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In this paper, we study the second-order Hamiltonian systems
U-LOu+VWEtu =0, teR,

where [ e C(R,R"*M) is a T-periodic and positive definite matrix for all t € R and W is
superquadratic but does not satisfy the usual Ambrosetti-Rabinowitz condition at
infinity. One ground homoclinic solution is obtained by applying the monotonicity
trick of Jeanjean and the concentration—-compactness principle. The main result
improves the recent result of Liu-Guo—Zhang (Nonlinear Anal., Real World Appl.
36:116-138,2017).
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1 Introduction and main results

Consider the second-order Hamiltonian systems
i—L(t)u+VW(tu)=0, (1.1)

where t € R, u € RN, W € CHR x RN, R) and VW (t,x) denotes the gradient of W with
respect to x. Recall that a solution u of system (1.1) is said to be homoclinic to 0 if & # 0 and
u(t) — 0 as |t| — oo. Furthermore, if # minimizes the energy functional of (1.1) among
all possible nontrivial homoclinic solutions, then « is called a ground state homoclinic
solution.

During the past two decades, there has been a remarkable amount of progress in the
study of homoclinic motions of Hamiltonian systems, with many new ideas and methods
being introduced; see, e.g., [2, 3, 5, 7, 11-13, 15, 17-21, 23] for second-order systems and
[4, 6, 14, 16] for first-order systems. For (1.1), most work considers the case where L and W
depend periodically on ¢. Rabinowitz [12] prove the existence of one homoclinic solution
of (1.1), which is obtained as the limit of 2kT periodic solutions, under the following global
Ambrosetti—Rabinowitz superquadratic condition:

(AR) 3 > 2 such that 0 < uW(t,x) < (VW(t,x),x) for all (£,x) € R x (RN\{0}).
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The general Hamiltonian system i + VV/(¢,u) = f(¢£) has been studied in Izydorek—
Janczewska [7]. Besides some other conditions, they assume that V € C'(R x RV, R),
V(t,x) = —K(t,x) + W(¢,x) is T-periodic in ¢, K satisfies the pinching condition b1 |x|> <
K(t,x) < by|x|?, W satisfies (AR) and f € L*(R,RY) small enough and prove the existence
of one homoclinic orbit. Under (AR), Coti-Zelati and Rabinowitiz [2] establish the exis-
tence of infinitely many geometrically distinct homoclinic orbits by using a novel varia-
tional method in virtue of the famous “mountain pass” technique [1]. This result is deep-
ened in Ding and Lee [5], where the authors find conditions weaker than (AR) and ensure
the existence of infinitely many homoclinic orbits for both superquadratic and asymp-

totically quadratic cases. Recently, Wang [18] has studied problem (1.1) with periodic-

W (t,x)
|x|?

W (t,x)

x|

—o0o0 <a<b<+oo.Seealso [3,13,15,17,19-21, 23] for results concerning the nonperiodic

ity. Instead of the common condition that limyy_, « = +00 uniformly in ¢ € R, he

uses a locally superquadratic condition that lim,_ = +00 a.e. t € (a, b) for some
case.
Our study is motivated by the recent result of Liu et al. [11], where the authors consider
system (1.1) with the hypotheses that
(L)) L e C(R,RN*N)is T-periodicin ¢, and it is a symmetric and positive definite matrix
forall t e R;
(Ly) there exist constants 0 < d; < dy such that

dilx* < (L(O)x,x) < dolxl®, V(£,%) € R x RY;

(W1) W e CHR x RY,R) and W(t,x) is T-periodic in t;

(W2) VW(t,x) = o(]x]) as x — 0 uniformly in ¢, W(¢,0) = 0 and W(t,x) > 0 for all (¢, x);

(W3) W(t,x)/|x|> — +oo uniformly in ¢ as |x| — oo;

(Wa) s — sTH(VW/(¢ sx),x) is strictly increasing of s > 0 for all x #0 and £ € R,

They prove the existence of one ground state homoclinic solution via the generalized Ne-
hari manifold developed by Szulkin and Weth.

In the present paper, we are interested in problem (1.1) with periodic potential and
nonlinearities satisfying conditions which are more general than (W3)—(W,). The same
result is obtained by using a monotonicity trick due to Jeanjean [8] together with the
concentration—compactness principle. Precisely, we make the following assumptions:

(W5s) limpy— oo % =+oo forae. t e R;

(W) there exists p > 2 such that [VW/(¢,x)| < C(1 + |x|?~1) for all (£,x) e R x RN;

(W5) there exists Cy > 1 such that

H(t,sx) < CoH(t,x), Y(tx)eR xRN, s€][0,1],
where H(t,x) := %(VW(t,x),x) - W(t,x).

Theorem 1.1 Assume that (L,), (W1)—(W>) and (W5)—(W5) are satisfied. Then system
(1.1) has at least one ground state homoclinic solution.

Remark 1.1
(i) Condition (W7) is originally due to Jeanjean [8] for a semilinear problem setting on
RN, Also, it is used in Liu and Li [10] for the p-Laplacian equation. In [22], infinitely
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many periodic solutions of (1.1) are obtained, provided that W (¢, —x) = W (¢,x) and
(W3) and (W) are satisfied.

(i) It turns out that if, for fixed (¢,x) € R x RN\{0}, s71(VW/(t, 5x),x) is increasing for
all s > 0, then (W) is satisfied. Hence Theorem 1.1 extends [11, Theorem 1.1].
Indeed, for s € (0, 1], we obtain using (W4)

H(t,x) — H(t,sx)

= %[(VW(t,x),x) — (VW (t,sx),5%) ] = [W (£, %) = W(t,sx)]

1 . 1
:[/o (ku,x),x)rdf_/o wr,ﬁ_[ (Wﬂi—’”‘)”“)rdr]
=/5<(VW<r,x),x)_(VW(27MW)TdT

0

1
+/ ((VW(t,x),x) - w)tdr

T

>0.

If s = 0, we see from the inequality

1 1
E(VW(t,x),x) :/0 (VW(t,x),x)T dt

Lvwi(t, tx),
2/ (VW( rx)x)wh
0 T

= W(t,x) - W(t,0)
that
%(v W (t,x),x) - W(t,x) > -W(£,0), V(tx)€R xRN,
ie.,
H(t,x) > H(t,0), V(tx)eR xRN,

Therefore condition (W>) holds with Cy = 1.

(iii) Comparing with the result of Liu et al. [11, Theorem 1.1], the advantage of our
Theorem 1.1 is that the strictly increasing condition is removed. Thus our result
applies to more general situations. We emphasize that this condition plays an
essential role in the argument of Liu et al. [11]. Indeed, letting S = {u € E : ||u|| = 1}
and NV = {u € E\{0}: (I'(«), u) = O}, the starting point of their approach is to show
that, for each u € S, there exists an exactly one point m() € . The uniqueness of
m(u) enables one to define a map u —> m(u), which is important in the remaining
proof. If s — s71(VW/(¢, sx),x) is not strictly increasing, then () may not be

unique and their argument collapses.
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Remark 1.2 There are functions L and W which match Theorem 1.1 but do not satisfy the
resultsin [2, 3, 5,7, 11-13, 15, 17, 19-21, 23]. For example, let L(£) = I;, where Iy denotes
the identity matrix of order N, and

2
W (t,x) = (1 +sin 71:) le/*In(1 + [x]*), V(t,x) € R x RN,

Simple calculation shows that

2 2x x|
VW(t,x)={1+sin il 2xIn(1 + |x]%) + ad ,
T 1+ |x?

|x[*
1+ |x2

.2
H(t,x) = <1 +sin —t)
T

Then it is easy to check that W satisfies (W7)—(W5) and (W5)—(W5). However, since
W(?L T,x) = 0 for all x € RY, it satisfies none of (AR), (W3) and (W,).

Notations: “—” and “—” denote the strong convergence and the weak convergence,
respectively. C and C; (i = 1,2,...) denote various positive constants which may vary from

line to line.

2 Proof of Theorem 1.1
We work in the Hilbert space

E= {u e H'(R,RN): / [lit]* + (L(&)u, u)] dt < +oo}
R
equipped with the inner product and norm
(M, V) = / [(u’ V) + (L(t)u, V)] dtr ||Ll|| = (u’ M)1/2
R

for u, v € E. By (L), E is continuously embedded into H'(R, RY), and hence E is continu-
ously embedded into L*(R, RN) for 2 < s < 00, i.e., there exists 7, > 0 such that

llzlls < wllull, Vue€k, (2.1)

where || - ||; denotes the usual norm on L¥(R,RY) (2 < s < 00).

Define the energy functional ¢ : E — R by
1
o) = - / [|it|2 + (L(t)u,u)]dt—/ W (¢, u)dt
2 Jr R
Lo o
= —Nul®- | Wt u)dt.
2 i
By (W5) and (W), we find that, for any ¢ > 0, there is C, > 0 such that

(VW (t,x)| < elx| + C, |2 (2.2)
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and
|W(t,2)| < elxl® + Ce |l (2.3)

for all (¢,x) € R x RN. Hence ¢ € C'(E,R) and
((p/(u),v) ={u,v) - / (YW (t,u),v)dt Yu,veE.
i

It is routine to show that the nontrivial critical points of ¢ on E are homoclinic solutions
of (1.1).

We shall prove that problem (1.1) has a mountain pass type solution. For this purpose,
we apply the following theorem, which is given in [8].

Theorem 2.1 (see Jeanjean [8]) Let (X, || - ||) be a Banach space and ] C R* be an interval.
Consider a family (I,)¢; of C' functionals on X of the form

L (u) = A(u) — AB(u), VYre],

where B(u) > 0 for all u € X, B(u) — +00 or A(u) — +00 as ||u|| — oco. Assume that there

are two points vy, vo € X such that

¢; := inf max I)\(y(t)) > max{Ik(vl) I)L(Vz)} Vi e],
yel tel0,1]
where I' = {y € C([0,1],X) : ¥(0) = v1, ¥ (1) = vo}. Then, for almost every \ € ], there is a
sequence {v,} C X such that
(i) (vy,) is bounded in X,
n

(ii) L(vn) —

(i) I (vy) — 0in X1,
Moreover, the map A — c;_is continuous from the left.

For A € [1,2], we define the family of functionals ¢, : E — R by

() = %/}R[nﬂz + (L(t)u,u)]dt—)»éW(t,u)dt.

Lemma 2.1 Assume that (L1), (W2), (W5) and (Ws) hold. Then
(i) There exists ug € E\{0} such that ¢; (uo) < 0 for all » € [1,2];
(i) ¢y :=inf, e maxsefo,1) @a (¥ (£)) > max{; (0), ¢, (uo)} for all 1 € [1,2], where
I'={y € C([0,1,E) : y(0) = 0, (1) = uo}.

Proof (i) Choose ey € C5°(R)\{0}. By (W5), Fatou’s lemma and the fact W > 0, we have

se se W (¢, se
lim @5 (sep) < lim ¢1(seo) 0) ” eol> — lim / W(t,seo) 0) edt <0
s—>+00 § §—>+00 S2 57400 Jeg40 Seo

for all 1 € [1,2]. So, we can take sy > 0 large enough such that ¢; (soeo) < 0. Then, setting
Uy = speg, we see that ¢y (1) < ¢1(uo) < 0 and (i) holds.
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(ii) Since, by (2.3) and (2.1),

MR W(t, u)dt

we deduce that there exist constants «, o > 0 such that ¢, |-, > a forall A € [1,2]. Hence,
letting I = {y € C([0,1],E) : ¥(0) = 0, (1) = uo}, we obtain

2 2
<ellullz + Cellulll = o(llull*)as u— 0,

¢, = inf max ¢, (y(¢)) > max{g:(0), ¢ (o)}, VA e€[1,2],
yel te[0,1]

and the proof is complete. 0
Combining Lemma 2.1 and Theorem 2.1, we have the following.

Lemma 2.2 Assume that (L1), (W3), (Ws) and (Ws) are satisfied. Then, for a.e. . € [1,2],
there is a bounded sequence (u,) C E such that ¢, (u,) — ¢, and ¢'(u,) = 0 as n — oo.

Let (u,) be a bounded sequence in E, we say that (u,) is vanishing if, for each R > 0,
limy, o SUP e fy y:}f |u,|*dt = 0; and (u,) is nonvanishing if there exist o >0, R > 0 and

(#») C R such that liminf,_, fy }; "flf |uy|?dt > o. In the vanishing case, we have the fol-

lowing result, which is a special case of Lions [9].

Lemma 2.3 (see [9]) Let (u,) C E be a bounded sequence, if

y+R
lim sup/ |u,|*dt =0,
y

n—00 e Jy R
then u,, — 0 in L*(R,RN) for 2 < s < 00.

Lemma 2.4 Assume that (L1), (W3) and (Ws) hold. Then, for any bounded vanishing se-
quence (u,) C E, we have

lim | H(t u,)dt=0.

n—00 R

Proof 1t follows from (2.2) and (2.3) that

/ (VWi un),un)dt‘ < ellutnl3 + Collunll?
R

and

/ W (t, uy,) dt‘ <éelluall3 + Cellunllb.
R
Since (u,) is vanishing, by Lemma 2.3, we deduce that
/(V W (t, u,), u,,) dt— 0 and/ W(t,u,)dt — 0
R R

as n — 00, and the conclusion follows. O
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Lemma 2.5 Assume that (Ly), (W1)—(W3) and (Ws)—(W7) hold. Then, for all bounded
sequence (u,) C E satisfying

0< lim ¢ (u,) <c, and lim ¢, (u,) =0,
n—00 n—o0
there exists (y,) C Z such that, up to a subsequence, i1, (t) := u,(t + v, T) satisfies
Uy —up 70, @(w) <c, and ¢, (u,)=0.

Proof Since (@, (&), u,,) — 0, we have

1
lim x/ [E(VW(L‘, Un), tn) — W(t, u,,)] dt = lim @, (u,) > 0.
R n—00

n—00

Combining this and Lemma 2.4, we see that (#,) is nonvanishing. Hence, there exist o > 0,
R>0and (y,) C R such that

Yn+R
liminf/ |, |>dt > o > 0.

n— 00 Fu—R

We may choose (y,) C Z such that, letting u,,(t) := u,(t + y.T),

2R o
lim inf / |1, 2 dt > = > 0. (2.4)
n—oo | _op 2
Noticing L and W is T-periodic in ¢, we have ||it, || = ||t ||, 3. (i,) = @3 (u,,) and
@5 (,) > 0 asn— oo. (2.5)

Indeed, for each v € E, take v,,(¢) := ¥ (¢t — y,). It is easy to check that ||y,| = ||| and

] (o), 0] = /R [ 9 + (Lt ) = A(YW ), 1) ] d

- /R [t ) + (L(OVttn ) = A (VW (6 10), )] i

= |<¢i(”n)r I/f;4)|
< | er @) ||l

= @)@ 1wl — o,

which gives (2.5). Since (iz,) is still bounded, going if necessary to a subsequence, we may

assume that there is u; € E such that

U, — u); IinkE,

i, — u, inLj (R, RM) for s € (1, 00), (2.6)

i, — u; ae. inR,
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and u; #0 by (2.4). It follows from (2.2) and (2.6) that

/R(VW(t, i) - VW (t,w,),¥)dt| > 0, Vi € CC(R),

which implies that ¢} is weakly sequentially continuous. Thus, by (2.5),
@5 (u) =0. (2.7)

Finally, by (W7) and Fatou’s lemma,

6. Jim (01(5) - 5045,

= lim A / H(t, i) dt
R

n—00

> AfH(t,MA)dt
R
1

= @(w;) - 5(90,,\(%1),%)
= @i (uy). (2.8)

The proof is complete. 0

Remark 2.1 If the sequence (u,) in Lemma 2.5 is nonvanishing, then the assumption 0 <
lim,,_, o0 ;. (,,) can be omitted.

As a consequence of Lemmas 2.2 and 2.5, we have the following.

Lemma 2.6 Assume that (L1), (W7)—(W53) and (Ws)—(W5) hold. Then there exist (A,) C
[1,2] and (u,) C E\{O} such that

=1, @, (ug) <, and @) (u,)=0. (2.9)
Lemma 2.7 The sequence (u,,) obtained in Lemma 2.6 is bounded.
Proof Suppose by contradiction that ||u, | — oo (n — 00). Set w,, = u,,/||u,||. Then ||w,|| =
1, and by a Lions’ concentration—compactness principle [9], either (w,,) is vanishing or it
is nonvanishing. Hence the proof of the lemma will be completed if we show that (w,,) is

neither vanishing nor nonvanishing.
Assume (w,,) is vanishing. As in [8, 24], we choose a sequence s, € [0, 1] such that

@3, (Sulhy) = max @y, (suy,). (2.10)
te[0,1]

Forany M >0, letv, = VM |un)) ity = 2/Mw,. Since (v,,) is vanishing and bounded, by
Lemma 2.3 and (2.3), we have

/ W(t,v,)dt— 0 asn— oo.
R
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Now, for large n, ij—:\»ﬁ € (0,1), and by the definition of s,, we deduce that

Do (Snun) > Do (Vn) =2M - )\‘}’l/ W(t7 Vn) dt > M,
R
which implies that
¢, (8utty) = +00  as m— 00. (2.11)

Observing ¢;,,(0) = 0 and ¢, (#,) < ¢y, we get s, € (0,1) and

@1, (s12,) = 0. (2.12)

s=Sp

d
((p;,,l (Snuy,),snu,,> =S8,—

ds

Therefore, using (2.11) and (2.12), we deduce

1
/H(t,snu,,)dt = —
R A

n

|:‘p)m (Suttn) — %(W;n (Snttn), Snun>:|

1
= E‘pkn (Snttn)

— +00 as#n— Q.

However, it follows from (2.9) and (W) that

C 1
/H(t,snun)dt <Gy / H(t,u,)dt < A—O [%(un) - 5(<ﬂin(un), un>] <C, VneNl,
R R n

yielding a contradiction.

Assume (w,) is nonvanishing. Then, as in the proof of (2.6), by the translation invariance
of problem (1.1), one has w,, — w in E and w,,(t£) — w(¢) a.e. in R for some w € E\{0}. On
the set {t € R : w(t) # 0}, one has |u,(t)] = oo, and then, by (W),

W(t, u,) 2
72|w,,| — 400 asu— 00.
|2
Therefore, taking into account |£2| > 0 and using Fatou’s lemma, we obtain

W (¢, u,)

w(t,
PN dtz/ %Mﬂzdt—) +00  asu —> 00. (2.13)
R [Un 2 |Un

On the other hand, since ¢, , (4,) — c¢,,,, we deduce that

W(t,u 1
lim (42) dt=—,
n—~>o0 Jp |yl 2
a contradiction. O

Proof of Theorem 1.1 First we show that ¢ has a nontrivial critical point. By Lemma 2.6,

we have, for any v € E,

(@' (un),v) = (@5, W), V) + (A — l)f (VW(t,u,),v)dt >0 asn— oc.
R
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Hence ¢'(u,,) — 0. Since ((pj\n(un),un) =0, it follows from (2.2) that
N2l = . / (YWt un), ) dt < &7 ||| + Cotf Il 1, (2.14)
R

which implies that ||u,|| > C; (Vn € N) for some C; > 0. If (1, is vanishing, by Lemma 2.3,
the middle term of (2.14) tends to 0, and then u,, — 0, a contradiction. Thus (i,) is non-
vanishing. Proceeding as in the proof of Lemma 2.5, we conclude that there exist (y,) C Z
such that if ,,(t) = u,(¢t +y,T), then &, — 11 #0 and ¢'(&) = 0.

Next we prove the existence of ground homoclinic solution of (1.1). Let

N = {u e E\{0}: ¢'(u) = 0}

and m = inf,cpr @(u). Using (W) and the fact # € N, we get 0 < m < (). By the definition
of m, there is a sequence (v,) C NV such that ¢(v,) — m as n — co. Following the same
procedures as the proof of Lemma 2.7, we have (v,,) is bounded. Since (v,,) C NV, ¢/(v,)) = 0,
similar to (2.14), we deduce that ||v,|| > C, > 0 for all » and (v,) is nonvanishing. Hence,
arguing as in (2.6)—(2.8), we find that there is ¥ € E\{0} such that ¢'(¥) = 0 and ¢(?) < m.
Noting v € N, one has ¢(¥) > m. Thus ¢(¥) = m. This completes the proof. O
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