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1 Introduction and preliminary facts
Let Lk(q) for k = 0, 1 be the operators generated in L2[0, 1] by the differential expression
–y′′ + q(x)y and the boundary conditions

y(1) = eiπky(0), y′(1) = eiπky′(0), (1)

that is, periodic and antiperiodic boundary conditions, where q is a complex-valued
summable function on [0, 1]. It is well known that the spectra of these operators are dis-
crete, and for large enough n, there are two periodic (if n is even) or antiperiodic (if n is
odd) eigenvalues (counted with multiplicity) in the neighborhood of (πn)2. See basics and
detailed classical results in [4, 13, 14, 16], and the references therein.

Note also that these boundary conditions are the most commonly studied ones among
the regular but not strongly regular boundary conditions. Therefore there exist a lot of
studies about the investigation of Riesz basis property. Let us mention only the pioneer
papers about it. The first results about the Riesz basis property of such operators were
obtained by Kerimov and Mamedov [12]. They established that, if q ∈ C4[0, 1], q(1) �= q(0),
then the root functions of the operator L0(q) form a Riesz basis in L2[0, 1]. The first result
in terms of the Fourier coefficients of the potential q was obtained by Dernek and Veliev
[6], and this result was essentially improved by Shkalikov and Veliev [19].

There are also many studies about the numerical estimations of the small eigenvalues
of the Sturm–Liouville operators with periodic and antiperiodic boundary conditions.
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Some popular methods that have been used are the finite difference method, finite ele-
ment method, Prüfer transformations, and the shooting method. For example, Andrew
considered the computations of the eigenvalues by using the finite element method [1]
and the finite difference method [2]. Then these results were extended by Condon [5] and
by Vanden Berghe et al. [21]. Ji and Wong used Prüfer transformation and the shooting
method in their works [10, 11, 23]. Malathi et al. [15] used the shooting method and direct
integration method for computing eigenvalues of the periodic Sturm–Liouville problems.
One of the interesting approaches was given by Dinibütün and Veliev [7]. They considered
the matrix form of the operator T(p) generated in L2[0, 1] by the differential expression
–y′′ + q(x)y and the boundary conditions

y(2π ) = y(0), y′(2π ) = y′(0),

where the potential q is in the form q(x) = p(x) +
∑

n:|n|>s qneinx and p(x) =
∑

n:|n|≤s qneinx,
and they gave an approximation with very small errors for the eigenvalues of the periodic
Sturm–Liouville problems.

The eigenvalues of L0(0) and L1(0) are (2nπ )2 and ((2n + 1)π )2 for n ∈ Z, respectively,
and all eigenvalues of L0(0) and L1(0) are double except 0. The eigenvalues of the opera-
tors L0(q) and L1(q) are called the periodic and antiperiodic eigenvalues, and if q is a real
periodic function, then they are denoted by λ2n(q) and λ2n+1(q) for n ∈ Z, respectively,
where

λ0(q) < λ–1(q) ≤ λ1(q) < λ–2(q) ≤ λ2(q) < λ–3(q) ≤ λ3(q) < λ–4(q) ≤ λ4(q) < · · ·

[9, see p. 27]. The investigation of the periodic and antiperiodic eigenvalues is crucial be-
cause the spectrum of the Hill operator L(q) generated in L2[–∞,∞] by the differential
expression –y′′ + q(x)y consists of the intervals [λn–1(q),λ–n(q)] for n = 1, 2, . . . , for real pe-
riodic potentials. Moreover, these intervals are the closure of the stable intervals of the
equation

–y′′(x) + q(x)y(x) = λy(x). (2)

The intervals (λ–n,λn) for n = 1, 2, . . . are the gaps in the spectrum. These intervals with
(–∞,λ0) are the instable intervals of (2) [9, see pages 32 and 82]. The length of the nth gap
in the spectrum of L(q) (the length of the (n + 1)th instable interval of (2)) is

δn(q) := λn(q) – λ–n(q).

Therefore the investigation of the periodic and antiperiodic eigenvalues is, at the same
time, the investigation of the spectrum of the operator L(q) and the stable intervals of (2)
for real periodic potentials.

We are interested in the numerical estimations of the small eigenvalues of the operators
L0(q) and L1(q). In this paper we give a new approach to get subtle estimations for the small
periodic and antiperiodic eigenvalues when the complex-valued summable potential is in
the form q(x) = 2

∑∞
k=1 qk cos 2πkx, where qk := (q, ei2πkx) is the Fourier coefficient of q and

(., .) denotes the inner product in L2[0, 1]. Without loss of generality, we assume that q0 = 0.
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We essentially use the following equation obtained from [6] (see (15) and (17) of [6]):

[
λ – (2πn)2 – A(λ)

][
λ – (2πn)2 – A′(λ)

]
–

(
q2n + B(λ)

)(
q–2n + B′(λ)

)
= 0, (3)

where the terms in this equation are defined in (14) and (15). Nevertheless, even if we have
obtained this equation from [6], the method of investigation is absolutely different. In [6,
19, 22], and [24], they use asymptotic formulas for the large eigenvalues which cannot be
used for the small eigenvalues. Note that the asymptotic behaviors of large eigenvalues
were investigated in detail (see [3, 8, 16, 17, 20], and the references therein). In this paper
we consider the small eigenvalues by numerical methods.

We will focus only on the operator L0(q). The investigation of L1(q) is the same. For
simplicity of reading, first let us give the brief scheme of the proofs of the main results. To
consider the small eigenvalues, first we prove (see Theorem 1) that the small eigenvalues
satisfy equation (3), and using this equation we show that the eigenvalue λn,j is the root of
one of the equations:

λ = (2πn)2 +
1
2
[(

A(λ) + A′(λ)
)

–
√

�(λ)
]
, (4)

λ = (2πn)2 +
1
2
[(

A(λ) + A′(λ)
)

+
√

�(λ)
]
, (5)

where �(λ) = (A(λ) – A′(λ))2 + 4(q2n + B(λ))(q–2n + B′(λ)). To use numerical methods, we
take finite summations instead of the infinite series in expressions (4) and (5) and show
that the eigenvalues are close to the roots of the equations obtained by taking these finite
summations. To find the roots of these equations, many numerical methods can be used
such as the fixed point iteration and the Newton method. Since it is not necessary to com-
pute the derivatives of the functions fj(x), j = 1, 2, defined in (16), we choose the fixed point
iteration method. Then, using the Banach fixed point theorem, we prove that each of these
equations containing the finite summations has a unique solution on the convenient set
(see Theorem 2). Moreover, we give error estimations. Finally we present some examples.

For simplicity of calculations, we assume that

∞∑

k=–∞
|qk| := c < ∞,

s∑

k=–s

|qk| := b, sup
x

∣
∣q(x)

∣
∣ := M, sup

n
|qn| := Q. (6)

It is well known that [18]

∣
∣λn(q) – λn(0)

∣
∣ ≤ M, λn(0) = (2πn)2,∀n ∈ Z.

Therefore, we have

(2πn)2 – M ≤ λn(q) ≤ (2πn)2 + M,

and for n �= k we have that

∣
∣λn – (2πnk)2∣∣ ≥ ∣

∣(2πn)2 – (2πnk)2∣∣ – M ≥ ∣
∣4π2(n – nk)(n + nk)

∣
∣ – M ≥ 2ρ(n), (7)

where 2ρ(n) = 4π2(2n – 1) – M.
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2 Main results
Let us introduce some notations and relations we use from [6]. One of the main equations
is

(
λn,j – (2πn)2 – Am(λn,j)

)(
Ψn,j, ei2πnx) –

(
q2n + Bm(λn,j)

)(
Ψn,j, e–i2πnx) = Rm (8)

(see (15) in [6]), where Am(λn,j) =
∑m

k=1 ak(λn,j), Bm(λn,j) =
∑m

k=1 bk(λn,j),

ak(λn,j) =
∑

n1,n2,...,nk

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nk))2]
,

bk(λn,j) =
∑

n1,n2,...,nk

qn1 qn2 · · ·qnk q2n–n1–n2–···–nk

[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nk))2]
,

Rm(λn,j) =
∑

n1,n2,...,nm+1

qn1 qn2 · · ·qnm qnm+1 (q(x)Ψn,j(x), ei2π (n–n1–···–nm+1)x)
[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nm+1))2]

.

(9)

Here the sums are taken under the conditions

ns �= 0,
s∑

j=1

nj �= 0, 2n

for s = 1, 2, . . . , m + 1. Another main equation is

(
λn,j – (2πn)2 – A′

m(λn,j)
)(

Ψn,j, e–i2πnx) –
(
q–2n + B′

m(λn,j)
)(

Ψn,j, ei2πnx) = R′
m (10)

(see (17) in [6]), where A′
m(λn,j) =

∑m
k=1 a′

k(λn,j), B′
m(λn,j) =

∑m
k=1 b′

k(λn,j),

a′
k(λn,j) =

∑

n1,n2,...,nk

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λn,j – (2π (n + n1))2] · · · [λn,j – (2π (n + n1 + · · · + nk))2]
,

b′
k(λn,j) =

∑

n1,n2,...,nk

qn1 qn2 · · ·qnk q–2n–n1–n2–···–nk

[λn,j – (2π (n + n1))2] · · · [λn,j – (2π (n + n1 + · · · + nk))2]
,

R′
m(λn,j) =

∑

n1,n2,...,nm+1

qn1 qn2 · · ·qnm qnm+1 (q(x)Ψn,j(x), ei2π (n+n1+···+nm+1)x)
[λn,j – (2π (n + n1))2] · · · [λn,j – (2π (n + n1 + · · · + nm+1))2]

.

(11)

Here the sums are taken under the conditions

ns �= 0,
s∑

j=1

nj �= 0, –2n

for s = 1, 2, . . . , m + 1.
Now letting m tend to infinity in (8) and (10), we obtain

(
λn,j – (2πn)2 – A(λn,j)

)
un,j =

(
q2n + B(λn,j)

)
vn,j, (12)

(
λn,j – (2πn)2 – A′(λn,j)

)
vn,j =

(
q–2n + B′(λn,j)

)
un,j, (13)
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where

A(λn,j) =
∞∑

k=1

ak(λn,j), B(λn,j) =
∞∑

k=1

bk(λn,j), (14)

A′(λn,j) =
∞∑

k=1

a′
k(λn,j), B′(λn,j) =

∞∑

k=1

b′
k(λn,j) (15)

and

un,j =
(
Ψn,j, ei2πnx), vn,j =

(
Ψn,j, e–i2πnx). (16)

To prove one of the main results, Theorem 1, we use the following lemma.

Lemma 1 If

ρ(n) > 2c, (17)

then the following hold:
(a)

lim
m→∞ Rm(λn,j) = 0, lim

m→∞ R′
m(λn,j) = 0

for j = 1, 2, where Rm(λn,j) and R′
m(λn,j) are defined by (9) and (11), respectively.

(b)

|un,j|2 + |vn,j|2 > 0

for j = 1, 2, where un,j and vn,j are defined by (16).

Proof (a) By the definition of Rm we have

∣
∣Rm(λn,j)

∣
∣ ≤

∑

n1,n2,...,nm+1

|qn1 qn2 · · ·qnm qnm+1 (q(x)Ψn,j(x), ei2π (n–n1–···–nm+1)x)|
|λn,j – (2π (n – n1))2| · · · |λn,j – (2π (n – n1 – · · · – nm+1))2| .

Taking into account that ‖Ψn,j‖ = 1 and that

∣
∣
(
qΨn,j, ei2π (n–n1–···–nm+1)x)∣∣ ≤ ‖qΨn,j‖

∥
∥ei2π (n–n1–···–nm+1)x∥∥ ≤ M,

we obtain by (6) and (7) that

∣
∣Rm(λn,j)

∣
∣ ≤ M

(
c

2ρ(n)

)m+1

.

Thus this with (17) implies Rm(λn,j) → 0 as m → ∞ for j = 1, 2. Similarly, we prove the
same result for R′

m(λn,j).
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(b) Suppose to the contrary un,j = 0, vn,j = 0. Since the root functions of L0(0) form an
orthonormal basis, we have the decomposition

Ψn,j = un,jei2πnx + vn,je–i2πnx + hn,j(x)

for the normalized eigenfunction Ψn,j corresponding to the eigenvalue λn,j of L0(q), where

hn,j(x) =
∞∑

k∈Z,k �=±n

(
Ψn,j, ei2πkx)ei2πkx.

To get a contradiction, it is enough to show that ‖Ψn,j‖ < 1 for j = 1, 2. By Parseval’s equality,
we have

‖Ψn,j‖2 = ‖hn,j‖2 =
∞∑

k∈Z,k �=±n

∣
∣
(
Ψn,j, ei2πkx)∣∣2.

Now using (9) in [6], (7), and Bessel inequality and taking into account that c ≥ M, we
obtain by (17) that

∞∑

k∈Z,k �=±n

∣
∣
(
Ψn,j, ei2πkx)∣∣2 =

∞∑

k∈Z,k �=±n

|(qΨn,j, ei2πkx)|2
|λn,j – (2πk)2|2

≤ 1
(2ρ(n))2

∞∑

k∈Z,k �=±n

∣
∣
(
qΨn,j, ei2πkx)∣∣2

≤ M2

(2ρ(n))2 ≤ c2

(2ρ(n))2 <
1

16
,

which contradicts ‖Ψn,j‖ = 1 and completes the proof of the lemma. �

Now we state one of the main results:

Theorem 1 If (17) holds, then λn,j is an eigenvalue of L0 if and only if it is a root of equa-
tion (3).

Moreover, λ ∈ U(n) := [(2πn)2 – M, (2πn)2 + M] is a double eigenvalue of L0 if and only
if it is a double root of (3).

Proof By (12) and (13), we have the following cases:
Case 1. If un,j = 0, then by Lemma 1(b) we have vn,j �= 0. Therefore by (12) and (13) we

obtain (q2n + B(λn,j)) = 0 and (λn,j – (2πn)2 – A′(λn,j)) = 0, which means that (3) holds.
Case 2. If vn,j = 0, then again by Lemma 1(b) we have un,j �= 0. It follows from (12) and

(13) that (λn,j – (2πn)2 – A(λn,j)) = 0 and (q–2n + B′(λn,j)) = 0, which means that (3) again
holds.

Case 3. If un,j �= 0 and vn,j �= 0, then multiplying equations (12) and (13) side by side and
then canceling un,jvn,j, we obtain (3). Thus in any case λn,j is a root of (3).

Now we prove that the roots of (3) lying in U(n) are the eigenvalues of L0(q). Let F(λ)
be the left-hand side of (3) which can be written as

F(λ) :=
(
λ – (2πn)2)2 –

(
A(λ) + A′(λ)

)(
λ – (2πn)2)
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+ A(λ)A′(λ) –
(
q2n + B(λ)

)(
q–2n + B′(λ)

)

and

G(λ) :=
(
λ – (2πn)2)2.

It is easy to verify that the inequality

∣
∣F(λ) – G(λ)

∣
∣ <

∣
∣G(λ)

∣
∣

holds for all λ from the boundary of U(n). Since the function G(λ) has two roots in the
set U(n), by Rouche’s theorem, F(λ) has also two roots in U(n). Therefore L0 has two
eigenvalues (counting with multiplicities) lying in U(n) that are the roots of (3). On the
other hand, (3) has preciously two roots (counting with multiplicities) in U(n). Thus λ ∈
U(n) is an eigenvalue of L0 if and only if (3) holds.

If λ ∈ U(n) is a double eigenvalue of L0, then L0 has no other eigenvalues in U(n) and
hence (3) has no other roots. This implies that λ is a double root of (3). By the same way
one can prove that if λ is a double root of (3), then it is a double eigenvalue of L0. �

Now let us substitute t := λ – (2πn)2 in F(λ) = 0. Then

t2 –
(
A(λ) + A′(λ)

)
t + A(λ)A′(λ) –

(
q2n + B(λ)

)(
q–2n + B′(λ)

)
= 0.

The solutions of this equation are

t1,2 =
(A(λ) + A′(λ)) ± √

�(λ)
2

,

where

�(λ) =
(
A(λ) + A′(λ)

)2 – 4
[
A(λ)A′(λ) –

(
q2n + B(λ)

)(
q–2n + B′(λ)

)]
,

which can be written in the form

�(λ) =
(
A(λ) – A′(λ)

)2 + 4
(
q2n + B(λ)

)(
q–2n + B′(λ)

)
.

By Theorem 1, the eigenvalue λn,j is a root either of equation (4) or of equation (5). To use
numerical methods, we take finite summations instead of the infinite series in expressions
(4) and (5), and get

λ = (2πn)2 + fj(λ) (18)

for j = 1 and j = 2, where

fj(λ) =
1
2
[(

Am,s(λ) + A′
m,s(λ)

)
+ (–1)j

√
�m,s(λ)

]
,

Am,s(λ) :=
m∑

k=1

ak,s(λn,j), A′
m,s(λ) :=

m∑

k=1

a′
k,s(λn,j),
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ak,s(λn,j) :=
s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nk))2]
,

a′
k,s(λn,j) :=

s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λn,j – (2π (n + n1))2] · · · [λn,j – (2π (n + n1 + · · · + nk))2]
,

�m,s(λ) :=
(
Am,s(λ) – A′

m,s(λ)
)2 + 4

(
q2n + Bm,s(λ)

)(
q–2n + B′

m,s(λ)
)
,

(19)

Bm,s(λ) :=
m∑

k=1

bk,s(λn,j), B′
m,s(λ) :=

m∑

k=1

b′
k,s(λn,j),

bk,s(λn,j) =
s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q2n–n1–n2–···–nk

[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nk))2]
,

b′
k,s(λn,j) =

s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q–2n–n1–n2–···–nk

[λn,j – (2π (n + n1))2] · · · [λn,j – (2π (n + n1 + · · · + nk))2]
.

Now we prove that the eigenvalues of L0 are close to the roots of (18) for the complex-
valued summable potential q in the form q(x) = 2

∑∞
k=1 qk cos 2πkx. We have the following

relations for such potential:

ak,s(λn,j) = a′
k,s(λn,j), bk,s(λn,j) = b′

k,s(λn,j),

Am,s(λ) = A′
m,s(λ), Bm,s(λ) = B′

m,s(λ),

ak(λn,j) = a′
k(λn,j), bk(λn,j) = b′

k(λn,j),

A(λ) = A′(λ), B(λ) = B′(λ),

�m,s(λ) = 4
(
q2n + Bm,s(λ)

)2, �(λ) = 4
(
q2n + B(λ)

)2.

(20)

Theorem 2 If (17) holds, then for all x and y from [(2πn)2 – M, (2πn)2 + M] the relations

∣
∣fj(x) – fj(y)

∣
∣ < Cn|x – y|, Cn =

Qb
2ρ(n)(ρ(n) – b)

<
1
4

, (21)

hold for j = 1, 2, and for each j, equation (18) has a unique solution rn,j on [(2πn)2 –
M, (2πn)2 + M].

Moreover,

|λn,j – rn,j| ≤ 2Qcm+1

2m(ρ(n))m(2ρ(n) – c)(1 – Cn)
(22)

for j = 1, 2 and s ≥ m.

Proof First let us prove (21) by using the mean-value theorem. For this we estimate |f ′
j (λ)|.

By (19) and (20) we have

∣
∣f ′

j (λ)
∣
∣ =

∣
∣
∣
∣
1
2

(
d

dλ
Am,s(λ) +

d
dλ

A′
m,s(λ)

)

+ (–1)j 1
4

d
dλ

�m,s(λ)
√

�m,s(λ)

∣
∣
∣
∣

≤
∣
∣
∣
∣

d
dλ

Am,s(λ)
∣
∣
∣
∣ +

1
4

∣
∣
∣
∣

d
dλ

�m,s(λ)
√

�m,s(λ)

∣
∣
∣
∣. (23)



Nur Boundary Value Problems        (2018) 2018:190 Page 9 of 16

For the first term of (23), we obtain

∣
∣
∣
∣

d
dλ

Am,s(λ)
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

d
dλ

ak,s(λ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

s∑

n1,n2,...,nk =–s

d
dλ

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λ – (2π (n – n1))2] · · · [λ – (2π (n – n1 – · · · – nk))2]

∣
∣
∣
∣
∣

≤
s∑

n1=–s

|qn1 q–n1 |
(2ρ(n))2 +

s∑

n1,n2=–s

2|qn1 qn2 q–n1–n2 |
(2ρ(n))3 + · · ·

+
s∑

n1,n2,...,nm=–s

m|qn1 qn2 · · ·qnm q–n1–n2–···–nm |
(2ρ(n))m+1

=
m∑

k=1

s∑

n1,n2,...,nk =–s

k|qn1 qn2 · · ·qnk q–n1–n2–···–nk |
(2ρ(n))k+1

≤ Qb
(2ρ(n))2 +

2Qb2

(2ρ(n))3 + · · · +
mQbm

(2ρ(n))m+1

=
Qb

(2ρ(n))2

m–1∑

i=0

(i + 1)
(

b
2ρ(n)

)i

≤ Qb
(2ρ(n))2

1
1 – b

ρ(n)
=

Qb
4ρ(n)(ρ(n) – b)

.

Similarly, for the second term of (23), we get

∣
∣
∣
∣

d
dλ

�m,s(λ)
√

�m,s(λ)

∣
∣
∣
∣ =

∣
∣
∣
∣

d
dλ

[4(q2n + Bm,s(λ))2]
√

4(q2n + Bm,s(λ))2

∣
∣
∣
∣ =

∣
∣
∣
∣
8(q2n + Bm,s(λ)) d

dλ
Bm,s(λ)

2(q2n + Bm,s(λ))

∣
∣
∣
∣

= 4
∣
∣
∣
∣

d
dλ

Bm,s(λ)
∣
∣
∣
∣ ≤ Qb

ρ(n)(ρ(n) – b)
.

Therefore, by the geometric series formula we obtain

∣
∣f ′

j (λ)
∣
∣ ≤ Qb

2ρ(n)(ρ(n) – b)
= Cn <

1
4

.

Since the inequality

∣
∣f ′

j (λ)
∣
∣ ≤ Cn < 1 (24)

is satisfied for all x, y ∈ [(2πn)2 – M, (2πn)2 + M], (21) holds by the mean value theorem
and equation (18) has a unique solution rn,j on [(2πn)2 – M, (2πn)2 + M] for each j (j = 1, 2)
by the contraction mapping theorem.

Now let us prove (22). Let us define the function

Fj(x) := x – (2πn)2 – fj(x). (25)
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By the definition of {rn,j}, we write

Fj(rn,j) = 0

for j = 1, 2. Therefore, by (4), (5), and (20), we obtain

∣
∣Fj(λn,j) – Fj(rn,j)

∣
∣

=
∣
∣Fj(λn,j)

∣
∣

=
∣
∣
∣
∣λn,j – (2πn)2 –

1
2
[(

Am,s(λn,j) + A′
m,s(λn,j)

)
+ (–1)j

√
�m,s(λn,j)

]
∣
∣
∣
∣

=
1
2
∣
∣
[(

A(λn,j) + A′(λn,j)
)

+ (–1)j
√

�(λn,j)
]

–
[(

Am,s(λn,j) + A′
m,s(λn,j)

)

+ (–1)j
√

�m,s(λn,j)
]∣
∣

≤ 1
2
∣
∣A(λn,j) – Am,s(λn,j)

∣
∣ +

1
2
∣
∣A′(λn,j) – A′

m,s(λn,j)
∣
∣ +

1
2
∣
∣
√

�(λn,j) –
√

�m,s(λn,j)
∣
∣

=
∣
∣A(λn,j) – Am,s(λn,j)

∣
∣ +

∣
∣B(λn,j) – Bm,s(λn,j)

∣
∣. (26)

First let us estimate the first term of the right-hand side of (26). For s ≥ m, we obtain

∣
∣A(λn,j) – Am,s(λn,j)

∣
∣

≤ ∣
∣A(λn,j) – Am(λn,j)

∣
∣ +

∣
∣Am(λn,j) – Am,s(λn,j)

∣
∣

=

∣
∣
∣
∣
∣

∞∑

k=1

ak(λn,j) –
m∑

k=1

ak(λn,j)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

m∑

k=1

ak(λn,j) –
m∑

k=1

ak,s(λn,j)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

k=m+1

ak(λn,j)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

m∑

k=1

[
ak(λn,j) – ak,s(λn,j)

]
∣
∣
∣
∣
∣

≤ 2
{ ∑

n1,n2,...,nm+1

|qn1 qn2 · · ·qnm+1 q–n1–n2–···–nm+1 |
|λn,j – (2π (n – n1))2| · · · |λn,j – (2π (n – n1 – · · · – nm+1))2|

+
∑

n1,n2,...,nm+2

|qn1 qn2 · · ·qnm+2 q–n1–n2–···–nm+2 |
|λn,j – (2π (n – n1))2| · · · |λn,j – (2π (n – n1 – · · · – nm+2))2| + · · ·

}

≤ 2Qcm+1

(2ρ(n))m+1 +
2Qcm+2

(2ρ(n))m+2 + · · ·

=
2Qcm+1

(2ρ(n))m+1
1

1 – c
2ρ(n)

=
Qcm+1

(2ρ(n))m(2ρ(n) – c)
. (27)

Similarly, for the second term of the right-hand side of (26), we obtain

∣
∣B(λn,j) – Bm,s(λn,j)

∣
∣ ≤ Qcm+1

(2ρ(n))m(2ρ(n) – c)
. (28)

Thus, by (26)–(28) we get

∣
∣Fj(λn,j) – Fj(rn,j)

∣
∣ ≤ 2Qcm+1

(2ρ(n))m(2ρ(n) – c)
. (29)
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To apply the mean value theorem, we estimate |F ′
j (λ)|:

∣
∣F ′

j (λ)
∣
∣ =

∣
∣1 – f ′

j (λ)
∣
∣ ≥ ∣

∣1 –
∣
∣f ′

j (λ)
∣
∣
∣
∣ ≥ 1 – Cn. (30)

By the mean value formula, (29), and (30), we obtain

∣
∣Fj(λn,j) – Fj(rn,j)

∣
∣ =

∣
∣F ′

j (ξ )
∣
∣|λn,j – rn,j|, ξ ∈ [

(2πn)2 – M, (2πn)2 + M
]
,

|λn,j – rn,j| =
|Fj(λn,j) – Fj(rn,j)|

|F ′
j (ξ )| ≤ 2Qcm+1

(2ρ(n))m(2ρ(n) – c)(1 – Cn)
. �

Now let us approximate rn,j by the fixed point iterations:

xn,i+1 = (2πn)2 + f1(xn,i) (31)

and

yn,i+1 = (2πn)2 + f2(yn,i), (32)

where fj(x) (j = 1, 2) is defined in (19). Using (20) we get

∣
∣fj(λn,j)

∣
∣ =

1
2
∣
∣
(
Am,s(λ) + A′

m,s(λ)
)

+ (–1)j
√

�m,s(λ)
∣
∣

≤ 1
2
(
2
∣
∣Am,s(λ)

∣
∣ + 2

∣
∣q2n + Bm,s(λ)

∣
∣
)

≤ |q2n| +
∣
∣Am,s(λ)

∣
∣ +

∣
∣Bm,s(λ)

∣
∣. (33)

Since the potential q has the form q(x) = 2
∑∞

k=1 qk cos 2πkx, we obtain that

xn,i = x–n,i, yn,i = y–n,i.

Now, let us estimate |Am,s(λ)|. The estimation of |Bm,s(λ)| is similar.

∣
∣Am,s(λ)

∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

ak,s(λn,j)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q–n1–n2–···–nk

[λn,j – (2π (n – n1))2] · · · [λn,j – (2π (n – n1 – · · · – nk))2]

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

k=1

s∑

n1,n2,...,nk =–s

qn1 qn2 · · ·qnk q–n1–n2–···–nk

(2δ(n))k

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

s∑

n1=–s

qn1 q–n1

(2δ(n))
+

s∑

n1,n2=–s

qn1 qn2 q–n1–n2

(2δ(n))2 + · · ·

+
s∑

n1,n2,...,nm=–s

qn1 qn2 · · ·qnm q–n1–n2–···–nm

(2δ(n))m

∣
∣
∣
∣
∣
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≤ Qb
2δ(n)

+
Qb2

(2δ(n))2 + · · · +
Qbm

(2δ(n))m

=
Qb

2δ(n)
1

1 – b
2δ(n)

=
Qb

(2δ(n) – b)
. (34)

Similarly, we obtain

∣
∣Bm,s(λ)

∣
∣ ≤ Qb

(2δ(n) – b)

and

∣
∣fj(λn,j)

∣
∣ ≤ |q2n| +

2Qb
2δ(n) – b

. (35)

On the other hand, writing 4π2(2n – 1) instead of 2δ(n) in (35), we get

∣
∣fj

(
(2πn)2)∣∣ ≤ |q2n| +

∣
∣Am,s

(
(2πn)2)∣∣ +

∣
∣Bm,s

(
(2πn)2)∣∣

≤ |q2n| +
2Qb

4π2(2n – 1) – b
(36)

since |(2πn)2 – (2πk)2| ≥ 4π2(2n – 1) for n = 1, 2, . . . .

Theorem 3 If (17) holds, then the following estimations hold for the sequences {xn,i} and
{yn,i} defined by (31) and (32):

|xn,i – rn,1| ≤ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

, (37)

|yn,i – rn,2| ≤ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

(38)

for i = 1, 2, 3, . . . , where Cn is defined in (21).

Proof Without loss of generality, we can take xn,0 = (2πn)2. By (21), (25), and (31), we have

|xn,i – rn,1| =
∣
∣(2πn)2 + f1(xn,i–1) –

(
(2πn)2 + f1(rn,1)

)∣
∣

=
∣
∣f1(xn,i–1) – f1(rn,1)

∣
∣ < Cn|xn,i–1 – rn,1| < (Cn)i|xn,0 – rn,1|.

Therefore it is enough to estimate |xn,0 – rn,1|. By definitions of rn,j and xn,0 we obtain

rn,1 – xn,0 = f1(rn,1) + (2πn)2 – xn,0 = f1(rn,1) – f1(xn,0) + f1
(
(2πn)2),

and by the mean value theorem there exists x ∈ [(2πn)2 – M, (2πn)2 + M] such that
f1(rn,1) – f1(xn,0) = f ′

1(x)(rn,1 – xn,0). The last two equalities imply that (rn,1 – xn,0)(1 – f ′
1(x)) =

f1((2πn)2). Hence by (24) and (36) we get

|rn,1 – xn,0| ≤ |f1((2πn)2)|
1 – Cn

≤ |q2n|
1 – Cn

+
2Qb

(1 – Cn)(4π2(2n – 1) – b)
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Table 1 Estimations of eigenvalues for q(x) = 2 cos(2πx)

n i xn,i |xn,i+1 – xn,i| yn,i |yn,i+1 – yn,i|

±1

0
1
2
3
4
5

1.000000000000
39.472044558692
39.469974401006
39.469974548582
39.469974548572
39.469974548572

38.472044558692
0.002070157686
0.000000147576
0.000000000011
0.000000000000

1.000000000000
39.478417489727
39.478417378628
39.478417378628

38.478417489727
0.000000111099
0.000000000000

±2

0
1
2
3
4
5

1.000000000000
157.911370091955
157.908604814554
157.908604885553
157.908604885551
157.908604885551

156.911370091955
0.002765277401
0.000000070999
0.000000000002
0.000000000000

1.000000000000
157.914499110787
157.913670814745
157.913670814754
157.913670814754

156.914499110787
0.000828296043
0.000000000009
0.000000000000

±3

0
1
2
3
4
5

1.000000000000
355.299384450125
355.302139969517
355.302139933433
355.302139933434
355.302139933434

354.299384450125
0.002755519393
0.000000036084
0.000000000001
0.000000000000

1.000000000000
355.304171727348
355.310824599657
355.310824428906
355.310824428910
355.310824428910

354.304171727348
0.006652872309
0.000000170751
0.000000000004
0.000000000000

±4

0
1
2
3
4
5

1.000000000000
631.651859197264
631.651867232362
631.651867232298
631.651867232298

630.651859197264
0.000008035097
0.000000000064
0.000000000000

1.000000000000
631.653667378752
631.658300314310
631.658300253644
631.658300253645
631.658300253645

630.653667378752
0.004632935559
0.000000060666
0.000000000001
0.000000000000

±5

0
1
2
3
4
5

1.000000000000
986.958854447771
986.958137370115
986.958137373917
986.958137373917
986.958137373917

985.958854447771
0.000717077657
0.000000003802
0.000000000000
0.000000000000

1.000000000000
986.959735986823
986.963254598781
986.963254570909
986.963254570909
986.963254570909

985.959735986823
0.003518611957
0.000000027872
0.000000000000
0.000000000000

±6

0
1
2
3
4

1.000000000000
1421.222019515655
1421.221085279699
1421.221085283246
1421.221085283246

1420.222019515655
0.000934235956
0.000000003547
0.000000000000

1.000000000000
1421.222516542946
1421.225336517065
1421.225336502112
1421.225336502112

1420.222516542946
0.002819974119
0.000000014953
0.000000000000

±7

0
1
2
3
4

1.000000000000
1934.441758498203
1934.440773930878
1934.440773933686
1934.440773933686

1933.441758498203
0.000984567325
0.000000002808
0.000000000000

1.000000000000
1934.442066670380
1934.444411101068
1934.444411092167
1934.444411092167

1933.442066670380
0.002344430688
0.000000008901
0.000000000000

and

|xn,i – rn,1| ≤ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

.

One can easily show in a similar way to (37) that

|yn,i – rn,2| ≤ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

for iteration (32). �

Thus by (22), (37), and (38) we have the approximations xn,i and yn,i for λn,1 and λn,2,
respectively, with the errors

|λn,1 – xn,i| <
2Qcm+1

2m(ρ(n))m(2ρ(n) – c)(1 – Cn)
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Table 2 Estimations of eigenvalues for q(x) = 2 cos(2πx) + 2 cos(4πx)

n i xn,i |xn,i+1 – xn,i| yn,i |yn,i+1 – yn,i|

±1

0
1
2
3
4
5

1.000000000000
38.473844750118
38.472688962751
38.472689008589
38.472689008587
38.472689008587

37.473844750118
0.001155787367
0.000000045838
0.000000000002
0.000000000000

1.000000000000
40.423036168470
40.471787835885
40.471786569354
40.471786569387
40.471786569387

39.423036168470
0.048751667415
0.000001266531
0.000000000033
0.000000000000

±2

0
1
2
3
4
5

1.000000000000
157.708686755063
157.906540179470
157.906534021274
157.906534021465
157.906534021465

156.708686755063
0.197853424408
0.000006158197
0.000000000192
0.000000000000

1.000000000000
157.910954517251
157.913719642989
157.913719639257
157.913719639257

156.910954517251
0.002765125738
0.000000003732
0.000000000000

±3

0
1
2
3
4
5

1.000000000000
355.274676914265
355.300564251475
355.300563843658
355.300563843665
355.300563843665

354.274676914265
0.025887337209
0.000000407817
0.000000000006
0.000000000000

1.000000000000
355.304635333209
355.313997921297
355.313997585704
355.313997585716
355.313997585716

354.304635333209
0.009362588088
0.000000335592
0.000000000012
0.000000000000

±4

0
1
2
3
4
5

1.000000000000
631.645567421755
631.650602854392
631.650602806214
631.650602806214
631.650602806214

630.645567421755
0.005035432636
0.000000048178
0.000000000000
0.000000000000

1.000000000000
631.653044860730
631.660413259797
631.660413130168
631.660413130170
631.660413130170

630.653044860730
0.007368399068
0.000000129629
0.000000000002
0.000000000000

±5

0
1
2
3
4

1.000000000000
986.956043584523
986.957082783600
986.957082776914
986.957082776914

985.956043584523
0.001039199076
0.000000006685
0.000000000000

1.000000000000
986.959230332354
986.964838571940
986.964838513367
986.964838513368
986.964838513368

985.959230332354
0.005608239586
0.000000058572
0.000000000001
0.000000000000

±6

0
1
2
3
4

1.000000000000
1421.220438496119
1421.220181024587
1421.220181025778
1421.220181025777
1421.220181025777

1420.220438496119
0.000257471532
0.000000001190
0.000000000001
0.000000000000

1.000000000000
1421.222125234640
1421.226603425567
1421.226603394604
1421.226603394604
1421.226603394604

1420.222125234640
0.004478190927
0.000000030964
0.000000000000
0.000000000000

±7

0
1
2
3
4

1.000000000000
1934.440746482760
1934.439982571624
1934.439982574285
1934.439982574285

1933.440746482760
0.000763911135
0.000000002660
0.000000000000

1.000000000000
1934.441756076886
1934.445466740559
1934.445466722323
1934.445466722323

1933.441756076886
0.003710663673
0.000000018236
0.000000000000

+ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

,

|λn,2 – yn,i| <
2Qcm+1

2m(ρ(n))m(2ρ(n) – c)(1 – Cn)

+ (Cn)i
( |q2n|

1 – Cn
+

2Qb
(1 – Cn)(4π2(2n – 1) – b)

)

.

By these error formulas it is clear that the error will be very small if m grows.

3 Numerical examples
In this section we estimate the small eigenvalues for the potentials q1(x) := 2 cos(2πx) and
q2(x) := 2 cos(2πx) + 2 cos(4πx) by iterations (31) and (32). Note that q1(x) is a famous
Mathieu potential and q2(x) is the generalization of the Mathieu potential. Therefore we
consider these potentials in our examples.
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Example 1 For q(x) = 2 cos(2πx), m = 3, and s = 5 with the initial approximations xn,0 = 1
and yn,0 = 1, we have Table 1 for the estimations of the small eigenvalues of L0(q). The fixed
point iterations continue until the tolerance 1e – 18. Usually it takes only 4 or 5 iterations
to get this tolerance for any initial value xn,0 �= 0, which means that the iterations converge
very rapidly. In this table xn,i and yn,i denote the estimations for λn,1 and λn,2, respectively,
where i is the number of the iterations.

We see from Table 1 that the eigenvalues λn,1 and λn,2 are close to each other and they
are close to (2πn)2.

Example 2 For q(x) = 2 cos(2πx) + 2 cos(4πx), m = 3, and s = 5 with the initial approxima-
tions xn,0 = 1 and yn,0 = 1, we have Table 2 for the estimations of the small eigenvalues of
L0(q). xn,i is the estimation for λn,1 and yn,i is the estimation for λn,2, where i is the number
of the iterations. Again, the fixed point iterations continue until the tolerance 1e – 18 and
converge very fast.

From Table 2 we can see that the first eigenvalues λ1,1 and λ1,2 are far from each other
but the other eigenvalues λn,1 and λn,2 are close to each other and they are close to (2πn)2.
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