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Abstract
This paper studies the existence of positive periodic solutions of the following
delayed differential equation:

u′ + a(t)u = f (t,u(t – τ (t))),

where a,τ ∈ C(R,R) are ω-periodic functions with
∫ ω

0 a(t)dt = 0, f :R× [0,∞) → R is
continuous and ω-periodic with respect to t. By means of the fixed point theorem in
cones, several new existence theorems are established. Our main results enrich and
complement those available in the literature.
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1 Introduction
In the past few years, there has been considerable interest in the existence of positive pe-
riodic solutions for the first-order equation

u′ + a(t)u = λb(t)f
(
u
(
t – τ (t)

))
, (1.1)

where a, b ∈ C(R, [0,∞)) are ω-periodic functions with
∫ ω

0
a(t) dt > 0,

∫ ω

0
b(t) dt > 0,

and τ is a continuous ω-periodic function. Note that when λ = 0, equation (1.1) reduces
to u′ = –a(t)u, which is well known in Malthusian population models. In real world ap-
plications, (1.1) has also been viewed as a model for a variety of physiological processes
and conditions including production of blood cells, respiration, as well as cardiac arrhyth-
mias. See, for instance, [1–10] for some research works on this topic. Meanwhile, many
researchers have also paid their attention to the differential systems corresponds to (1.1),
namely,

u′
i + ai(t)ui = λbi(t)fi(u1, u2, . . . , un), i = 1, 2, . . . , n,
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where ai, bi ∈ C(R, [0,∞)) are ω-periodic functions satisfying

∫ ω

0
ai(t) dt > 0,

∫ ω

0
bi(t) dt > 0, i = 1, 2, . . . , n.

Here we refer the readers to [11–13] and the references listed therein.
Obviously, the basic assumption

∫ ω

0 a(t) dt > 0 or
∫ ω

0 ai(t) dt > 0 (i = 1, 2, . . . , n), usually
employed to ensure the linear boundary value problem

u′ + a(t)u = 0, u(0) = u(ω) (1.2)

is non-resonant, has played a key role in the arguments of the above mentioned papers.
In fact, this assumption ensures that a number of tools, such as fixed point theory, bi-
furcation theory and so on, could be employed to study the corresponding problems and
establish the desired existence results. Here the linear problem (1.2) is called non-resonant
if the unique solution of it is the trivial one. It is well known if (1.2) is non-resonant then,
provided h is an L1-function, the Fredholm’s alternative theorem implies that the nonho-
mogeneous problem

u′ + a(t)u = h(t), u(0) = u(ω)

always admits a unique solution which, moreover, can be written as

u(t) =
∫ ω

0
G(t, s)h(s) ds,

where G(t, s) is the Green’s function associated to (1.2), see [7–13] for more details.
Compared with the non-resonant problems, the research of resonant problems proceeds

very slowly and the related results are few. And, of course, a natural and interesting ques-
tion is whether or not the corresponding nonlinear equation possesses a positive periodic
solution, provided that

∫ ω

0
a(t) dt = 0,

which means a may change its sign on R and the studied problem is resonant. In the
present paper, we shall give a positive answer to the above question. More concretely,
several new existence and multiplicity results will be established for the resonant equation

u′ + a(t)u = f
(
t, u

(
t – τ (t)

))
. (1.3)

To the best of our knowledge, the above problem has not been studied so far, and our
results shall fill this gap.

For simplicity, we say a function q � 0 provided that q : R → (0,∞) is ω-periodic and
continuous. If q : R → [0,∞) is ω-periodic and continuous with

∫ ω

0 q(t) dt > 0, then it’s
denoted as q � 0. Thus, if we choose a function χ � 0 such that p := a + χ � 0, then the
linear differential operator Lu := u′ + p(t)u is invertible since

∫ ω

0
p(t) dt =

∫ ω

0
a(t) dt +

∫ ω

0
χ (t) dt =

∫ ω

0
χ (t) dt > 0.
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Moreover, it is not difficult to see that u is a positive periodic solution of (1.3) if and only
if it is a positive periodic solution of

u′ + p(t)u = χ (t)u + f
(
t, u

(
t – τ (t)

))
. (1.4)

Therefore, we shall focus on (1.4).
Throughout the paper, we make the following assumptions:
(H1) a, τ ∈ C(R,R) are ω-periodic functions with

∫ ω

0 a(t) dt = 0;
(H2) There exists χ � 0 such that p := a + χ � 0;
(H3) f ∈ C(R× [0,∞),R) is ω-periodic with respect to t and f (t, u) ≥ –χ (t)u.

Remark 1.1 Obviously, since a and f are sign-changing, equation (1.3) is more general
than corresponding ones studied in the existing literature. For other existence results on
nonlinear differential equations at resonance, we refer the readers to [14–17] and the ref-
erences listed therein.

The rest of the paper is arranged as follows. In Sect. 2, we introduce some preliminaries.
Finally, in Sect. 3, we shall state and prove our main results. In addition, several remarks
will be given to demonstrate the feasibility of our main results.

2 Preliminaries
Let us consider the linear boundary value problem

⎧
⎨

⎩

u′ + p(t)u = h(t), t ∈ (0,ω),

u(0) = u(ω),
(2.1)

where p is defined as in (H2). If we denote by K(t, s) the Green’s function of (2.1), then a
simple calculation gives

Lemma 2.1 Suppose (H1) and (H2) hold. Let δ = e–
∫ ω

0 p(t) dt . Then

K(t, s) =
e
∫ s

t p(θ ) dθ

δ–1 – 1
, t ≤ s ≤ t + ω.

Moreover,

1
δ–1 – 1

≤ K(t, s) ≤ δ–1

δ–1 – 1
, t ≤ s ≤ t + ω.

Let E be the Banach space of continuous ω-periodic functions equipped with the norm
‖u‖ = maxt∈[0,ω] |u(t)|. For h ∈ E, define

(Ah)(t) :=
∫ t+ω

t
K(t, s)h(s) ds. (2.2)

Then we have

Lemma 2.2 Suppose (H1) and (H2) hold. Then A : E → E is a completely continuous linear
operator. Moreover, if h � 0, then (Ah)(t) > 0 on [0,ω].
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Proof By a standard argument, we can easily show that A is a linear completely continuous
operator. In addition, Lemma 2.1 yields K(t, s) > 0 for any (t, s), which, together with h � 0,
implies (Ah)(t) > 0 on [0,ω]. �

Let

m :=
1

δ–1 – 1
, M :=

δ–1

δ–1 – 1
, σ :=

m
M

< 1,

and

P =
{

u ∈ E : u(t) ≥ σ‖u‖, t ∈ [0,ω]
}

.

Then P is a positive cone in E. Moreover, it is not difficult to check that (1.4) can be
rewritten as an equivalent operator equation

u(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds =: (Tu)(t).

Lemma 2.3 Suppose (H1), (H2) and (H3) hold. Then T(P) ⊆ P and T : P → P is com-
pletely continuous.

Proof Assume u ∈P , then u(t) ≥ σ‖u‖. It follows from (H3) that χ (s)u(s) + f (s, u(s – τ (s)))
is nonnegative, and therefore

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≤
∫ t+ω

t
M

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds. (2.3)

Applying (H3) again, we get

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≥
∫ t+ω

t
m

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

= σ

∫ t+ω

t
M

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds.

This, together with (2.3), yields T(P) ⊆P . Finally, by Lemma 2.2 and an argument similar
to that of [12, Lemmas 2.2, 2.3] with obvious changes, we can prove that T is a completely
continuous operator. �

The following lemma is crucial to prove our main results.

Lemma 2.4 (Guo–Krasnoselskii’s fixed point theorem [18]) Let E be a Banach space, and
let P ⊆ E a cone. Assume Ω1, Ω2 are two open bounded subsets of E with 0 ∈ Ω1, Ω̄1 ⊆ Ω2,
and let T : P ∩ (Ω̄2 \ Ω1) →P be a completely continuous operator such that
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(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂Ω2; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω̄2 \ Ω1).

3 Main results
In this section, we state and prove our main findings.

Theorem 3.1 Let (H1)–(H3) hold. If

lim
u→0+

f (t, u)
u

= –χ (t) (3.1)

and

lim
u→+∞

f (t, u)
u

= ∞, uniformly for t ∈ [0,ω], (3.2)

then (1.3) admits at least one positive ω-periodic solution.

Proof For 0 < r < R < ∞, setting

Ω1 =
{

u ∈ E : ‖u‖ < r
}

, Ω2 =
{

u ∈ E : ‖u‖ < R
}

,

we have 0 ∈ Ω1, Ω̄1 ⊆ Ω2.
It follows from (3.1) that there exists r > 0 so that for any 0 < u ≤ r,

f (t, u) ≤ cu – χ (t)u,

where c is a positive constant satisfying cMω < 1. Therefore, for u ∈P with ‖u‖ = r,

f (t, u) + χ (t)u ≤ cu, t ∈ [0,ω].

Moreover, 0 < σ‖u‖ ≤ u(t) ≤ ‖u‖ = r. Thus,

(Tu)(t) ≤ cM‖u‖
∫ t+ω

t
ds = cMω‖u‖ < ‖u‖,

which implies ‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω1.
On the other hand, (3.2) yields the existence of R̃ > 0 such that for any u ≥ R̃,

f (t, u) ≥ ηu,

where η > 0 is a constant large enough such that σmω(η + χ ) > 1 and χ = mint∈[0,ω] χ (t).
Fixing R > max{r, R̃

σ
} and letting u ∈ P with ‖u‖ = R, we get u(t) ≥ σ‖u‖ = σR > R̃, and

therefore

f (t, u) + χ (t)u ≥ ηu + χ (t)u ≥ σ (η + χ )‖u‖, t ∈ [0,ω].
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Consequently, for u ∈P with ‖u‖ = R, we can conclude

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≥ σm(η + χ )‖u‖
∫ t+ω

t
ds = σmω(η + χ )‖u‖ > ‖u‖.

Hence ‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω2.
Consequently, by Lemma 2.4(i), T has a fixed point in P ∩ (Ω̄2 \ Ω1), which is just a

positive ω-periodic solution of (1.3). �

Theorem 3.2 Let (H1)–(H3) hold. If

lim
u→0+

f (t, u)
u

= ∞, uniformly for t ∈ [0,ω], (3.3)

and

lim
u→+∞

f (t, u)
u

= –χ (t), (3.4)

then (1.3) admits at least one positive ω-periodic solution.

Proof We follow the same strategy and notations as in the proof of Theorem 3.1. Firstly,
we show that for r > 0 sufficiently small,

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω1. (3.5)

From (3.3) it follows that there exists r̃ > 0 such that f (t, u) ≥ βu for any 0 < u ≤ r̃, where
β > 0 is a constant large enough such that σmω(β +χ ) > 1. Therefore, for 0 < r ≤ r̃, if u ∈P
and ‖u‖ = r, then

f (t, u) + χ (t)u ≥ βu + χ (t)u ≥ σ (β + χ )‖u‖, t ∈ [0,ω].

Furthermore, we obtain

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≥ σm(β + χ )‖u‖
∫ t+ω

t
ds = σmω(β + χ )‖u‖ > ‖u‖.

Thus, (3.5) is true.
Next we show for R > 0 sufficiently large,

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω2. (3.6)

It follows from (3.4) that there exists R̃ > 0 so that for any u ≥ R̃,

f (t, u) ≤ μu – χ (t)u,
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where μ > 0 satisfies μMω < 1. Let R > max{r̃, R̃
σ
}, then if u ∈P and ‖u‖ = R, we can obtain

u(t) ≥ σ‖u‖ = σR > R̃,

and therefore,

f (t, u) + χ (t)u ≤ μu ≤ μ‖u‖, t ∈ [0,ω].

Thus for u ∈P with ‖u‖ = R, we have

(Tu)(t) ≤ μM‖u‖
∫ t+ω

t
ds = μMω‖u‖ < ‖u‖,

which means that (3.6) is also true.
Finally, it follows from Lemma 2.4(ii) that T has a fixed point in P ∩ (Ω̄2 \ Ω1), which is

just a positive ω-periodic solution of (1.3). �

In the rest of this section, we shall investigate the multiplicity of positive ω-periodic
solutions of (1.3). To the end, we assume:

(H4) limu→0+
f (t,u)

u = ∞ and limu→+∞ f (t,u)
u = ∞ uniformly for t ∈ [0,ω]. In addition,

there is a constant α > 0 such that

max
{

f (t, u) : σα ≤ u ≤ α, t ∈ [0,ω]
} ≤ (

ε – χ (t)
)
α, (3.7)

where ε > 0 satisfies εMω < 1.

Theorem 3.3 Assume that (H1)–(H4) hold. Then (1.3) admits at least two positive ω-
periodic solutions.

Proof Define

Ω3 =
{

u ∈ E : ‖u‖ < α
}

.

Let Ω1 and Ω2 be as in the proof of Theorems 3.1 and 3.2. Then for 0 < r < α < R, we have
Ω̄1 ⊆ Ω3, Ω̄3 ⊆ Ω2.

Since limu→0+
f (t,u)

u = ∞ uniformly for t ∈ [0,ω], by an argument similar to the proof of
Theorem 3.2, we can obtain

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω1.

Similarly, we can show by (H4) that

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω2.

Clearly, the proof is completed if we prove

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω3. (3.8)



Chen and Li Boundary Value Problems        (2018) 2018:187 Page 8 of 10

Suppose u ∈P and ‖u‖ = α, then σα ≤ σ‖u‖ ≤ u(t) ≤ ‖u‖ = α, and from (3.7) it follows

f (t, u) + χ (t)u ≤ f (t, u) + χ (t)α ≤ εα, t ∈ [0,ω].

Thus, we get

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≤ εMωα = εMω‖u‖ < ‖u‖,

and so (3.8) is satisfied.
Consequently, Lemma 2.4 implies that T has at least two fixed points u1 and u2, located

in P ∩ (Ω̄3 \ Ω1) and P ∩ (Ω̄2 \ Ω3), respectively. And accordingly, (1.3) admits at least
two positive ω-periodic solutions. �

If we replace (H4) with
(H4)′ limu→0+

f (t,u)
u = –χ (t), limu→+∞ f (t,u)

u = –χ (t), and there exists a constant α > 0 such
that

min
{

f (t, u) : σα ≤ u ≤ α, t ∈ [0,ω]
} ≥ (

μ – σχ (t)
)
α, (3.9)

where μ > 0 satisfies mωμ > 1.
Then we can obtain the following:

Theorem 3.4 Let (H1)–(H3) and (H4)′ hold. Then (1.3) admits at least two positive ω-
periodic solutions.

Proof For 0 < r < α < R, let Ωi (i = 1, 2, 3) be as in the proof of Theorems 3.1 and 3.3. Then
Ω̄1 ⊆ Ω3, Ω̄3 ⊆ Ω2. We shall follow the same strategy as in the proof of Theorem 3.3.

By (H4)′ and an argument similar to the proof of Theorems 3.1 and 3.2, we can conclude

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω1,

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω2.

Now, to apply Lemma 2.4, we only need to show

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω3. (3.10)

Let u ∈P with ‖u‖ = α, then σα ≤ σ‖u‖ ≤ u(t) ≤ ‖u‖ = α, by (3.9) we get

f (t, u) + χ (t)u ≥ f (t, u) + σαχ (t) ≥ μα, t ∈ [0,ω],

and then

(Tu)(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds

≥ mωμα = mωμ‖u‖ > ‖u‖,
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and therefore (3.10) is true. Using Lemma 2.4 again, we know T has two fixed points u1

and u2, located inP∩ (Ω̄3 \Ω1) andP∩ (Ω̄2 \Ω3), respectively. Consequently, (1.3) admits
at least two positive ω-periodic solutions. �

Remark 3.1 We would like to point out the results of Theorems 3.1–3.4 remain true for
the special resonant equation u′ = f (t, u(t – τ (t))), where a(·) ≡ 0.

Remark 3.2 It is worth remarking that Theorems 3.1–3.4 apply to equations which could
not be treated by the existing results of [7–10], and therefore our main results are novel.

4 Conclusion
By applying the fixed point theorem in cones, some new existence theorems are estab-
lished for a class of first-order delayed differential equations. Our main results enrich and
complement those available in the literature.
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