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Abstract
In this paper we investigate the existence and multiplicity of homoclinic solutions for
the following damped vibration problem:

ü + q(t)u̇ – L(t)u +Wu(t,u) = 0, (DS)

where q :R → R is a continuous function, L ∈ C(R,Rn2 ) is a symmetric and positive
definite matrix for all t ∈ R andW ∈ C1(R×R

n,R). The novelty of this paper is that,
assuming lim|t|→+∞ Q(t) = +∞ (Q(t) =

∫ t
0 q(s)ds) and L is coercive at infinity, we

establish one new compact embedding theorem. Subsequently, supposing thatW
satisfies the global Ambrosetti–Rabinowitz condition, we obtain some new criterion
to guarantee the existence of homoclinic solution of (DS) using the mountain pass
theorem. Moreover, ifW is even, then (DS) has infinitely many homoclinic solutions.
Recent results in the literature are generalized and significantly improved.
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1 Introduction
The purpose of this work is to deal with the existence of homoclinic solutions for the
following damped vibration problem:

ü + q(t)u̇ – L(t)u + Wu(t, u) = 0, (DS)

where q : R →R is a continuous function such that

lim|t|→+∞ Q(t) = +∞, (1.1)

with Q(t) =
∫ t

0 q(s) ds, L ∈ C(R,Rn2 ) is a symmetric and positive definite matrix for all t ∈R

and W ∈ C1(R×R
n,R).
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When q(t) ≡ 0, (DS) is just the following second order Hamiltonian system:

ü – L(t)u + Wu(t, u) = 0. (HS)

It is well known that the existence of homoclinic solutions for Hamiltonian systems and
their importance in the study of the behavior of dynamical systems have been recognized
from Poincaré [16]. They may be “organizing centers” for the dynamics in their neigh-
borhood. From their existence one may, under certain conditions, infer the existence of
chaos nearby or the bifurcation behavior of periodic orbits. In the past two decades, with
the works of [15] and [18], variational methods and critical point theory have been suc-
cessfully applied for the search of the existence and multiplicity of homoclinic solutions
of (HS). Assuming that L(t) and W (t, u) are independent of t or T-periodic in t, many
authors have studied the existence of homoclinic solutions for the Hamiltonian system
(HS) (see, for instance, [3, 6, 8, 18, 26] and the references therein) and some more general
Hamiltonian systems are considered in the recent papers [10, 12, 22]. In this case, the ex-
istence of homoclinic solutions can be obtained by going to the limit of periodic solutions
of approximating problems.

If L(t) and W (t, u) are neither autonomous nor periodic in t, the existence of homo-
clinic solutions of (HS) is quite different from the periodic systems because of the lack of
compactness of the Sobolev embedding, see for instance [1, 11, 15, 19] and the references
therein. It is worthy of pointing out that to obtain the existence of homoclinic solutions
of (HS), the following so-called global Ambrosetti–Rabinowitz condition ((AR) condition,
see (W1) below) on W due to Ambrosetti–Rabinowitz (e.g., [2]) is assumed in the works
mentioned above, which implies that W (t, u) is of superquadratic growth as |u| → +∞.
However, there are lots of potentials which are superquadratic as |u| → +∞ but do not
satisfy the (AR) condition. Therefore, many authors have been focusing their attention
on obtaining the existence of homoclinic solutions under the conditions weaker than the
(AR) condition, see for instance [7, 13, 14, 23, 32] and the references listed therein. In ad-
dition, to verify the (PS) condition for the corresponding energy functional of (HS), the
following coercive assumption on L is often needed:

(L) L ∈ C(R,Rn2 ) is a symmetric and positive definite matrix for all t ∈ R, and there is
a continuous function β : R → R such that β(t) > 0 for all t ∈ R and (L(t)u, u) ≥
β(t)|u|2 and β(t) → +∞ as |t| → +∞,

which indicates that the smallest eigenvalue l(t) of L(t) is coercive, i.e.,

l(t) → +∞ as |t| → +∞, (1.2)

where l(t) := inf|u|=1(L(t)u, u), (·, ·) : Rn × R
n → R denotes the standard inner product in

R
n and subsequently | · | is the induced norm.
Compared with the literature available for W (t, u) being superquadratic as |u| → +∞,

the study of the existence of homoclinic solutions of (HS) under the assumption that
W (t, u) is subquadratic at infinity is much more recent and the number of references is
considerably smaller, see for instance [8, 20, 21, 28, 29], where some other types of coer-
cive conditions on L are also utilized. In addition, the existence of homoclinic solutions
under the condition that W (t, u) is asymptotically quadratic at infinity has also been in-
vestigated by many researchers, see for instance [9, 24, 30, 32].
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As far as the case that q(t) �= 0 is concerned, to our best knowledge, there is little research
about the existence of homoclinic solutions of (DS). In the recent paper [31], for the first
time the authors investigated the existence of fast homoclinic solutions for the following
special case of (DS):

ü + cu̇ – L(t)u + Wu(t, u) = 0, t ∈R, u ∈R
n, (1.3)

with W (W (t, u) = a(t)|u|γ , 1 < γ < 2) is subquadratic at infinity and c ≥ 0 via a standard
minimizing argument, which has been improved in [4] where, using the genus property
in critical point theory, the authors considered the case that q satisfies (1.1) and W (t, u)
is of subquadratic growth and obtained the existence of infinitely many fast homoclinic
solutions of (DS). In addition, in [25], the authors studied the existence of solutions for the
following damped vibration problems:

⎧
⎨

⎩

ü(t) + q(t)u(t) = L(t)u(t) + Wu(t, u), a.e. t ∈ [0, T],

u(0) – u(T) = u̇(0) – eQ(T)u̇(T) = 0,

using the variational methods, where Q(T) =
∫ T

0 q(s) ds.
Motivated by the above papers, in this paper we use the mountain pass theorem to es-

tablish some new criterion to guarantee (DS) has infinitely many fast homoclinic solutions
for the case that W satisfies the (AR) condition. In the following, in order to introduce the
concept of fast homoclinic solutions of (DS) conveniently, we firstly describe some prop-
erties of the weighted Sobolev space E on which the energy functional associated with
(DS) is defined. Letting

E =
{

u ∈ H1(
R,Rn) :

∫

R

eQ(t)[∣∣u̇(t)
∣
∣2 +

(
L(t)u(t), u(t)

)]
dt < +∞

}

,

where Q(t) is defined in (1.1), and for any u, v ∈ E, define

(u, v)E =
∫

R

eQ(t)[(u̇(t), v̇(t)
)

+
(
L(t)u(t), v(t)

)]
dt.

Then the space E is a Hilbert space with the above inner product, and the corresponding
norm is

‖u‖ =
{∫

R

eQ(t)[∣∣u̇(t)
∣
∣2 +

(
L(t)u(t), u(t)

)]
dt

}1/2

. (1.4)

Here, H1(R,Rn) denotes the Banach spaces of functions on R with values in R
n under the

norm

‖u‖H1 :=
(‖u‖2

2 + ‖u̇‖2
2
)1/2.

Throughout this paper, we adopt the definition of [4] for fast homoclinic solution of
(DS):
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Definition 1.1 If (1.1) holds, a solution u of (DS) is called a fast homoclinic solution if
u ∈ E.

In what follows, we can state our main result. For the convenience of statement, W (t, u)
is assumed to satisfy the following conditions:

(W1) There is a constant μ > 2 such that, for every t ∈ R and u ∈ R
n\{0},

0 < μW (t, u) ≤ (
Wu(t, u), u

)
;

(W2) Wu(t, u) = o(|u|) as |u| → 0 uniformly with respect to t ∈R;
(W3) There exists W ∈ C(Rn,R) such that |Wu(t, u)| ≤ |W (u)| for every t ∈ R and

u ∈R
n.

Theorem 1.2 Suppose that (1.1), (L), and (W1)–(W3) are satisfied, then (DS) has at least
one nontrivial fast homoclinic solution. Moreover, if we assume that W (t, u) is even in u,
i.e.,

(W4) W (t, u) = W (t, –u) for all t ∈R and u ∈R
n,

then (DS) possesses infinitely many distinct fast homoclinic solutions.

Remark 1.3 In (DS), if q(t) ≡ 0, then Theorem 1.2 (under the same hypothesis on L and
W (t, u)) reaches the results in [15](see its Theorem 1 and Theorem 2). Therefore, we ex-
tend the results of [15] for (HS) to the more general situations (DS).

It is worth pointing out that an open problem was proposed in [31], explicitly, how to
obtain the existence of fast homoclinic solutions of (1.3) for the case that W satisfies the
(AR) condition using the mountain pass theorem. Here, Theorem 1.2 gives some partial
answer to this open problem. For some recently related results, we refer the reader to
[5, 27].

Remark 1.4 From (L), it is easy to obtain that there exists a constant β > 0 such that

(
L(t)u, u

) ≥ β|u|2, ∀(t, u) ∈R×R
n. (1.5)

(W1) is called the global Ambrosetti–Rabinowitz condition due to Ambrosetti and Ra-
binowitz (see [2]), which implies that

W (t, u) ≤ W
(

t,
u
|u|

)

|u|μ, 0 < |u| ≤ 1,

W (t, u) ≥ W
(

t,
u
|u|

)

|u|μ, |u| ≥ 1.
(1.6)

In fact, it suffices to show that for every u �= 0 and t ∈ R the function (0, +∞) � ξ →
W (t, ξ–1u)ξμ is non-increasing, which is an immediate consequence due to (W1). More-
over, choose η(t) = min|u|=1 W (t, u) > 0, one has

W (t, u) ≥ η(t)|u|μ (1.7)
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for every t ∈ R and |u| ≥ 1. In addition, by (W1) and (W2), we have W (t, u) = o(|u|2) as
|u| → 0 uniformly with respect to t ∈R, i.e., for any ε > 0, there is δ > 0 such that

W (t, u) ≤ ε|u|2 for (t, u) ∈R×R
n, |u| ≤ δ. (1.8)

Furthermore, by (W2) and (W3), for any u ∈ R
n such that |u| ≤ r, there exists some

constant d (dependent on r) such that

∣
∣Wu(t, u)

∣
∣ ≤ d|u|, ∀t ∈ R, |u| ≤ r. (1.9)

In what follows, we present some examples for q(t), L(t), and W (t, u) satisfying (1.1), (L),
and (W1)–(W3) to demonstrate our Theorem 1.2. Let us choose

q(t) = t, L(t) =
(
1 + t2)In, W (t, u) =

(
2 + sin2 t

)|u|μ,

where In is the n × n identity matrix and μ > 2 is a constant. Then it is easy to check that
all the hypotheses of Theorem 1.2 are satisfied.

The remaining part of this paper is organized as follows. Some preliminary results are
presented in Sect. 2. In Sect. 3, we are devoted to accomplishing the proof of our main
result.

2 Preliminary results
The main difficulty in dealing with the existence of infinitely many homoclinic solutions
for (DS) is the lack of compactness of the Sobolev embedding. To overcome this difficulty
under the assumptions of Theorem 1.2, we employ the following compact embedding the-
orem. For the statement convenience, define the function space L2(eQ(t)) as the Banach
space of functions on R with values in R

n under the norm

‖u‖2,Q :=
(∫

R

eQ(t)∣∣u(t)
∣
∣2 dt

)1/2

.

It is obvious that E ⊂ L2(eQ(t)) with the embedding continuous, i.e., there is a constant
C > 0 such that

‖u‖2,Q ≤ C‖u‖, ∀u ∈ E. (2.1)

In fact, we have the following compact embedding lemma.

Lemma 2.1 Suppose that (1.1) holds and L satisfies (L), then the embedding of E in L2(eQ(t))
is compact.

Proof For any R > 0, define

ζ (R) = inf|u|=1,|t|≥R

(
L(t)u, u

) ≥ inf|t|≥R
l(t).

By (L), ζ (R) → +∞ as R → +∞.
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Let K ⊂ E be a bounded set, then there exists some M > 0 such that ‖u‖ ≤ M for all
u ∈ K . We show that K is precompact in L2(eQ(t)). For any ε > 0, take R0 large enough such
that

4M2C2

ζ (R)
<

ε2

2
, ∀R ≥ R0. (2.2)

By the Sobolev compact embedding theorem, E|(–R,R) is compactly embedded in
L2(eQ(t))|(–R,R) for all R > 0. Hence, there are u1, . . . , um ∈ K such that, for any u ∈ K , there
is ui (1 ≤ i ≤ m) satisfying

∫

|t|≤R0

eQ(t)|u – ui|2 dt <
ε2

2
, (2.3)

and so

‖u – ui‖2
2,Q =

∫

|t|≤R0

eQ(t)|u – ui|2 dt +
∫

|t|>R0

eQ(t)|u – ui|2 dt

<
ε2

2
+

∫

|t|>R0

eQ(t) (L(t)(u – ui), u – ui)
l(t)

dt

≤ ε2

2
+

C2

ζ (R0)
‖u – ui‖2

≤ ε2

2
+

4M2C2

ζ (R0)
< ε2,

which implies that K has a finite ε-net and, consequently, it is precompact in L2(eQ(t)). �

In order to obtain the existence of homoclinic solutions of (DS), we also need the fol-
lowing inequality. Denote by L∞(R,Rn) the Banach space of essentially bounded functions
from R into R

n equipped with the norm

‖u‖∞ := ess sup
{∣
∣u(t)

∣
∣ : t ∈R

}
.

Then we have

Lemma 2.2 ([4, Lemma 2.1]) For u ∈ E, one has

‖u‖∞ ≤ 1
√

2e0
√

β
‖u‖, (2.4)

where β is defined in (1.5) and e0 = mint∈R eQ(t).

Now we introduce more notations and some necessary definitions. Let B be a real Ba-
nach space, I ∈ C1(B,R), which means that I is a continuously Fréchet-differentiable func-
tional defined on B. Recall that I ∈ C1(B,R) is said to satisfy the (PS) condition if any se-
quence {uj}j∈N ⊂ B, for which {I(uj)}j∈N is bounded and I ′(uj) → 0 as j → +∞, possesses
a convergent subsequence in B.
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Moreover, let Bρ be the open ball inB with the radius ρ and centered at 0 and ∂Bρ denote
its boundary. To obtain the existence and multiplicity of fast homoclinic solutions of (DS),
we appeal to the following well-known mountain pass theorem, see [17].

Lemma 2.3 ([17, Theorem 2.2 ]) Let B be a real Banach space and I ∈ C1(B,R) satisfying
the (PS) condition. Suppose that I(0) = 0 and

(A1) there are constants ρ , α > 0 such that I|∂Bρ ≥ α, and
(A2) there is e ∈ B \ Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)

)
,

where

Γ =
{

g ∈ C
(
[0, 1],B

)
: g(0) = 0, g(1) = e

}
.

Lemma 2.4 ([17, Theorem 9.12]) Let B be an infinite dimensional real Banach space, and
let I ∈ C1(B,R) be even, satisfy the (PS) condition and I(0) = 0. If B = V ⊕ X, where V is
finite dimensional and I satisfies

(A3) there are constants ρ , α > 0 such that I|∂Bρ∩X ≥ α, and
(A4) for each finite dimensional subspace Ẽ ⊂ B, there is R = R(Ẽ) such that I ≤ 0 on

Ẽ\BR(Ẽ),
then I has an unbounded sequence of critical values.

3 Proof of Theorem 1.2
Now we are going to establish the corresponding variational framework to obtain fast
homoclinic solutions of (DS). To this end, define the functional I : B = E →R by

I(u) =
∫

R

eQ(t)
[

1
2
∣
∣u̇(t)

∣
∣2 +

1
2
(
L(t)u(t), u(t)

)
– W

(
t, u(t)

)
]

dt

=
1
2
‖u‖2 –

∫

R

eQ(t)W
(
t, u(t)

)
dt. (3.1)

Lemma 3.1 Under the conditions of Theorem 1.2, we have

I ′(u)v =
∫

R

eQ(t)[(u̇(t), v̇(t)
)

+
(
L(t)u(t), v(t)

)
–

(
Wu

(
t, u(t)

)
, v(t)

)]
dt (3.2)

for all u, v ∈ E, which yields that

I ′(u)u = ‖u‖2 –
∫

R

eQ(t)(Wu
(
t, u(t)

)
, u(t)

)
dt.

Moreover, I is a continuously Fréchet-differentiable functional defined on E, i.e., I ∈
C1(E,R).

Proof We firstly show that I : E →R. By (1.8), there exist constants R1 > 0 and M > 0 such
that

W (t, u) ≤ M|u|2 for all (t, u) ∈R×R
n, |u| ≤ R1. (3.3)
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Letting u ∈ E, then u ∈ C0(R,Rn), the space of continuous functions u on R such that
u(t) → 0 as |t| → +∞, i.e., E ⊂ C0(R,Rn). Therefore, there is a constant R2 > 0 such that
|t| ≥ R2 implies that |u(t)| ≤ R1. Hence, by (3.3), we have

0 ≤
∫

R

eQ(t)W
(
t, u(t)

)
dt

≤
∫ R2

–R2

eQ(t)W
(
t, u(t)

)
dt + M

∫

|t|≥R2

eQ(t)∣∣u(t)
∣
∣2 dt < +∞. (3.4)

Combining (3.1) and (3.4), we show that I : E →R.
Next we prove that I ∈ C1(E,R). Rewrite I as follows:

I = I1 – I2,

where

I1 :=
1
2

∫

R

eQ(t)[∣∣u̇(t)
∣
∣2 +

(
L(t)u(t), u(t)

)]
dt, I2 :=

∫

R

eQ(t)W
(
t, u(t)

)
dt.

It is easy to check that I1 ∈ C1(E,R), and we have

I ′
1(u)v =

∫

R

eQ(t)[(u̇(t), v̇(t)
)

+
(
L(t)u(t), v(t)

)]
dt.

Thus it is sufficient to show that this is the case for I2. In the process we see that

I ′
2(u)v =

∫

R

eQ(t)(Wu
(
t, u(t)

)
, v(t)

)
dt, (3.5)

which is defined for all u, v ∈ E. Let u ∈ E and suppose the norm of u is M, i.e., ‖u‖ = M.
Then, by (W2), for any ε > 0, there is δ > 0 such that |x| ≤ δ implies that

∣
∣Wu(t, x)

∣
∣ ≤ ε

4C2(M + 1)
|x|, (3.6)

where C is defined in (2.1). It is well known that

∫ R

–R
eQ(t)W (t, u) dt ∈ C1(W 1,2([–R, R],Rn);R

)
(3.7)

for any finite R. Therefore, there is σ = σ (ε, R, u) such that v ∈ E and ‖v‖ ≤ σ implies that

∣
∣
∣
∣

∫ R

–R
eQ(t)[W (t, u + v) – W (t, u) –

(
Wu(t, u), v

)]
dt

∣
∣
∣
∣ ≤ ε

4
‖v‖. (3.8)

Choose R so large that |u(t)| ≤ δ/2 for |t| ≥ R. For v ∈ E, ‖v‖ ≤ min{√e0
√

βδ/
√

2, 1}, by
(2.4), we have

‖v‖∞ ≤ 1
√

2e0
√

β
‖v‖.
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Therefore,

‖v‖∞ ≤ δ

2
. (3.9)

The mean value theorem, (3.6), and (3.9) show that, for |t| ≥ R,

∣
∣W (t, u + v) – W (t, u)

∣
∣ ≤ ε(|u| + |v|)

4C2(M + 1)
|v|.

Hence, by (2.1) and Hölder’s inequality, one deduces that

∫

|t|>R
eQ(t)∣∣W (t, u + v) – W (t, u)

∣
∣dt ≤ ε

4C2(M + 1)

(∫

|t|>R
eQ(t)(|u| + |v|)2 dt

) 1
2 ‖v‖2,Q

≤
√

2ε

4
‖v‖. (3.10)

Likewise, by (3.6) and Hölder’s inequality, we obtain

∫

|t|>R
eQ(t)∣∣

(
Wu(t, u), v

)∣
∣dt ≤ ε

4C2(M + 1)

∫

|t|>R
eQ(t)|u||v|dt ≤ ε

4
‖v‖,

which together with (3.8) and (3.10) yields the Fréchet differentiability of I2. To prove that
I ′

2 is continuous, suppose that uj → u in E and note that

sup
‖v‖=1

∣
∣I ′

2(uj)v – I ′
2(u)v

∣
∣ = sup

‖v‖=1

∣
∣
∣
∣

∫

R

eQ(t)(Wu
(
t, uj(t)

)
– Wu

(
t, u(t)

)
, v(t)

)
dt

∣
∣
∣
∣

≤ sup
‖v‖=1

∥
∥Wu

(·, uj(·)
)

– Wu
(·, u(·))∥∥2,Q‖v‖2,Q

≤ C
∥
∥Wu

(·, uj(·)
)

– Wu
(·, u(·))∥∥2,Q. (3.11)

Let ε > 0 and choose R so that |t| ≥ R implies that

∣
∣Wu(t, u)

∣
∣ ≤ ε

2C
|u|. (3.12)

Moreover, we can also assume (3.12) holds for uj for large j. Therefore, by (3.12), one has

(∫

R

eQ(t)∣∣Wu(t, uj) – Wu(t, u)
∣
∣2 dt

) 1
2 ≤

(∫ R

–R
eQ(t)∣∣Wu(t, uj) – Wu(t, u)

∣
∣2 dt

) 1
2

+
ε

2
(‖uj‖ + ‖u‖),

which with (3.11) implies that I ′
2 is continuous. Therefore, we show that I ∈ C1(E,R). �

Lemma 3.2 Suppose that (L), (W2), and (W3) are satisfied. If uj ⇀ u (weakly) in E, then
there exists one subsequence still denoted by {uj}j∈N such that Wu(t, uj) → Wu(t, u) in
L2(eQ(t)).
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Proof Assume that uj ⇀ u in E. Then there exists a constant M > 0 such that, by the
Banach–Steinhaus theorem and (2.4),

sup
j∈N

‖uj‖∞ ≤ M, ‖u‖∞ ≤ M,

which combined with (1.9) deduces that there is a constant d (dependent on M) such that

∣
∣Wu(t, uj)

∣
∣ ≤ d|uj|,

∣
∣Wu(t, u)

∣
∣ ≤ d|u|

for all j ∈N and t ∈R. Hence, we have

∣
∣Wu

(
t, uj(t)

)
– Wu

(
t, u(t)

)∣∣ ≤ d
(∣∣uj(t)

∣
∣ +

∣
∣u(t)

∣
∣)

≤ d
(∣∣uj(t) – u(t)

∣
∣ + 2

∣
∣u(t)

∣
∣).

On the other hand, by Lemma 2.1, uj → u in L2(eQ(t)), which yields that there exists one
subsequence, still denoted by {uj}j∈N such that

+∞∑

j=1

‖uj – u‖2,Q < +∞.

Therefore, uj(t) → u(t) for almost every t ∈R and

+∞∑

j=1

∣
∣uj(t) – u(t)

∣
∣ = ν(t) ∈ L2(eQ(t)).

Consequently, we have

eQ(t)∣∣Wu
(
t, uj(t)

)
– Wu

(
t, u(t)

)∣
∣2 ≤ d2eQ(t)(ν(t) + 2

∣
∣u(t)

∣
∣
)2.

Using Lebesgue’s convergence theorem, the lemma is proved. �

Lemma 3.3 If (L), (W1), (W2), and (W3) hold, then I satisfies the (PS) condition.

Proof Assume that {uj}j∈N ⊂ E is a sequence such that {I(uj)}j∈N is bounded and I ′(uj) → 0
as j → +∞. Then there exists a constant M > 0 such that

∣
∣I(uj)

∣
∣ ≤ M,

∥
∥I ′(uj)

∥
∥

E∗ ≤ M (3.13)

for every j ∈N.
We firstly prove that {uj}j∈N is bounded in E. By (3.1), (3.13), and (W1), we obtain that

(
μ

2
– 1

)

‖uj‖2 = μI(uj) – I ′(uj)uj

+
∫

R

(
μW

(
t, uj(t)

)
–

(
Wu

(
t, uj(t)

)
, uj(t)

))
dt

≤ μM + M‖uj‖. (3.14)
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Since μ > 2, inequality (3.14) shows that {uj}j∈N is bounded in E. Then the sequence {uj}j∈N
has a subsequence, again denoted by {uj}j∈N, and there exists u ∈ E such that

uj ⇀ u, weakly in E.

Hence,

(
I ′(uj) – I ′(u)

)
(uj – u) → 0

as j → +∞. Moreover, by Lemma 3.2 and Hölder’s inequality, passing to subsequence if
necessary, we have

∫

R

eQ(t)(Wu
(
t, uj(t) – Wu

(
t, u(t)

)
, uj(t) – u(t)

)
dt → 0.

On the other hand, an easy computation shows that

(
I ′(uj) – I ′(u), uj – u

)
= ‖uj – u‖2

–
∫

R

eQ(t)(Wu
(
t, uj(t) – Wu

(
t, u(t)

)
, uj(t) – u(t)

)
dt,

which deduces that ‖uj – u‖ → 0 as j → +∞. �

Now we are in a position to give the proof of Theorem 1.2. We divide the proof into
several steps.

Proof of Theorem 1.2
Step 1 It is clear that I(0) = 0 and I ∈ C1(E,R) satisfies the (PS) condition by Lemmas 3.1

and 3.3.
Step 2 We now show that there exist constants ρ > 0 and α > 0 such that I satis-

fies condition (A1) of Lemma 2.3. By (1.9), for all ε > 0, there exists δ > 0 such that
W (t, u) ≤ ε|u|2 whenever |u| ≤ δ. Choosing ρ = δ√

2e0
√

β
and ‖u‖ = ρ , we have ‖u‖∞ ≤ δ.

Hence W (t, u(t)) ≤ ε|u(t)|2 for all t ∈R. Integrating on R and by (2.1), we get

∫

R

eQ(t)W
(
t, u(t)

)
dt ≤ ε‖u‖2

2,Q ≤ εC2‖u‖2.

In consequence, combining this with (3.1), we obtain that, for ‖u‖ = ρ ,

I(u) =
1
2
‖u‖2 –

∫

R

eQ(t)W
(
t, u(t)

)
dt

≥ 1
2
‖u‖2 – εC2‖u‖2

=
(

1
2

– εC2
)

‖u‖2. (3.15)

Setting ε = 1
4C2 , inequality (3.15) implies that

I|∂Bρ ≥ ρ2

4
= α > 0.
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Step 3 It remains to prove that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0, where ρ

is defined in Step 2. By (3.1), we have, for every m ∈R \ {0} and u ∈ E \ {0},

I(mu) =
m2

2
‖u‖2 –

∫

R

eQ(t)W
(
t, mu(t)

)
dt.

Take some ψ ∈ E such that ‖ψ‖ = 1. Then there exists a subset Ω of positive measure of
R such that ψ(t) �= 0 for t ∈ Ω . Take m > 0 such that m|ψ(t)| ≥ 1 for t ∈ Ω . Then, by (1.7),
we obtain that

I(mψ) ≤ m2

2
– mμ

∫

Ω

η(t)eQ(t)∣∣ψ(t)
∣
∣μ dt. (3.16)

Since η(t) > 0 and μ > 2, (3.16) implies that I(mψ) < 0 for some m > 0 with m|ψ(t)| ≥ 1 for
t ∈ Ω and ‖mψ‖ > ρ , where ρ is defined in Step 2. By Lemma 2.3, I possesses a critical
value c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)

)
,

where

Γ =
{

g ∈ C
(
[0, 1], E

)
: g(0) = 0, g(1) = e

}
.

Hence there is u ∈ E such that

I(u) = c and I ′(u) = 0.

Step 4 Now suppose that W (t, u) is even in u, i.e., (W4) holds, which implies that I is
even. Furthermore, we have already known that I(0) = 0 and I ∈ C1(E,R) satisfies the (PS)
condition in Step 1.

To apply Lemma 2.4, it suffices to prove that I satisfies conditions (A3) and (A4) of
Lemma 2.4. Here we take V = {0} and X = E. (A3) is identically the same as in Step 2,
so it is already proved. Now we prove that (A4) holds. Let Ẽ ⊂ E be a finite dimensional
subspace. From Step 3, we know that, for any ψ ∈ Ẽ ⊂ E such that ‖ψ‖ = 1, there is mψ > 0
such that

I(mψ) < 0 for |m| ≥ mψ > 0.

Since Ẽ ⊂ E is a finite dimensional subspace, we can choose R = R(Ẽ) > 0 such that

I(u) < 0, ∀u ∈ Ẽ\BR.

Hence, by Lemma 2.4, I possesses an unbounded sequence of critical values {cj}j∈N. Let
uj be the critical point of I corresponding to cj, then (DS) has infinitely many distinct fast
homoclinic solutions. �
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