

.

Under the equivalent norm

‖u‖X0 =
(∫

W

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p
, u ∈ X0.

X0 is a uniformly convex reflexive Banach space ([10], Lemma 2.4).
Now, we give the definition of weak solutions for problem (1.1).

Definition 2.1 We say that u ∈ X0 is a weak solution of problem (1.1), if

M
(‖u‖p

X0

)∫
W

|u(x) – u(y)|p–2(u(x) – u(y))(φ(x) – φ(y))
|x – y|N+ps dx dy

– λ

∫
Ω

∣∣u(x)
∣∣p–2u(x)φ(x) dx –

∫
Ω

g
(
x, u(x)

)
φ(x) dx = 0, ∀φ ∈ X0.

Subsequently we review some of the properties of the eigenvalue problem and the spec-
trum of the operator. Consider the problem:

⎧⎨
⎩(–�)s

pu = λk|u|p–2u in Ω ,

u = 0 in R
N\Ω ,

(2.1)

there is a divergent positive eigenvalue sequence.

λ1 < λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ,

whose eigenvalues are the critical values of the functional

Tp(u) = ‖u‖p
X0

, u ∈ Σ =
{

u ∈ X0 :
∫

Ω

|u|p dx = 1
}

.
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We notice that the first eigenvalue λ1 := infu∈Σ Tp(u) > 0. The corresponding eigenfunc-
tions will be denoted by ej. More details can be found in [20].

Let Xj = span{ej}, define

X0 =
∞⊕
i=1

Xi, Yk =
k⊕

i=1

Xi, Zk =
∞⊕
i=k

Xi, k = 1, 2, . . . .

And let Wk := {u ∈ Yk : ‖u‖X0 ≤ ρk}, Nk := {u ∈ Zk : ‖u‖X0 = γk}, where ρk > γk > 0.

Lemma 2.2 (Fountain theorem, [21]) Consider an even functional T ∈ C1(X0,R). Assume
for each k ∈N, there exist ρk > γk > 0 such that

(Φ1) ak := maxu∈Yk ,‖u‖X0 =ρk T(u) ≤ 0,

(Φ2) bk := infu∈Zk ,‖u‖X0 =γk T(u) → +∞, k → +∞,

(Φ3) T satisfies the (PS)c condition for every c > 0.

Then T has an unbounded sequence of critical values.

Define the energy functional T : X0 → R corresponding to the problem (1.1) by

T(u) = I(u) – J(u) – H(u),

where

I(u) =
1
p
M̃

(‖u‖p
X0

)
, J(u) =

λ

p

∫
Ω

|u|p dx, H(u) =
∫

Ω

G(x, u) dx.

Lemma 2.3 ([10]) If (M1) holds, then I : X0 →R is of class C1(X0,R), and

〈
I ′(u),φ

〉
= M

(‖u‖p
X0

)∫
W

|u(x) – u(y)|p–2(u(x) – u(y))(φ(x) – φ(y))
|x – y|N+ps dx dy

for all u,φ ∈ X0.

Lemma 2.4 ([22], Lemma 2) Assume that g is a continuous function. Let (g1) holds, then
the functional H is of class C1(X0,R), and

〈
H ′(u),φ

〉
=

∫
Ω

g(x, u)φ dx

for all u,φ ∈ X0.

Combining Lemma 2.3 with Lemma 2.4, we get T ∈ C1(X0,R) and

〈
T ′(u),φ

〉
= M

(‖u‖p
X0

)∫
W

|u(x) – u(y)|p–2(u(x) – u(y))(φ(x) – φ(y))
|x – y|N+ps dx dy

– λ

∫
Ω

∣∣u(x)
∣∣p–2u(x)φ(x) dx –

∫
Ω

g
(
x, u(x)

)
φ(x) dx = 0

for any u,φ ∈ X0. Clearly, weak solutions of problem (1.1) are the critical points of energy
functional T .
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3 Verification of compactness conditions
We firstly state two definitions.

Definition 3.1 ([23, 24]) Let T ∈ C1(X0,R), we say that T satisfies the (PS)c condition at
the level c ∈R, if any sequence {un}n ⊂ X0 such that

T(un) → c, sup
‖φ‖X0=1

{∣∣〈T ′(un),φ
〉∣∣} → 0 as n → ∞,

possesses a convergent subsequence in X0; T satisfies the (PS) condition if T satisfies the
(PS)c for all c ∈R.

Definition 3.2 ([25, 26]) Let T ∈ C1(X,R), we say that T satisfies the (Ce)c condition at
the level c ∈R, if any sequence {un}n ⊂ X0 such that

T(un) → c,
(
1 + ‖un‖

)
sup

‖φ‖X0=1

{∣∣〈T ′(un),φ
〉∣∣} → 0 as n → ∞,

possesses a convergent subsequence in X0; T satisfies the (Ce) condition if T satisfies the
(Ce)c for all c ∈R.

When T fulfills the (AR) condition, we know the corresponding energy functional T ful-
fills the Palais-Smale compactness assumptions, however we dropped the (AR) condition,
we show that T fulfills the (Ce) condition.

Lemma 3.3 Let g : Ω ×R →R be a continuous function satisfying conditions (M1)–(M2)
and (g1)–(g3). Then T fulfills the (Ce) condition at level c ∈ R.

Proof Set c ∈R. Suppose {un} satisfies

T(un) → c,
(
1 + ‖un‖

)
sup

‖φ‖X0=1

{∣∣〈T ′(un),φ
〉∣∣} → 0 (3.1)

as n → ∞.
Step 1. We prove the sequence {un} is bounded in X0.
Arguing by contradiction, if {un}n∈N is unbounded in X0. Up to subsequence, still de-

noted by {un}n∈N, suppose

‖un‖X0 → +∞. (3.2)

It follows from (3.1) and (3.2) that

sup
‖φ‖X0=1

{∣∣〈T ′(un),φ
〉∣∣} → 0. (3.3)

Thus

‖un‖X0 sup
‖φ‖X0=1

{∣∣〈T ′(un),φ
〉∣∣} → 0 (3.4)
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as n → ∞. For any n ∈N, we consider νn := un
‖un‖X0

, then ‖νn‖X0 = 1, so {νn}n∈N is bounded
in X0. Similarly to Lemma 1 in [22]. Going if necessary to a subsequence, there exists ν∞
such that

νn → ν∞ in Lp(
R

N)
, (3.5)

νn → ν∞ in Lα
(
R

N)
, (3.6)

νn → ν∞ in R
N , (3.7)

as n → ∞. We discuss two cases.
Case 1. ν∞ ≡ 0.
By (g2), (M2) and (3.1)–(3.2), we obtain

1
‖un‖p

X0

(
T(un) –

1
μ

T ′(un)un

)

≥ 1
‖un‖p

X0

(
1
p
M̃

(‖un‖p
X0

)
–

1
μ
M

(‖un‖p
X0

)‖un‖p
X0

+ λ

(
1
μ

–
1
p

)
‖un‖p

p –
∫

Ω

(
G

(
x, un(x)

)
–

1
μ

g
(
x, un(x)

)
un(x)

)
dx

)

≥ 1
‖un‖p

X0

((
1

pθ
–

1
μ

)
M

(‖un‖p
X0

)‖un‖p
X0

)
– λ

(
1
μ

–
1
p

)∫
Ω

νp
n dx – 
0

∫
Ω

|νn|p dx

≥ m0

(
1

pθ
–

1
μ

)
,

which implies 0 ≥ m0( 1
pθ

– 1
μ

). This is a contradiction.
Case 2. ν∞ �≡ 0.
Setting Ω1 = {x ∈ Ω : ν∞ �= 0}, it is easy to see that |Ω1| > 0 and

∣∣un(x)
∣∣ = |νn|‖un‖X0 → +∞ on Ω1 (3.8)

as n → ∞, thanks to (3.2), (3.7). From (3.1) and (3.2), we get T(un)
‖un‖pθ

X0

→ 0, that is,

0 = lim
n→∞

1
‖un(x)‖pθ

X0

(
1
p
M̃

(‖un‖p
X0

)
–

λ

p
‖un‖p

p –
∫

Ω1

G(x, un) dx

–
∫

Ω\Ω1

G(x, un) dx
)

. (3.9)

Note that

0 < λ1 = min
u∈X0\{0}

∫
Ω

|u(x)–u(y)|p
|x–y|n+ps dx dy∫

Ω
|u(x)|p dx

,

which implies

‖u‖p
Lp(Ω) ≤ 1

λ1
‖u‖p

X0
. (3.10)
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Because of (M2), we get

M̃(t) ≤ M̃(1)tθ , ∀t ∈ [1, +∞). (3.11)

By (3.9)–(3.11), we obtain

0 = lim
n→∞

1
‖un‖pθ

X0

(
1
p
M̃

(‖un‖p
X0

)
–

λ

p
‖un‖p

p –
∫

Ω1

G
(
x, un(x)

)
dx

–
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)

≤ 1
p
M̃(1) – lim

n→∞
1

‖un‖pθ

X0

(
λ

p
‖un‖p

p +
∫

Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)
. (A)

When λ ≥ 0, from (A), we have

0 ≤ 1
p
M̃(1) – lim

n→∞
1

‖un‖pθ

X0

(
λ

p
‖un‖p

p +
∫

Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)

≤ 1
p
M̃(1) – lim

n→∞
1

‖un‖pθ

X0

(∫
Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)
. (3.12)

When λ < 0, from (A) and (3.10), we get

0 ≤ 1
p
M̃(1) – lim

n→∞
1

‖un‖pθ

X0

(
λ

p
‖un‖p

p +
∫

Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)

≤ 1
p
M̃(1) – lim

n→∞
λ

pλ1‖un‖pθ–p
X0

– lim
n→∞

1
‖un‖pθ

X0

(∫
Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)

=
1
p
M̃(1) – lim

n→∞
1

‖un‖pθ

X0

(∫
Ω1

G
(
x, un(x)

)
dx

+
∫

Ω\Ω1

G
(
x, un(x)

)
dx

)
. (3.13)

It follows from (g3) and (3.8) that

G(x, un(x))
‖un‖pθ

X0

=
G(x, un(x))
|un(x)|pθ

|un(x)|pθ

‖un‖pθ

X0

=
G(x, un(x))
|un(x)|pθ

∣∣νn(x)
∣∣pθ → +∞ a.e. x ∈ Ω1
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as n → ∞. Making use of the Fatou lemma, we obtain

lim
n→∞

∫
Ω1

G(x, un(x))
|un(x)|pθ

dx → +∞. (3.14)

By (g3), we know

lim
t→+∞ G(x, t) = +∞ (3.15)

uniformly for every x ∈ Ω . Therefore, (3.15) means that there are two positive constants
t1 and D such that

G(x, t) ≥ D (3.16)

for any x ∈ Ω and |t| > t1. In addition, since the continuity of G on Ω ×R, we get

G(x, t) ≥ min
(x,t)∈Ω×[–t1,t1]

G(x, t), ∀|t| ≤ t1. (3.17)

Hence, in view of (3.16) and (3.17), we have

G(x, t) ≥ min
{

D, min
(x,t)∈Ω×[–t1,t1]

G(x, t)
}

:= �, ∀(x, t) ∈ Ω ×R. (3.18)

By (3.2) and (3.18), we obtain

lim
n→∞

∫
Ω\Ω1

G(x, un(x))
|un(x)|pθ

dx ≥ 0. (3.19)

Combining (3.19) and (3.12)–(3.14), we have a contradiction.
Step 2. We prove {un} → u in X0 for some u.
Let K(x – y) = |x – y|–N–ps. For every fixed ϕ ∈ X0, define

Qϕ(v) =
∫
R2N

∣∣ϕ(x) – ϕ(y)
∣∣p–2(

ϕ(x) – ϕ(y)
)
(v(x) – v(y)K(x – y) dx dy

for any v ∈ X0. By the Hölder inequality and the continuity of Qϕ , we get

∣∣Qϕ(v)
∣∣ ≤ ‖ϕ‖p–1

X0
‖v‖X0 , ∀v ∈ X0.

Since un ⇀ u in X0, we have

lim
n→∞ Qu(un – u) = 0. (3.20)

Obviously, 〈T ′(un), un – u〉 → 0. Then we have

〈
T ′(un), un – u

〉
= M

(∥∥un(x)
∥∥p

X0

)
Qun (un – u) – λ

∫
Ω

|un|p–2un(un – u) dx

–
∫

Ω

g(x, un)(un – u) dx → 0 (3.21)
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as n → ∞. Due to the reflexivity of X0, similarly to Lemma 8 in [28], there is a subsequence,
still denoted by {un}n, such that

un ⇀ u in X0,

un → u in Lr(Ω), 1 ≤ r < p∗
s ,

un → u a.e. in R
N

as n → ∞. So, g(x, un)(un – u) → 0 a.e. in Ω as n → ∞. The sequence {g(x, un)(un – u)}
is uniformly bounded and equi-integrable in L1(Ω). By the Vitali Convergence Theorem
(see [27]),

lim
n→∞

∫
Ω

g(x, un)(un – u) dx = 0.

By (3.21), we have

M
(∥∥un(x)

∥∥p
X0

)
Qun (un – u) → 0

as n → 0. It follows from (M1),

Qun (un – u) → 0 (3.22)

as n → ∞. Combining (3.20) with (3.22), we get

(
Qun (un – u) – Qu(un – u)

) → 0 (3.23)

as n → 0. Using the Simon inequalities

(|�|p–2� – |σ |p–2σ
) · (� – σ ) ≥ DP|� – σ |p, p ≥ 2,

(|�|p–2� – |σ |p–2σ
) · (� – σ ) ≥ D̂P

|� – σ |2
(|�| + |σ |)2–p , 1 < p < 2,

for all �,σ ∈R
N , where DP, D̂P > 0 only rely on p.

If p ≥ 2, By (3.23), for n large enough,

‖un – u‖p
X0

≤ DP

∫
R2N

(∣∣un(x) – un(y)
∣∣p–2(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–2(u(x) – u(y)

))
× (

un(x) – u(x) – un(y) + u(y)
)
K(x – y) dx dy

= DP
(
Qun (un – u) – Qu(un – u)

)
= o(1).

Then ‖un – u‖p
X0

→ 0.
If 1 < p < 2, though the Hölder inequality, the Simon inequality, and (3.23), we have

‖un – u‖p
X0

≤ D̂P
(
Qun (un – u) – Qu(un – u)

) p
2
(‖un‖p

X0
+ ‖u‖p

X0

) 2–p
2
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≤ D̂P
(
Qun (un – u) – Qu(un – u)

) p
2
(‖un‖p(2–p)/2

X0
+ ‖u‖p(2–p)/2

X0

)
= C

(
Qun (un – u) – Qu(un – u)

) p
2 = o(1),

as n → ∞, where C > 0. Combining the above two cases, thus, un → u in X0. The proof of
Lemma 3.3 is completed. �

4 Proof of Theorem 1.1
Similarly to [5], by a direct calculation, we have the following lemma.

Lemma 4.1 Set 1 ≤ q < p∗
s and, for every k ∈N, let

μk := sup
{‖u‖q : u ∈ Zk ,‖u‖X0 = 1

}
.

Then μk → 0 as k → ∞.

Proof of Theorem 1.1 We only need to verify the conditions (Φ1) and (Φ2) of Lemma 2.2.
Verification of (Φ1): Since Yk is finite dimensional, there exist positive constants Bk,q and

B̃k,q depending on k, q, such that for each u ∈ Yk

Bk,q‖u‖X0 ≤ ‖u‖q ≤ B̃k,q‖u‖X0 . (4.1)

In view of (g3), for every c > M̃(1)
pBpθ

k,pθ

, there exists δc > 0 such that

G(x, t) ≥ c|t|pθ (4.2)

for all x ∈ Ω , |t| > δc. According to the Weierstrass theorem, we get

G(x, t) ≥ mc := min
x∈Ω ,|t|≤δc

G(x, t) (4.3)

for any |t| ≤ δc. We claim that mc ≤ 0, since G(x, 0) = 0 for all x ∈ Ω . Therefore, by (4.2)
and (4.3), we obtain

G(x, t) ≥ c|t|pθ – Hc (4.4)

for all (x, t) ∈ Ω ×R, for suitable positive constant Hc ≥ cδc – mc.
By (4.1), (4.4) and (3.11), we get

T(u) ≤ 1
p
M̃

(‖u‖p
X0

)
–

λ

p
‖u‖p

p – c‖u‖pθ

pθ + Hc|Ω|

≤ M̃(1)
p

‖u‖pθ

X0
–

λ

p
‖u‖p

p – c‖u‖pθ

pθ + Hc|Ω|

≤ M̃(1)
p

‖u‖pθ

X0
– cBpθ

k,pθ‖u‖pθ

X0
–

λ

p
Bp

k,p‖u‖p
X0

+ Hc|Ω|.

So, we have, for any u ∈ Yk with ‖u‖X0 = ρk ≥ 1 for big enough, such that T ≤ 0. The
condition (Φ1) holds.
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Verification of (Φ2): There exists γk > 0 such that

bk := inf
{

T(u) : u ∈ Zk ,‖u‖X0 = γk
} → +∞

as k → +∞. It follows from (g1), (M1) and the Hölder inequality that

T(u) ≥ 1
p
M̃

(‖u‖p
X0

)
–

λ

p
‖u‖p

p – ‖v0‖β‖u‖α –
m∑

i=1

∥∥vi(x)
∥∥

α
α–ηi

‖u‖ηi
α – vm+1‖u‖α

α

≥ CK ,λ‖u‖p
X0

– ‖v0‖β

∥∥∥∥ u
‖u‖X0

∥∥∥∥
α

‖u‖X0

–
m∑

i=1

∥∥vi(x)
∥∥

α
α–ηi

∥∥∥∥ u
‖u‖X0

∥∥∥∥
ηi

α

‖u‖ηi
X0

– vm+1

∥∥∥∥ u
‖u‖X0

∥∥∥∥
α

α

‖u‖α
X0

≥ CK ,λ‖u‖p
X0

– μk‖v0‖β‖u‖X0 –
m∑

i=1

∥∥vi(x)
∥∥

α
α–ηi

μ
ηi
k ‖u‖ηi

X0
– vm+1μ

α
k ‖u‖α

X0 ,

where μk is defined in Lemma 4.1 and

CK ,λ =

⎧⎪⎪⎨
⎪⎪⎩

1
2 m0 if λ ≤ 0,
1
2 (m0 – λ

λ1
) if 0 < λ < λ1,

1
2 (m0 – λ

λk
) if 0 < λk < λk+1.

We define γk as

γk =
(

pCK ,λ

αvm+1μ
α
k

) 1
α–p

.

Thus γk → +∞ as k → ∞. Note that α > p, so for every ‖u‖X0 = γk , we get

T(u) ≥ ‖u‖p
X0

(
CK ,λ – vm+1μ

α
k ‖u‖α–p

X0

)
– μk‖v0‖βγk –

m∑
i=1

∥∥vi(x)
∥∥

α
α–ηi

μ
ηi
k γ

ηi
k

=
(

1 –
p
α

)
CK ,λγ

p
k – μk‖v0‖βγk –

m∑
i=1

∥∥vi(x)
∥∥

α
α–ηi

μ
ηi
k γ

ηi
k → +∞

as k → ∞. Therefore, the condition (Φ2) is satisfied. The proof is completed. �

5 Conclusion
In this article, the existence of infinitely many solutions to Eq. (1.1) is established by using
the variational methods (i.e. the fountain theorem). We consider fractional p-Kirchhoff
problems with more general nonlinearity g in Ω , which improves the previous results. In
order to overcome new difficulties, we need to adopt special techniques and methods in
our paper.
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