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Abstract
In this paper, we show the global well-posedness of a higher-order nonlinear
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1 Introduction
This paper is devoted to the mathematical analysis of the following higher-order
Schrödinger–Poisson–Slater mixed system (SPS in short) in three space dimensions:

i�
∂

∂t
ψk = –

J∑

j=0

α(j)�2j

m2j–1c2j–2 �jψk + cc
1
|x|ψk + cp

(
ρψ �

1
|x|

)
ψk – csρ

1
3
ψ ψk . (1)

The wavefunction ψk depends on time t and space x ∈R
3. The constants m, c and � denote

the mass of a particle, the speed of light, and the reduced Planck constant, respectively.
The constants cc, cp and cs denote physical interaction constants; the subscripts ·c, ·p and
·s stand for Coulomb, Poisson and Slater, respectively. The SPS system can be either re-
pulsive (cp > 0) or attractive (cp < 0). The differential operator � is the Laplace operator,
and � denotes the convolution operator in R

3. ρψ denotes the charge density and is given
by ρψ :=

∑
j∈N γi|ψj|2, where {γj, j ∈ N} ⊂ 	1(N) is the set of occupation numbers and are

such that γj ≥ 0 and
∑

j∈N γj = 1. The nonlinear term –csρ
1
3
ψ ψk was introduced by Slater

as a local correction to the exchange term in the Hartree–Fock equations. This correction
should be understood, following Dirac and Slater, as a quantum effect in contrast with the
Poisson term which has a classical counterpart, we refer to [1, 2] for more details, and to
[3–5] for an heuristic justification of this term. The difference between system (1) and the
classical SPS system is that the kinetic operator �

2m� is replaced by the higher-order oper-
ator

∑J
j=0

α(j)�2j

m2j–1c2j–2 �j where J ∈ N
�. This idea was developed in [6, 7] and is based on Ein-

stein’s mass–energy equivalence and a finite expansion approach. This model is adapted
for particles with velocity less than c√

2 .
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System (1) belongs to the family of higher-order Schrödinger equations that have been
developed in, e.g., [7, 8]. These are Schrödinger-type equations involving higher-order
Schrödinger operator converging, in principle, to the semi-relativistic bound-state equa-
tion called the spinless Salpeter equation; see, e.g., [9–12]. The semi-relativistic spinless
Salpeter equation is of high importance in particle physics and provides a particularly
well defined approximation to the Bethe–Salpeter formalism designed for the Lorentz-
covariant description of bound states within relativistic quantum field theory. The spinless
Salpeter equation can be formally obtained using a three-dimensional reduction and suit-
able justified physical hypotheses. More importantly, it can be regarded as a generalization
of the classical Schrödinger equation with the inclusion of the relativistically correct free-
particle kinetic energy. We refer the reader to [6] for a more detailed discussion of the
physical background and application of the higher-order Schrödinger equations (also see
[7] for an application to the case of alpha particles and see [13, 14] for alternative applica-
tions).

In the sequel, we assume that the sequence of nonnegative real numbers {γj, j ∈ N} ⊂
	1(N) are fixed. That is, they do not depend on time as in the time dependent multi-
configuration models (see e.g. [15] ). Next, we recall the definition of some functional
spaces, originally introduced in [16, 17]. We denote γ := (γ1,γ2, . . .) and we define, for all
1 ≤ p ≤ q ≤ +∞, the Lp(γ ) space as follows:

Lp(γ ) :=
{
ψ = (ψi)i∈N,‖ψ‖Lp(γ ) =

(∑

j∈N
γj

∫

R3
|ψj|p dx

)1/p

< +∞
}

.

For a given time interval I , we denote Lq,p
I (γ ) := Lq(I; Lp(γ )). We shall use the notation

Lq,p
T (γ ) when I = [0, T]. Also, we shall use the shorthand notation Lq,p

loc(γ ) and Lq,p(γ ) for
Lq

loc([0, +∞); Lp(γ )) and Lq([0, +∞); Lp(γ )), respectively. Now, we introduce

B
q,p
I (γ ) := L∞,2

I (γ ) ∩ Lq,p
I (γ ), B

′q,p
I (γ ) := L1,2

I (γ ) ∩ L
q

q–1 , p
p–1

I (γ ),

equipped with the norms

‖ψ‖
B

q,p
I (γ ) = ‖ψ‖L∞,2

I (γ ) + ‖ψ‖Lq,p
I (γ ),

‖ψ‖
B

′q,p
I (γ ) = inf

ψ=ψ1+ψ2

(∥∥ψ1∥∥
L1,2

I (γ ) +
∥∥ψ2∥∥

L
q

q–1 , p
p–1

I (γ )

)
.

Eventually, we define the set

J :=
{

(q, p) such that 2 ≤ p ≤ +∞, J ∈N
� \ {1} and

2
q

=
3
J

(
1
2

–
1
p

)}
.

The main result of this paper is the following.

Theorem 1.1 Let J ≥ 2 and φ = (φi)i∈N be a set of initial data in L2(γ ) and (q, p) ∈ J such
that 3 < p ≤ 6. Then the SPS system (1) has a unique solution ψ(t, x) satisfying

ψ(t, x) ∈ C0([0, +∞)
, L2(γ )) ∩ Lq([0, +∞)

, Lp(γ )).
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In addition, if φ = (φi)i∈N ∈ H2J (γ ), then

ψ(t, x) ∈ C0([0, +∞), H2J (γ )
) ∩ C1([0, +∞), L2(γ )

)
.

This theorem shows the well-posedness of system (1) with initial data in L2 instead of the
energy space. Also, it is worth mentioning that Theorem 1.1 can be extended as follows.

Corollary 1.2 Let φ = (φi)i∈N be a set of initial data in HJ (γ ), then the SPS system (1) has
a unique solution ψ(t, x) satisfying ψ(t, x) ∈ C0([0, +∞), HJ (γ )).

There is a very rich mathematical literature dedicated to the analysis of the Hartree and
Hartree–Fock equations. The well-posedness in the energy space H1(R3) of the Hartree–
Fock equations (δ = 1, k = 1, . . . , N ) was obtained in [18] (see also [19]). An L2 theory was
established, independently, in [16] and [17]. The authors established Strichartz’ type esti-
mates for the free Schrödinger semigroup in some weighted spaces, and used a contraction
argument to conclude. In [20], the authors showed the well-posedness of the classical SPS
system in L2(R3), and in the energy space H1(R3). In the context of higher-order Hartree–
Fock equations, the existence and uniqueness of solutions in L2(R3), H2J (R3) and HJ (R3)
is proved for J ≥ 2 in [6]. Theorem 1.1 extends this result to the case of the SPS system.

2 Proof of Theorem 1.1
In this section we prove Theorem 1.1 by proceeding in two steps. First, we collect a few
technical lemmas providing necessary Lipschitz bounds to set a contraction argument and
obtain the existence and uniqueness of solutions in Lq,p(γ ). The second step consists in the
proof of the existence and uniqueness of solutions in H2J (γ ). From this point onward, κ

will denote variant universal constants that may change from line to line of an inequality,
and we will emphasize it when it depends on important parameters. Also, we shall use the
notation ζ (0) instead of ζ (t = 0) for all functions, and Ψ := ψ – ϕ and ρΨ := ρψ – ρϕ when
there is no confusion.

For all J ∈ N
�, we denote by UJ (t) the propagator of the free higher-order Schrödinger

operator. More precisely,

UJ (t) = e–itHJ , HJ := –
J∑

j=0

α(j)�2j

m2j–1c2j–2 �j.

In particular, UJ (t) is an unitary operator on every Hs for all s ∈ R (see Ref. [6], Proposi-
tion 3.4). In order to prove the existence of solutions, we seek a fixed point of the following
functional:

Λ[ψ](t, x) := UJ (t)φ

– i
∫ t

0
UJ (t – s)

(
cc

1
|x|ψ + cp

(
ρψ �

1
|x|

)
ψ – csρ

1
3
ψ ψ

)
(x, s) ds

:= UJ (t)φ – i
∫ t

0
UJ (t – s)

(
C(ψ) + P(ψ) – S(ψ)

)
(x, s) ds,
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in a well-chosen closed ball. To ease the notation, we shall use the following:

ΛI(ξ )(t, x) :=
∫

I∩{s,t}
UJ (t – s)ξ (s, x) ds,

for all time intervals I , so that we can write

Λ[ψ](t, x) := UJ (t)φ – iΛI
(
C(ψ) + P(ψ) – S(ψ)

)
(t, x). (2)

2.1 Lq,p(γ ) solutions
In this subsection, we prove the first part of Theorem 1.1. For that purpose, we need the
following local Strichartz estimates for the propagator UJ (t).

Lemma 2.1 ([21]) Let J ≥ 2, (q1, p1), (q2, p2) ∈ J , and I a finite time interval of length less
than 1. Then:

1. There exists κ := κ(p1) such that

∥∥UJ (·)ζ
∥∥

Lq1.p1
I (γ ) ≤ κ‖ζ‖L2(γ ), for all ζ ∈ L2(γ ).

2. If I contains the origin, there exists κ := κ(p1, p2) such that

∥∥ΛI(ζ )
∥∥

Lq1.p1
I (γ ) ≤ κ‖ζ‖

L
q2

q2–1 , p2
p2–1

I (γ )
, for all ζ ∈ L

q2
q2–1 , p2

p2–1 (γ ).

This lemma is an extension of the results of [21]. The adaptation of the classical
Strichartz’ estimates to our weighted spaces is straightforward, and we refer the reader
to [17] for a proof. Thanks to Lemma 2.1, we have

∥∥UJ (·)ζ
∥∥
B

q1,p1
I (γ ) ≤ κ(p1)‖ζ‖L2(γ ),

∥∥ΛI(ζ )
∥∥
B

q1,p1
I

≤ κ(p1, p2)‖ζ‖
B

′q2,p2
I (γ ), (3)

whenever the right hand side is finite. Next, we recall the following mass-conservation
property of the SPS system.

Lemma 2.2 Let T > 0 and φ = (φi)i∈N a set of initial data in L2(γ ). If there exists a
weak solution ψ(t) = (ψi(t))i∈N to the SPS system on [0, T], then (ψi(t))i∈N is such that
‖ψ(t)‖L2(γ ) = ‖φ‖L2(γ ) for all t ∈ [0, T].

Proof On the one side, we multiply the SPS system (1) by ψ̄l and integrate with respect
to space. On the opposite side, we replace k by l in (1), take the complex conjugate of the
system, multiply by φl , integrate with respect to space, and integrate by parts the term
–

∑J
j=0

α(j)�2j

m2j–1c2j–2

∫
R3 [�jψ̄l]ψk dx. Eventually, summing up the two equalities leads to the

desired the result. �

Now, we estimate the linear and nonlinear parts in B
′q,p
T (γ ) for all (q, p) ∈ J and T > 0.

First, we have

Lemma 2.3 Let T > 0, (q, p) ∈ J such that 3 < p ≤ 6 and ψ ,ϕ ∈ B
q,p
T (γ ). Then there exists

κ := κ(p) > 0 such that

∥∥C(Ψ )
∥∥
B

′q,p
T (γ ) ≤ κ max

(
T , T1– 3

J ( 1
2 – 2

p ))‖Ψ ‖
B

q,p
T (γ ). (4)
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Proof The proof is based on a cut-off of the Coulomb potential 1
|x| . Indeed, for all function

χ ∈ C∞ such that χ (r) = 1 for 0 ≤ r ≤ 1 and χ (r) = 0 for r ≥ 2, we have clearly

1
|x| =

1
|x|

(
1 – χ

(|r|)) +
1
|x|χ

(|x|) ∈ La + Lb for all (a, b) ∈
[

3
2

, 3[×]3, +∞
]

.

On the one side, we set b = +∞ and obtain

∥∥C(Ψ )χ
(|x|)∥∥L1,2

T (γ ) ≤
∥∥∥∥
χ (|x|)

|x|
∥∥∥∥

L∞
x

T‖Ψ ‖L∞,2
T (γ ) ≤ κT‖Ψ ‖L∞,2

T (γ ).

On the opposite side, using Hölder’s inequality in time and space, combined with the fact
that (q, p) ∈ J, we obtain

∥∥C(Ψ )
(
1 – χ

(|x|))∥∥
L

q
q–1 , p

p–1
T (γ )

≤ T1– 3
J ( 1

2 – 2
p )

∥∥∥∥
χ (|x|)

|x|
∥∥∥∥

L
p

p–2
x

‖Ψ ‖Lq,p
T (γ ).

The right hand side of this estimate is finite for all 3 < p ≤ 6, which ensures that p
p–2 ∈ [ 3

2 , 3[.
Summing up the two inequalities we get (4). �

Now, let us make clear the relation between the norms of the density ρψ and the wave-

function ψ . Thanks to Minkowski’s inequality, we have ‖ψ‖Lp(γ ) ≤ ‖ρ 1
2
ψ ‖Lp for all p ≤ 2.

Also, using the reverse Minkowski inequality for all p ≥ 2, we obtain ‖ρ 1
2
ψ ‖Lp ≤ ‖ψ‖Lp(γ ).

We shall use this property tacitly in the sequel. Now, the Poisson part of the system satisfies
the following.

Lemma 2.4 Let T > 0, (q, p) ∈ J such that 3 < p ≤ 6 and ψ ,ϕ ∈ B
q,p
T (γ ). Then there exists

a constant κ := κ(p) such that

∥∥P(ψ) – P(ϕ)
∥∥
B

′q,p
T (γ )

≤ κ
(‖ψ‖L∞,2(γ ) + ‖ϕ‖L∞,2(γ )

)2
max

(
T , T1– 3

J ( 1
2 – 2

p ))‖Ψ ‖
B

q,p
T (γ ). (5)

Proof The proof is the same as in Ref. [17], we sketch it here for the reader’s convenience.
We have

∥∥P(ψ) – P(ϕ)
∥∥
B

′q,p
T (γ ) ≤

∥∥∥∥

(
ρΨ �

1
|x|

)
ϕ

∥∥∥∥
B

′q,p
T (γ )

+
∥∥∥∥

(
ρψ �

1
|x|

)
Ψ

∥∥∥∥
B

′q,p
T (γ )

.

We shall use the cut-off of the Coulomb potential given in the proof of Lemma 2.3. On the
one hand, recalling that ρψ =

∑
i γi|ψi|2 and using Young’s and Hölder’s inequalities, we

get

∥∥∥∥

(
ρΨ �

χ (|x|)
|x|

)
ϕ

∥∥∥∥
L1,2

T (γ )
≤ κ‖ϕ‖L∞,2(γ )

(‖ψ‖L∞,2(γ ) + ‖ϕ‖L∞,2(γ )
)
T‖Ψ ‖L∞,2

T (γ ),
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and

∥∥∥∥

(
ρΨ �

1 – χ (|x|)
|x|

)
ϕ

∥∥∥∥
L

q
q–1 , p

p–1
T (γ )

≤ κ‖ϕ‖L∞,2(γ )
(‖ψ‖L∞,2(γ ) + ‖ϕ‖L∞,2(γ )

)
T1– 3

J ( 1
2 – 2

p )‖Ψ ‖Lq,p
T (γ ).

Equivalently, we have

∥∥∥∥

(
ρψ �

χ (x)
|x|

)
Ψ

∥∥∥∥
L1,2

T (γ )
≤ κ‖ψ‖2

L∞,2(γ )T‖Ψ ‖L∞,2
T (γ ),

and

∥∥∥∥

(
ρψ �

1 – χ (x)
|x|

)
Ψ

∥∥∥∥
L

q
q–1 , p

p–1
T (γ )

≤ κ‖ψ‖2
L∞,2(γ )T

1– 3
J ( 1

2 – 2
p )‖Ψ ‖Lq,p

T (γ ).

Gathering these estimates, we obtain (5). Observe that the condition 3 < p ≤ 6 is needed
to bound the short-range part of the potential as in Lemma 2.3. �

Now, we provide estimates for the Slater part of the SPS system.

Lemma 2.5 Let T > 0, (q, p) ∈ J with p > 2 and ψ ,ϕ ∈ B
q,p
T (γ ). Then there exists a pair

(r, s) ∈ J such that

∥∥S(ψ) – S(ϕ)
∥∥

L
r

r–1 , s
s–1

T (γ )
≤ κT1– 1

2J
(‖ψ‖ 2

3
Lq,p

T (γ )
+ ‖ϕ‖ 2

3
Lq,p

T (γ )

)‖Ψ ‖L∞,2
T (γ ). (6)

Proof We follow the argument of [20] using different Lq,p(λ) spaces. First, using a first-
order Taylor expansion, we can write for all θ ∈ [0, 1]

S(ψ) – S(ϕ) =
∫ 1

0
∂ζS(ϕ + θΨ ) · Ψ dθ

=
2
3

∫ 1

0
�(〈ϕ + θΨ ,Ψ 〉	2(γ )

)
ρ

– 2
3

ϕ+θΨ (ϕ + θΨ ) dθ

+
∫ 1

0
ρ

1
3
ϕ+θΨ Ψ dθ := T1 + T2.

Indeed, the Fréchet derivative of ρ
1
3
ζ ζ is given by

∂ψ

(
ρ

1
3
ψ ψ

)
h =

2
3
�〈h,ψ〉	2(γ )ρ

– 2
3

ψ ψ + ρ
1
3
ψ h,

where the symbol � denotes the real part of complex numbers, and 〈h,ψ〉	2(γ ) denotes the
Euclidean scalar product in 	2(γ ), 〈h,ψ〉	2(γ ) :=

∑
j γjhjψ̄j. Our aim is to estimate T1 and

T2 in L
p

p–1 , r
r–1 (γ ). The proof of this fact is a straightforward application of Minkowski’s

inequality. Indeed, let (q, p) ∈ J, then using Hölder’s inequality in space and time we
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get

‖T2‖
L

Jp
Jp–1 , 6p

3p+4
T (γ )

≤ ∥∥ρ
1
3
ϕ+θΨ

∥∥
L

Jp
Jp–1 , 3

2 p
T

‖Ψ ‖L∞,2
T (γ )

=
∥∥ρ

1
2
ϕ+θΨ

∥∥ 2
3

L
2
3

Jp
Jp–1 ,p

T

‖Ψ ‖L∞,2
T (γ )

≤ ‖ϕ + θΨ ‖ 2
3

L
2
3

Jp
Jp–1 ,p

T (γ )

‖Ψ ‖L∞,2
T (γ )

≤ T1– 1
2J

(‖ϕ‖ 2
3
Lq,p(γ ) + ‖ψ‖ 2

3
Lq,p(γ )

)‖Ψ ‖L∞,2
T (γ ).

In order to pass from the second to the third line of the estimate above, we used
the fact that ‖ρ 1

2
ζ ‖Lq,p ≤ ‖ζ‖Lq,p(γ ) for all p ≥ 2 and ζ ∈ Lq,p(γ ). Observe that Jp

Jp–1 is
the conjugate of Jp and 6p

3p+4 is the conjugate of 6p
3p–4 , and that the pair (Jp, 6p

3p–4 ) ∈ J.
Eventually, we have obviously 1 – 1

2J > 0 for all J ≥ 2. Now, we make an estimate of
T1:

‖T1‖
L

Jp
Jp–1 , 6p

3p+4
T (γ )

≤ η
∥∥ρ

1
2
ϕ+θΨ ρ

1
2
Ψ ρ

– 2
3

ϕ+θΨ |ϕ + θΨ |∥∥
L

Jp
Jp–1 , 6p

3p+4
T (γ )

≤ η
∥∥ρ

1
2

[ρ
– 1

6
ϕ+θΨ ρ

1
2
Ψ |ϕ+θΨ |]

∥∥
L

Jp
Jp–1 , 6p

3p+4
T

= η
∥∥ρ

– 1
6

ϕ+θΨ ρ
1
2
Ψ ρ

1
2
ϕ+θΨ

∥∥
L

Jp
Jp–1 , 6p

3p+4
T

≤ η
∥∥ρ

1
3
ϕ+θΨ

∥∥
L

Jp
Jp–1 , 3

2 p
T

∥∥ρ
1
2
Ψ

∥∥
L∞,2

T

≤ ηT1– 1
2J

(‖ϕ‖ 2
3
Lq,p(γ ) + ‖ψ‖ 2

3
Lq,p(γ )

)‖Ψ ‖L∞,2
T (γ ).

In the first line, we used the Cauchy–Schwartz inequality, |〈h,ψ〉	2(γ )|2 ≤ ρψρh and the

notation |ζ | = (|ζj|)j∈N. In the second line, we used the fact that ‖ζ‖Lq,p(γ ) ≤ ‖ρ 1
2
ζ ‖Lq,p for

all p ≤ 2 and ζ ∈ Lq,p(γ ). Clearly, we have 6p
3p+4 ≤ 2. Eventually, the proof of the lemma is

achieved by setting (r, s) = (Jp, 6p
3p–4 ). �

Now, we are able to set up a contraction argument to prove the first part of Theorem 1.1.
Let 0 < T ≤ 1 to be fixed later on, φ = (φi)i∈N be a set of orthonormal initial data in L2(γ ),
and ψ = (ψi)i∈N, ϕ = (ϕi)i∈N in the following closed ball:

BR :=
{
ζ ∈B

q,p
T (γ ) ∩ L∞(

[0, T]; L2(γ )
)
,‖ζ‖

B
q,p
T (γ ) ≤ R

}
.

Using Lemmas 2.1–2.5, we can write for all (q, p) ∈ J such that 3 < p ≤ 6 and J ≥ 2, We
have

∥∥Λ[ψ](t, x)
∥∥
B

q,p
T (γ )

≤ κ(p)‖φ‖L2(γ )

+ κ(p) max
(
T , T1– 3

J ( 1
2 – 2

p ), T1– 1
2J

)(
1 + ‖φ‖2

L2(γ ) + ‖ψ‖ 2
3
Lq,p

T (γ )

)‖ψ‖
B

q,p
T (γ ).
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Now, since 3
J ( 1

2 – 2
p ) ≤ 1

2J , we let R := 2κ(p)‖φ‖L2(γ ) and

T ≤ min
{

1,
[
2κ(p)

(
1 + 4κ2(p)‖φ‖2

L2(γ ) +
(
2κ(p)‖φ‖L2(γ )

) 2
3
)]– 2Jp

2Jp–3p+6
}

.

Therefore, we get

∥∥Λ[ψ](t, x)
∥∥
B

q,p
T (γ )

≤ R
2

+ κ(p)T1– 3
J ( 1

2 – 2
p )(1 + 4κ2(p)‖φ‖2

L2(γ ) +
(
2κ(p)‖φ‖L2(γ )

) 2
3
)
R ≤ R.

This shows that Λ maps BR into itself. Equivalently,

∥∥Λ[ψ](t, x) – Λ[ϕ](t, x)
∥∥
B

q,p
T (γ )

≤ κ(p) max
(
T , T1– 3

J ( 1
2 – 2

p ), T1– 1
2J

)

× (
1 + 2‖φ‖2

L2(γ ) +
(‖ψ‖ 2

3
Lq,p

T (γ )
+ ‖ϕ‖Lq,p

T (γ )
) 2

3
)‖Ψ ‖

B
q,p
T (γ ).

Therefore, if we now let

T ≤ min
{

1,
[
4κ(p)

(
1 + 4κ2(p)‖φ‖2

L2(γ ) +
(
2κ(p)‖φ‖L2(γ )

) 2
3
)]– 2Jp

2Jp–3p+6
}

,

then there exists a constant 0 < η̃ < 1 such that

∥∥Λ[ψ](t, x) – Λ[ϕ](t, x)
∥∥
B

q,p
T (γ ) ≤ η̃‖ψ – ϕ‖

B
q,p
T (γ ). (7)

We infer that Λ is a strict contraction on BR. Therefore, the SPS system has a solution
in L∞([0, T]; L2(γ )). Moreover, the solution is unique in L∞([0, T]; L2(γ )) ∩ Lq,p

T for all
(q, p) ∈ J such that 3 < p ≤ 6. The fact that the solution is in C0([0, T]; L2(γ )) follows using
standard arguments. The last point to make clear is the global existence of the solution,
which is a consequence of Lemma 2.2. Indeed, the time T > 0 fixed above depends only
on the L2 norm of the initial data, which is conserved by the dynamics of the SPS system.
Thus, one can reiterate the contraction argument to cover the whole real line.

2.2 H2J(γ ) solutions
In this section we prove the second part of Theorem 1.1. For that purpose, we follow the
method of Kato (see Refs. [22, 23]) by setting a fixed point argument. From this point
onward, we shall use the notation Cp

T X := Cp([0, T]; X), Lp
T X := Lp([0, T]; X) and W q,p

T X :=
W q,p([0, T]; X) for a given functional space X. Let us summarize the following properties
associated with the operator UJ (t).

Lemma 2.6 Let J ≥ 2, (q, p) ∈ J and ζ ∈ H2J (γ ), then for all t ∈ [0, T] we have UJ (t)ζ ∈
C0

T H2J (γ ) and ‖UJ (t)ζ‖L∞
T H2J (γ ) ≤ ‖ζ‖H2J (γ ). Moreover, UJ (t)ζ ∈ C1

T L2(γ ) ∩ W 1,q
T Lp(γ ) and

there exists a constant κ =: κ(p) such that ‖UJ (t)ζ‖W 1,q
T Lp(γ ) ≤ κ‖ζ‖H2J (γ ).
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Proof The first assertion follows immediately from the expression of UJ (t) in Fourier vari-
ables. Now, let ζ be an initial data to the equation

i∂tψ =
J∑

j=1

(–1)j+1 α(j)�2j

m2j–1c2j–2 (–�)jψ .

Then the second assertion is a consequence of Strichartz’ estimates given in Lemma 2.1
and the fact that

∂tψ = i
J∑

j=1

(–1)j α(j)�2j

m2j–1c2j–2 (–�)jψ = iUJ (t)
J∑

j=1

(–1)j α(j)�2j

m2j–1c2j–2 (–�)jζ .

This finishes the proof. �

This lemma provides an estimate which is equivalent to the first estimate in (3). The
equivalent of the second estimate in (3) is a direct consequence of the following.

Lemma 2.7 Let J ≥ 2, (q1, p1), (q2, p2) ∈ J and ζ ∈ L∞,2
T (γ ) such that ∂tζ ∈ L

q2
q2–1 , p2

p2–1
T (γ ).

Then Λ[0,T](ζ ) ∈ L∞
T H2J (γ ) ∩ C1

T L2(γ ) ∩ W 1,q1
T Lp1 (γ ) and

∥∥Λ[0,T](ζ )
∥∥

Lq1,p1
T (γ ) ≤ κ(p1)‖ζ‖L1,2

T (γ ),
∥∥∂tΛ[0,T](ζ )

∥∥
Lq1,p1

T (γ ) ≤ κ(p1)
∥∥ζ (0)

∥∥
L2(γ ) + κ(p1, p2)‖∂tζ‖

L
q2

q2–1 , p2
p2–1

T (γ )
,

∥∥(–�)JΛ[0,T](ζ )
∥∥

L∞,2
T (γ ) ≤ ‖ζ‖L∞,2

T (γ ) + κ
∥∥ζ (0)

∥∥
L2(γ ) + κ(p2)‖∂tζ‖

L
q2

q2–1 , p2
p2–1

T (γ )
.

Moreover, if ζ ∈ C0
T L2(γ ), then Λ[0,T](ζ ) ∈ C0

T H2J (γ ).

Proof The proof is based on Strichartz’ estimates given in Lemma 2.1. Indeed, the first
assertion is nothing but the second estimate in Lemma 2.1 with the pair (1, 2) as the con-
jugate of (∞, 2) ∈ J. To prove the second assertion, we observe that

∂tΛ[0,T](ζ ) = Λ[0,T](∂tζ ) + UJ (t)ζ (0).

This formula is justified by the fact that ∂tζ ∈ B
′q2,p2
T ⊂ L1

T H–J (γ ), thus ζ ∈ C0
T H–J (γ ). In

particular ζ (0) makes sense, actually it belongs to L2(γ ). Thanks to Lemma 2.1, we have

∥∥∂tΛ[0,T](ζ )
∥∥

Lq1,p1
T

≤ κ(p)‖∂tζ‖
L

q2
q2–1 , p2

p2–1
T

+ κ
∥∥ζ (0)

∥∥
L2(γ ).

In order to prove the last assertion, we write

(–�)JΛ[0,T](ζ ) = i
(
–∂tΛ[0,T](ζ ) + ζ

)
.

This formulation is justified by the same argument as above, thus we have (–�)JΛ[0,T](ζ ) ∈
L∞,2

T (γ ), and the desired estimate follows immediately using the second assertion. �
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Now, we have C(ψ) +P(ψ) –S(ψ) : H2J (γ ) → L2. Thus, it is rather easy to see that there
exists 0 ≤ s < 2J such that C(ψ) + P(ψ) – S(ψ) ∈ C0(Hs(γ ), L2(γ )). For instance, if we fix
s ≥ 1, we have

∥∥C(ψ)
∥∥

L2(γ ) ≤ 2‖∇ψ‖L2(γ ) ≤ 2‖ψ‖Hs(γ ),
∥∥P(ψ)

∥∥
L2(γ ) ≤ 2‖∇ψ‖L2(γ )‖ψ‖2

L2(γ ) ≤ 2‖ψ‖3
Hs(γ ), (8)

∥∥S(ψ)
∥∥

L2(γ ) ≤ ‖ψ‖ 2
3
L2(γ )‖ψ‖L6(γ ) ≤ ‖ψ‖ 5

3
Hs(γ ).

That is, C(ψ)+P(ψ)–S(ψ) ∈ L∞,2
T (γ ) for all ψ ∈ L∞

T Hs(γ ). Also, there exists a continuous
function η : R�

+ → R
�
+ such that, for every ψ ∈ L∞

T Hs(γ ) satisfying ‖ψ‖L∞
T Hs(γ ) ≤ K , we

have

∥∥C(ψ) + P(ψ) – S(ψ)
∥∥

L∞,2
T (γ ) ≤ η(K). (9)

Let us write C = C1 + C2, and equivalently for P with respect to the short and long ranges
of 1

|x| . Then we have the following.

Lemma 2.8 Let T > 0, 3 < p̄ ≤ 6, 2 < p̃ < 6, and q̄, q̃ such that (q̄, p̄), (q̃, p̃) ∈ J. Then, for all
ψ ∈ L∞

T Hs(γ ) such that ‖ψ‖L∞
T Hs(γ ) ≤ K and ∂tψ ∈ Lq̄,p̄

T (γ ) ∩ L∞,2
T (γ ), we have

∥∥∂tC1(ψ)
∥∥

L1,2
T (γ ) ≤ κT‖∂tψ‖L∞,2

T (γ ),

∥∥∂tC2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1

T (γ )
≤ κT1– 3

J ( 1
2 – 1

p̄ )‖∂tψ‖Lq̄,p̄
T (γ ),

∥∥∂tP1(ψ)
∥∥

L1,2
T (γ ) ≤ κK2T‖∂tψ‖L∞,2

T (γ ),

∥∥∂tP2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1 (γ )

≤ κK2T1– 3
J ( 1

2 – 1
p̄ )‖∂tψ‖Lq̄,p̄

T (γ ),

∥∥∂tS(ψ)
∥∥

L
q̃

q̃–1 , p̃
p̃–1 (γ )

≤ κK
2
3 T1– 3

2J ( 1
2 – 1

p̃ )‖∂tψ‖L∞,2
T (γ ).

Proof Thanks to Lemmas 2.3–2.5, if ψ ,ϕ ∈ H2J (γ ) such that ‖ψ‖Hs(γ ),‖ψ‖Hs(γ ) ≤ K , then
for all 3 < p̄ ≤ 6 and 2 < p̃ < 6 we have

∥∥C1(ψ) – C1(ϕ)
∥∥

L2(γ ) ≤ κ‖Ψ ‖L2(γ ),
∥∥C2(ψ) – C2(ϕ)

∥∥
L

p̄
p̄–1 (γ )

≤ κ‖Ψ ‖Lp̄(γ ),

∥∥P1(ψ) – P1(ϕ)
∥∥

L2(γ ) ≤ κK2‖Ψ ‖L2(γ ),
∥∥P2(ψ) – P2(ϕ)

∥∥
L

p̄
p̄–1 (γ )

≤ κK2‖Ψ ‖Lp̄(γ ),

∥∥S(ψ) – S(ϕ)
∥∥

L
p̃

p̃–1 (γ )
≤ κK

2
3 ‖Ψ ‖L2(γ ).
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Consequently, thanks to Proposition 1.3.12 of [23], we have

∥∥∂tC1(ψ)
∥∥

L1,2
T (γ ) ≤ κ‖∂tψ‖L1,2

T (γ ),
∥∥∂tP1(ψ)

∥∥
L1,2

T (γ ) ≤ κK2‖∂tψ‖L1,2
T (γ ),

∥∥∂tC2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1

T (γ )
≤ κ‖∂tψ‖

L
q̄

q̄–1 ,p̄
T (γ )

,

∥∥∂tP2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1 (γ )

≤ κK2‖∂tψ‖
L

q̄
q̄–1 ,p̄
T (γ )

,

∥∥∂tS(ψ))
∥∥

L
q̃

q̃–1 , p̃
p̃–1 (γ )

≤ κK
2
3 ‖∂tψ‖

L
q̃

q̃–1 ,2
T (γ )

.

Eventually, applying Hölder’s inequality in time finishes the proof. �

Next, we set a fixed point argument and finish the proof of Theorem 1.1. First, ob-
serve that the SPS system (1) and the Duhamel formulation (2) are equivalents. Indeed,
let ψ ∈ L∞

T Hs(γ ), then (–�)Jψ ∈ L∞
T Hs–2J (γ ) since (–�)Jψ ∈ L(Hs, Hs–2J ). Moreover, for

all T > 0, C(ψ) + P(ψ) – S(ψ) : I → L2(γ ) is measurable since C(ψ) + P(ψ) – S(ψ) ∈
C0(Hs(γ ), L2(γ )) and bounded since it is bounded on bounded sets, thus C(ψ) + P(ψ) –
S(ψ) ∈ L∞,2

T (γ ). Therefore, Eqs. (1) and (2) are well defined on L2(γ ). The equivalence
follows using the fact that (UJ (t))t∈R is a group of isometries on L2(γ ).

Let 0 ≤ s < 2J such that the three estimates (8) hold true, and (q, p) ∈ J such that p =
max{p̄, p̃} of Lemma 2.8. Also, let T , K > 0 be fixed hereafter, and introduce the space

L(γ ) :=
{
ψ ∈ L∞

T Hs(γ ) ∩ W 1,∞
T L2(γ ) ∩ W 1,q

T Lr(γ ) such that

‖ψ‖L∞
T Hs(γ ) + ‖ψ‖W 1,∞

T L2(γ ) + ‖ψ‖W 1,q
T Lr(γ ) ≤ K and ψ(0) = φ

}
.

Notice that L(γ ) �= ∅ for all γ > 0 since ψ(t) = ϕ ∈ L and that (L, d) is a complete metric
space when endowed with the distance d(ψ ,ϕ) = ‖ψ – ϕ‖

B
q,p
T

. Thanks to (8), in particular
(9), we see that Λ[0,T](C(ψ) + P(ψ) + S(ψ))(t, x) belongs to C0

T L2(γ ), therefore it is well
defined. Now, thanks to Hölder’s inequality, if ψ ∈L(γ ), then ψ ∈ W 1,q̄

T Lp̄(γ ). Indeed,

‖ψ‖W 1,q̄
T Lp̄(γ ) =

(‖ψ‖2
Lq̄,p̄

T (γ )
+ ‖∂tψ‖2

Lq̄,p̄
T (γ )

) 1
2

≤ (‖ψ‖2 2(p–p̄)
p̄(p–2)

L∞,2
T (γ )

‖ψ‖2 p(p̄–2)
p̄(p–2)

Lq,p
T (γ )

+ ‖∂tψ‖2 2(p–p̄)
p̄(p–2)

L∞,2
T (γ )

‖∂tψ‖2 p(p̄–2)
p̄(p–2)

Lq,p
T (γ )

) 1
2

≤ K
2(p–p̄)
p̄(p–2)

(‖ψ‖2 p(p̄–2)
p̄(p–2)

Lq,p
T (γ )

+ ‖∂tψ‖2 p(p̄–2)
p̄(p–2)

Lq,p
T (γ )

) 1
2 ≤ K

2(p–p̄)
p̄(p–2) K

p(p̄–2)
p̄(p–2) = K .

With Lemma 2.8, one deduces the following estimates:

∥∥∂tC1(ψ)
∥∥

L1,2
T (γ ) ≤ κKT ,

∥∥∂tC2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1

T (γ )
≤ κKT1– 3

J ( 1
2 – 1

p̄ ),

∥∥∂tP1(ψ)
∥∥

L1,2
T (γ ) ≤ κK3T ,

∥∥∂tP2(ψ)
∥∥

L
q̄

q̄–1 , p̄
p̄–1 (γ )

≤ κK3T1– 3
J ( 1

2 – 1
p̄ ),

‖∂tS(ψ))‖
L

q̃
q̃–1 , p̃

p̃–1 (γ )
≤ κK

5
3 T1– 3

2J ( 1
2 – 1

p̃ ).
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Next, using (9) with the first estimate of Lemma 2.7, we obtain the existence of a constant
κ̃ independent of K and T such that

∥∥Λ[0,T]
(
C(ψ) + P(ψ) + S(ψ)

)∥∥
L∞,2

T (γ ) ≤ κ̃Tη(K). (10)

The other estimates of Lemma 2.7 show that Λ[0,T](C(ψ) + P(ψ) + S(ψ)) ∈ L∞
T H2J (γ ) ∩

W 1,l
T Lm(γ ) for all ψ ∈ L(γ ) and all pairs (l, m) ∈ J. Also, using Lemma 2.7 and estimates

(9)–(10), we obtain (by possibly choosing a larger κ̃)

∥∥Λ[0,T]
(
C(ψ) + P(ψ) + S(ψ)

)∥∥
W 1,∞

T L2(γ )

+
∥∥Λ[0,T]

(
C(ψ) + P(ψ) + S(ψ)

)∥∥
W 1,q

T Lp(γ )

≤ κ̃
(
Tη(K) +

∥∥C1(φ)
∥∥

L2(γ ) +
∥∥C2(φ)

∥∥
L2(γ ) +

∥∥P1(φ)
∥∥

L2(γ ) +
∥∥P2(φ)

∥∥
L2(γ )

+
∥∥S(φ)

∥∥
L2(γ ) +

[
K + K3][T + T1– 3

J ( 1
2 – 1

p̄ )] + K
5
3 T1– 3

2J ( 1
2 – 1

p̃ )),

and

∥∥Λ[0,T]
(
C(ψ) + P(ψ) + S(ψ)

)∥∥
L∞

T H2(γ )

≤ κ̃
(
[1 + T]η(K) +

∥∥C1(φ)
∥∥

L2(γ ) +
∥∥C2(φ)

∥∥
L2(γ ) +

∥∥P1(φ)
∥∥

L2(γ ) +
∥∥P2(φ)

∥∥
L2(γ )

+
∥∥S(φ)

∥∥
L2(γ ) +

[
K + K3][T + T1– 3

J ( 1
2 – 1

p̄ )] + K
5
3 T1– 3

2J ( 1
2 – 1

p̃ )).

Combining these estimates with Lemma 2.6 and (10), we obtain (by possibly choosing
larger κ̃)

∥∥Λ[ψ]
∥∥

L∞,2
T (γ ) ≤ κ̃

(
Tη(K) + ‖φ‖H2J (γ )

)
, (11)

∥∥Λ[ψ]
∥∥

W 1,∞
T L2(γ ) +

∥∥Λ[ψ]
∥∥

W 1,q
T Lp(γ )

≤ κ̃
(‖φ‖H2J (γ ) + Tη(K) +

∥∥C1(φ)
∥∥

L2(γ )

+
∥∥C2(φ)

∥∥
L2(γ ) +

∥∥P1(φ)
∥∥

L2(γ ) +
∥∥P2(φ)

∥∥
L2(γ ) +

∥∥S(φ)
∥∥

L2(γ )

+
[
K + K3][T + T1– 3

J ( 1
2 – 1

p̄ )] + K
5
3 T1– 3

2J ( 1
2 – 1

p̃ )). (12)

Also,

∥∥Λ[ψ]
∥∥

L∞
T H2(γ ) ≤ κ̃

(‖φ‖H2J (γ ) + [1 + T]η(K) +
∥∥C1(φ)

∥∥
L2(γ ) +

∥∥C2(φ)
∥∥

L2(γ )

+
∥∥P1(φ)

∥∥
L2(γ ) +

∥∥P2(φ)
∥∥

L2(γ ) +
∥∥S(φ)

∥∥
L2(γ )

+
[
K + K3][T + T1– 3

J ( 1
2 – 1

p̄ )] + K
5
3 T1– 3

2J ( 1
2 – 1

p̃ )). (13)

Next, we choose K in L(γ ) such that

K = 4κ̃
(‖φ‖H2J (γ ) +

∥∥C1(φ)
∥∥

L2(γ ) +
∥∥C2(φ)

∥∥
L2(γ )

+
∥∥P1(φ)

∥∥
L2(γ ) +

∥∥P2(φ)
∥∥

L2(γ ) +
∥∥S(φ)

∥∥
L2(γ )

)
,
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and

T < min
{

1,
[
K

(
4κ̃

(
η(K) + K + K3 + K

5
3
))–1] 2Jp̄

p̄(2J–3)+6
}

.

Hence, using (12) we obtain

∥∥Λ[ψ]
∥∥

W 1,∞
T L2(γ ) +

∥∥Λ[ψ]
∥∥

W 1,q
T Lp(γ ) <

1
2

K .

Eventually, using the interpolation inequality ‖ψ‖Hs(γ ) ≤ ‖ψ‖ 2–s
2

L2(γ )‖ψ‖ s
2
H2J (γ ), and the esti-

mates (11) and (13), and possibly choosing T smaller, we obtain

∥∥Λ[ψ]
∥∥

L∞
T Hs(γ ) <

1
2

K .

In particular, the functional Λ maps L(γ ) into itself. A slight modification of the esti-
mates of the nonlinear terms of the SPS system shows that one can choose T possibly
smaller in order to show that the mapping Λ is a strict contraction on the complete
metric (L(γ ), d). Therefore, we can deduce the existence of a fixed point ψ ∈ L(γ ) solv-
ing the system (1) with initial data φ ∈ H2J (γ ). Lemma 2.6 and Lemma 2.7 allow one
to deduce that ψ(t, x) ∈ C0

T H2J (γ ) ∩ C1
T L2(γ ). For this purpose, the technical point is

to show that C(ψ) + P(ψ) – S(ψ) ∈ C0
T L2(γ ). This can be achieved by observing that

ψ ∈ C0
T L2(γ ) and using (13) to obtain ψ ∈ L∞

T H2J (γ ). Eventually, the interpolation in-
equality used before leads to ψ ∈ C0

T Hs(γ ), hence C(ψ) + P(ψ) – S(ψ) ∈ C0
T L2(γ ) since

C(ψ) +P(ψ) –S(ψ) ∈ C(Hs(γ ), L2(γ )). Observe that ψ ∈ W 1,l
T Lm(γ ) for all pairs (l, m) ∈ J,

and the uniqueness of the solution readily follows using a difference argument (the proof
is in the same spirit of the one showing that the mapping Λ is a strict contraction). The
blow-up alternative and the continuous dependence on the initial data can be shown using
standard arguments, and we refer to, e.g., [23]. Eventually, notice that the time T depends
on J , p, p̄, p̃ and K , and that K depends only on the initial data, therefore one can reiter-
ate the argument (with initial data ψ(T),ψ(2T), . . .) and cover the whole real line, which
finishes the proof of Theorem 1.1.

2.3 HJ(γ ) solutions
The proof of Corollary 1.2 can be achieved using a limiting procedure based on Theo-
rem 1.1. Indeed, we construct a solution in HJ (γ ) as a limit of a sequence of solutions in
H2J (γ ). The proof is standard, we skip it and refer to [23] for similar arguments (see also
[20]). The key point is to show the boundedness of ψ in HJ (γ ), which is a consequence of
the following.

Lemma 2.9 Let T > 0 and φ = (φi)i∈N a set initial data in H2J (γ ) and ψ(t) = (ψi(t))i∈N the
associated solution to the SPS system. Then, for all t ∈ [0, T], we have

EJ (ψ) := –
∑

k∈N

J∑

j=0

(–1)j α(j)�2j

m2j–1c2j–2

∫

R3

∣∣(–�)
j
2 ψk(t, x)

∣∣2 dx + cc

∫

R3

ρψ (t, x)
|x| dx

+
1
2

cp

∫

R3

∫

R3

ρψ (t, x)ρψ (t, y)
|x – y| dx dy –

3
4

cs

∫

R3
ρ

4
3
ψ (t, x) dx = EJ (φ).



Trabelsi Boundary Value Problems        (2018) 2018:181 Page 14 of 15

Proof The proof is standard. The higher-order operator and the Slater terms do not bring
any new difficulties, and we refer the reader to [18] for an explicit proof in the case of
Hartree and Hartree–Fock, and to [15, 24] for a proof in a more general setting (see
also [25] for the pseudo-relativistic case, that is, when the kinetic operator is given by√

–α2�xi + α–4 where α > 0 denotes Sommerfeld’s fine structure constant). �

To show that there exists a constant such that ‖ψ‖L∞
T HJ (γ ) ≤ C for all T > 0, we need to

control the kinetic part of the energy which obviously depends on the parity of J . For this
purpose, we need the following Gagliardo–Nirenberg inequality:

∥∥(–�)
s
2 ψ

∥∥
L2(γ ) ≤ η

∥∥(–�)
J
2 ψ

∥∥
s
J
L2(γ )‖ψ‖1– s

J
L2(γ ). (14)

Therefore, it is enough to focus on the leading term in the kinetic energy part, namely
(–1)J+1 α(J)�2J

m2J–1c2J–2 ‖� J
2 ψ‖L2(γ ). Let us assume that J is odd. Then, using (14) with the mass

conservation and the estimate
∫

R3
ρ

4
3
ψ (t, x) dx ≤ κ‖ψ‖ 8

3

H
3
8 (γ )

,

we infer that the leading term in the kinetic part dominates the Slater correction since
J > 3

8 . Thus ψ ∈ L∞
T HJ (γ ). Now, assume J is even, then again using (14) with the mass

conservation and the estimates
∫

R3

ρψ (x)
|x| dx ≤ ‖ψ‖2

L2(γ ) + ‖ψ‖L2(γ )‖ψ‖
L

8
3 (γ )

≤ ‖ψ‖2
L2(γ ) + ‖ψ‖

H
3
8 (γ )

,
∫

R3

∫

R3

ρψ (t, x)ρψ (t, y)
|x – y| dx dy ≤ κ‖ψ‖ 4

3
L2(γ )‖ψ‖ 8

3

L
8
3 (γ )

≤ κ‖ψ‖ 4
3
L2(γ )‖ψ‖ 8

3

H
3
8 (γ )

,

we infer that the leading term of the kinetic part dominates the potential part. Therefore
ψ ∈ L∞

T HJ (γ ).
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