RESEARCH

Boundary Value Problems a SpringerOpen Journal

Open Access

On the estimations of the small eigenvalues of Sturm–Liouville operators with periodic and antiperiodic boundary conditions

Cemile Nur^{1*}

Correspondence: cnur@yalova.edu.tr ¹Department of Electrical & Electronics Engineering, Yalova University, Yalova, Turkey

Abstract

We give a new approach for the estimations of the eigenvalues of non-self-adjoint Sturm–Liouville operators with periodic and antiperiodic boundary conditions. Moreover, we give error estimations, and finally we present some numerical examples.

MSC: 34L05; 65L15

Keywords: Eigenvalue estimations; Regular boundary conditions; Numerical methods

1 Introduction and preliminary facts

Let $L_k(q)$ for k = 0, 1 be the operators generated in $L_2[0, 1]$ by the differential expression -y'' + q(x)y and the boundary conditions

$$y(1) = e^{i\pi k} y(0), \qquad y'(1) = e^{i\pi k} y'(0),$$
 (1)

that is, periodic and antiperiodic boundary conditions, where q is a complex-valued summable function on [0, 1]. It is well known that the spectra of these operators are discrete, and for large enough n, there are two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues (counted with multiplicity) in the neighborhood of $(\pi n)^2$. See basics and detailed classical results in [4, 13, 14, 16], and the references therein.

Note also that these boundary conditions are the most commonly studied ones among the regular but not strongly regular boundary conditions. Therefore there exist a lot of studies about the investigation of Riesz basis property. Let us mention only the pioneer papers about it. The first results about the Riesz basis property of such operators were obtained by Kerimov and Mamedov [12]. They established that, if $q \in C^4[0,1], q(1) \neq q(0)$, then the root functions of the operator $L_0(q)$ form a Riesz basis in $L_2[0,1]$. The first result in terms of the Fourier coefficients of the potential q was obtained by Dernek and Veliev [6], and this result was essentially improved by Shkalikov and Veliev [19].

There are also many studies about the numerical estimations of the small eigenvalues of the Sturm–Liouville operators with periodic and antiperiodic boundary conditions.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Some popular methods that have been used are the finite difference method, finite element method, Prüfer transformations, and the shooting method. For example, Andrew considered the computations of the eigenvalues by using the finite element method [1] and the finite difference method [2]. Then these results were extended by Condon [5] and by Vanden Berghe et al. [21]. Ji and Wong used Prüfer transformation and the shooting method in their works [10, 11, 23]. Malathi et al. [15] used the shooting method and direct integration method for computing eigenvalues of the periodic Sturm–Liouville problems. One of the interesting approaches was given by Dinibütün and Veliev [7]. They considered the matrix form of the operator T(p) generated in $L_2[0, 1]$ by the differential expression -y'' + q(x)y and the boundary conditions

$$y(2\pi) = y(0), \qquad y'(2\pi) = y'(0),$$

where the potential q is in the form $q(x) = p(x) + \sum_{n:|n|>s} q_n e^{inx}$ and $p(x) = \sum_{n:|n|\leq s} q_n e^{inx}$, and they gave an approximation with very small errors for the eigenvalues of the periodic Sturm–Liouville problems.

The eigenvalues of $L_0(0)$ and $L_1(0)$ are $(2n\pi)^2$ and $((2n + 1)\pi)^2$ for $n \in \mathbb{Z}$, respectively, and all eigenvalues of $L_0(0)$ and $L_1(0)$ are double except 0. The eigenvalues of the operators $L_0(q)$ and $L_1(q)$ are called the periodic and antiperiodic eigenvalues, and if q is a real periodic function, then they are denoted by $\lambda_{2n}(q)$ and $\lambda_{2n+1}(q)$ for $n \in \mathbb{Z}$, respectively, where

$$\lambda_0(q) < \lambda_{-1}(q) \le \lambda_1(q) < \lambda_{-2}(q) \le \lambda_2(q) < \lambda_{-3}(q) \le \lambda_3(q) < \lambda_{-4}(q) \le \lambda_4(q) < \cdots$$

[9, see p. 27]. The investigation of the periodic and antiperiodic eigenvalues is crucial because the spectrum of the Hill operator L(q) generated in $L_2[-\infty,\infty]$ by the differential expression -y'' + q(x)y consists of the intervals $[\lambda_{n-1}(q), \lambda_{-n}(q)]$ for n = 1, 2, ..., for real periodic potentials. Moreover, these intervals are the closure of the stable intervals of the equation

$$-y''(x) + q(x)y(x) = \lambda y(x).$$
 (2)

The intervals $(\lambda_{-n}, \lambda_n)$ for n = 1, 2, ... are the gaps in the spectrum. These intervals with $(-\infty, \lambda_0)$ are the instable intervals of (2) [9, see pages 32 and 82]. The length of the *n*th gap in the spectrum of L(q) (the length of the (n + 1)th instable interval of (2)) is

$$\delta_n(q) := \lambda_n(q) - \lambda_{-n}(q).$$

Therefore the investigation of the periodic and antiperiodic eigenvalues is, at the same time, the investigation of the spectrum of the operator L(q) and the stable intervals of (2) for real periodic potentials.

We are interested in the numerical estimations of the small eigenvalues of the operators $L_0(q)$ and $L_1(q)$. In this paper we give a new approach to get subtle estimations for the small periodic and antiperiodic eigenvalues when the complex-valued summable potential is in the form $q(x) = 2 \sum_{k=1}^{\infty} q_k \cos 2\pi kx$, where $q_k := (q, e^{i2\pi kx})$ is the Fourier coefficient of q and (.,.) denotes the inner product in $L_2[0, 1]$. Without loss of generality, we assume that $q_0 = 0$.

We essentially use the following equation obtained from [6] (see (15) and (17) of [6]):

$$\left[\lambda - (2\pi n)^2 - A(\lambda)\right] \left[\lambda - (2\pi n)^2 - A'(\lambda)\right] - \left(q_{2n} + B(\lambda)\right) \left(q_{-2n} + B'(\lambda)\right) = 0, \tag{3}$$

where the terms in this equation are defined in (14) and (15). Nevertheless, even if we have obtained this equation from [6], the method of investigation is absolutely different. In [6, 19, 22], and [24], they use asymptotic formulas for the large eigenvalues which cannot be used for the small eigenvalues. Note that the asymptotic behaviors of large eigenvalues were investigated in detail (see [3, 8, 16, 17, 20], and the references therein). In this paper we consider the small eigenvalues by numerical methods.

We will focus only on the operator $L_0(q)$. The investigation of $L_1(q)$ is the same. For simplicity of reading, first let us give the brief scheme of the proofs of the main results. To consider the small eigenvalues, first we prove (see Theorem 1) that the small eigenvalues satisfy equation (3), and using this equation we show that the eigenvalue $\lambda_{n,j}$ is the root of one of the equations:

$$\lambda = (2\pi n)^2 + \frac{1}{2} \Big[\big(A(\lambda) + A'(\lambda) \big) - \sqrt{\Delta(\lambda)} \Big], \tag{4}$$

$$\lambda = (2\pi n)^2 + \frac{1}{2} \left[\left(A(\lambda) + A'(\lambda) \right) + \sqrt{\Delta(\lambda)} \right], \tag{5}$$

where $\Delta(\lambda) = (A(\lambda) - A'(\lambda))^2 + 4(q_{2n} + B(\lambda))(q_{-2n} + B'(\lambda))$. To use numerical methods, we take finite summations instead of the infinite series in expressions (4) and (5) and show that the eigenvalues are close to the roots of the equations obtained by taking these finite summations. To find the roots of these equations, many numerical methods can be used such as the fixed point iteration and the Newton method. Since it is not necessary to compute the derivatives of the functions $f_j(x)$, j = 1, 2, defined in (16), we choose the fixed point iteration method. Then, using the Banach fixed point theorem, we prove that each of these equations containing the finite summations has a unique solution on the convenient set (see Theorem 2). Moreover, we give error estimations. Finally we present some examples.

For simplicity of calculations, we assume that

$$\sum_{k=-\infty}^{\infty} |q_k| := c < \infty, \qquad \sum_{k=-s}^{s} |q_k| := b, \qquad \sup_{x} |q(x)| := M, \qquad \sup_{n} |q_n| := Q.$$
(6)

It is well known that [18]

 $|\lambda_n(q) - \lambda_n(0)| \leq M$, $\lambda_n(0) = (2\pi n)^2$, $\forall n \in \mathbb{Z}$.

Therefore, we have

$$(2\pi n)^2 - M \le \lambda_n(q) \le (2\pi n)^2 + M,$$

and for $n \neq k$ we have that

$$\left|\lambda_{n} - (2\pi n_{k})^{2}\right| \ge \left|(2\pi n)^{2} - (2\pi n_{k})^{2}\right| - M \ge \left|4\pi^{2}(n - n_{k})(n + n_{k})\right| - M \ge 2\rho(n),$$
(7)

where $2\rho(n) = 4\pi^2(2n-1) - M$.

2 Main results

Let us introduce some notations and relations we use from [6]. One of the main equations is

$$\left(\lambda_{n,j} - (2\pi n)^2 - A_m(\lambda_{n,j})\right) \left(\Psi_{n,j}, e^{i2\pi nx}\right) - \left(q_{2n} + B_m(\lambda_{n,j})\right) \left(\Psi_{n,j}, e^{-i2\pi nx}\right) = R_m$$
(8)

(see (15) in [6]), where $A_m(\lambda_{n,j}) = \sum_{k=1}^m a_k(\lambda_{n,j}), B_m(\lambda_{n,j}) = \sum_{k=1}^m b_k(\lambda_{n,j}),$

$$a_{k}(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n-n_{1}-\dots-n_{k}))^{2}]},$$

$$b_{k}(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{2n-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n-n_{1}-\dots-n_{k}))^{2}]},$$

$$(9)$$

$$R_{m}(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{m+1}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{m}}q_{n_{m+1}}(q(x)\Psi_{n,j}(x), e^{i2\pi(n-n_{1}-\dots-n_{m+1})x})}{[\lambda_{n,j} - (2\pi(n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n-n_{1}-\dots-n_{m+1}))^{2}]}.$$

Here the sums are taken under the conditions

$$n_s \neq 0, \quad \sum_{j=1}^s n_j \neq 0, 2n$$

for s = 1, 2, ..., m + 1. Another main equation is

$$\left(\lambda_{n,j} - (2\pi n)^2 - A'_m(\lambda_{n,j})\right) \left(\Psi_{n,j}, e^{-i2\pi nx}\right) - \left(q_{-2n} + B'_m(\lambda_{n,j})\right) \left(\Psi_{n,j}, e^{i2\pi nx}\right) = R'_m \tag{10}$$

(see (17) in [6]), where $A'_m(\lambda_{n,j}) = \sum_{k=1}^m a'_k(\lambda_{n,j}), B'_m(\lambda_{n,j}) = \sum_{k=1}^m b'_k(\lambda_{n,j}),$

$$a_{k}'(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n+n_{1}))^{2}]\cdots[\lambda_{n,j} - (2\pi(n+n_{1}+\dots+n_{k}))^{2}]},$$

$$b_{k}'(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-2n-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n+n_{1}))^{2}]\cdots[\lambda_{n,j} - (2\pi(n+n_{1}+\dots+n_{k}))^{2}]},$$
(11)

$$R_{m}'(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{m+1}} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{m}}q_{n_{m+1}}(q(x)\Psi_{n,j}(x), e^{i2\pi(n+n_{1}+\dots+n_{m+1})x})}{[\lambda_{n,j} - (2\pi(n+n_{1}))^{2}]\cdots[\lambda_{n,j} - (2\pi(n+n_{1}+\dots+n_{m+1}))^{2}]}.$$

Here the sums are taken under the conditions

$$n_s \neq 0$$
, $\sum_{j=1}^s n_j \neq 0$, $-2n$

for s = 1, 2, ..., m + 1.

Now letting m tend to infinity in (8) and (10), we obtain

$$(\lambda_{n,j} - (2\pi n)^2 - A(\lambda_{n,j}))u_{n,j} = (q_{2n} + B(\lambda_{n,j}))v_{n,j},$$
(12)

$$\left(\lambda_{n,j} - (2\pi n)^2 - A'(\lambda_{n,j})\right) v_{n,j} = \left(q_{-2n} + B'(\lambda_{n,j})\right) u_{n,j},\tag{13}$$

where

$$A(\lambda_{n,j}) = \sum_{k=1}^{\infty} a_k(\lambda_{n,j}), \qquad B(\lambda_{n,j}) = \sum_{k=1}^{\infty} b_k(\lambda_{n,j}), \tag{14}$$

$$A'(\lambda_{n,j}) = \sum_{k=1}^{\infty} a'_k(\lambda_{n,j}), \qquad B'(\lambda_{n,j}) = \sum_{k=1}^{\infty} b'_k(\lambda_{n,j})$$
(15)

and

$$u_{n,j} = (\Psi_{n,j}, e^{i2\pi nx}), \qquad v_{n,j} = (\Psi_{n,j}, e^{-i2\pi nx}).$$
(16)

To prove one of the main results, Theorem 1, we use the following lemma.

Lemma 1 If

$$\rho(n) > 2c, \tag{17}$$

then the following hold: (a)

$$\lim_{m\to\infty} R_m(\lambda_{n,j}) = 0, \qquad \lim_{m\to\infty} R'_m(\lambda_{n,j}) = 0$$

for j = 1, 2, where $R_m(\lambda_{n,j})$ and $R'_m(\lambda_{n,j})$ are defined by (9) and (11), respectively. (b)

 $|u_{n,j}|^2 + |v_{n,j}|^2 > 0$

for
$$j = 1, 2$$
, where $u_{n,j}$ and $v_{n,j}$ are defined by (16).

Proof (a) By the definition of R_m we have

$$\left|R_m(\lambda_{n,j})\right| \leq \sum_{n_1, n_2, \dots, n_{m+1}} \frac{|q_{n_1}q_{n_2}\cdots q_{n_m}q_{n_{m+1}}(q(x)\Psi_{n,j}(x), e^{i2\pi(n-n_1-\cdots-n_{m+1})x})|}{|\lambda_{n,j} - (2\pi(n-n_1))^2|\cdots |\lambda_{n,j} - (2\pi(n-n_1-\cdots-n_{m+1}))^2|}.$$

Taking into account that $\|\Psi_{n,j}\| = 1$ and that

$$|(q\Psi_{n,j},e^{i2\pi(n-n_1-\cdots-n_{m+1})x})| \leq ||q\Psi_{n,j}|| ||e^{i2\pi(n-n_1-\cdots-n_{m+1})x}|| \leq M,$$

we obtain by (6) and (7) that

$$|R_m(\lambda_{n,j})| \leq M\left(\frac{c}{2\rho(n)}\right)^{m+1}.$$

Thus this with (17) implies $R_m(\lambda_{n,j}) \to 0$ as $m \to \infty$ for j = 1, 2. Similarly, we prove the same result for $R'_m(\lambda_{n,j})$.

(b) Suppose to the contrary $u_{n,j} = 0$, $v_{n,j} = 0$. Since the root functions of $L_0(0)$ form an orthonormal basis, we have the decomposition

$$\Psi_{n,j} = u_{n,j}e^{i2\pi nx} + v_{n,j}e^{-i2\pi nx} + h_{n,j}(x)$$

for the normalized eigenfunction $\Psi_{n,j}$ corresponding to the eigenvalue $\lambda_{n,j}$ of $L_0(q)$, where

$$h_{n,j}(x) = \sum_{k\in\mathbb{Z}, k\neq\pm n}^{\infty} (\Psi_{n,j}, e^{i2\pi kx}) e^{i2\pi kx}.$$

To get a contradiction, it is enough to show that $\|\Psi_{n,j}\| < 1$ for j = 1, 2. By Parseval's equality, we have

$$\|\Psi_{n,j}\|^2 = \|h_{n,j}\|^2 = \sum_{k\in\mathbb{Z},k\neq\pm n}^{\infty} |(\Psi_{n,j}, e^{i2\pi kx})|^2.$$

Now using (9) in [6], (7), and Bessel inequality and taking into account that $c \ge M$, we obtain by (17) that

$$\begin{split} \sum_{k\in\mathbb{Z},k\neq\pm n}^{\infty} \left| \left(\Psi_{n,j}, e^{i2\pi kx} \right) \right|^2 &= \sum_{k\in\mathbb{Z},k\neq\pm n}^{\infty} \frac{|(q\Psi_{n,j}, e^{i2\pi kx})|^2}{|\lambda_{n,j} - (2\pi k)^2|^2} \\ &\leq \frac{1}{(2\rho(n))^2} \sum_{k\in\mathbb{Z},k\neq\pm n}^{\infty} \left| \left(q\Psi_{n,j}, e^{i2\pi kx} \right) \right|^2 \\ &\leq \frac{M^2}{(2\rho(n))^2} \leq \frac{c^2}{(2\rho(n))^2} < \frac{1}{16}, \end{split}$$

which contradicts $\|\Psi_{n,j}\| = 1$ and completes the proof of the lemma.

Now we state one of the main results:

Theorem 1 If (17) holds, then $\lambda_{n,j}$ is an eigenvalue of L_0 if and only if it is a root of equation (3).

Moreover, $\lambda \in U(n) := [(2\pi n)^2 - M, (2\pi n)^2 + M]$ is a double eigenvalue of L_0 if and only if it is a double root of (3).

Proof By (12) and (13), we have the following cases:

Case 1. If $u_{n,j} = 0$, then by Lemma 1(b) we have $v_{n,j} \neq 0$. Therefore by (12) and (13) we obtain $(q_{2n} + B(\lambda_{n,j})) = 0$ and $(\lambda_{n,j} - (2\pi n)^2 - A'(\lambda_{n,j})) = 0$, which means that (3) holds.

Case 2. If $v_{n,j} = 0$, then again by Lemma 1(b) we have $u_{n,j} \neq 0$. It follows from (12) and (13) that $(\lambda_{n,j} - (2\pi n)^2 - A(\lambda_{n,j})) = 0$ and $(q_{-2n} + B'(\lambda_{n,j})) = 0$, which means that (3) again holds.

Case 3. If $u_{n,j} \neq 0$ and $v_{n,j} \neq 0$, then multiplying equations (12) and (13) side by side and then canceling $u_{n,j}v_{n,j}$, we obtain (3). Thus in any case $\lambda_{n,j}$ is a root of (3).

Now we prove that the roots of (3) lying in U(n) are the eigenvalues of $L_0(q)$. Let $F(\lambda)$ be the left-hand side of (3) which can be written as

$$F(\lambda) := \left(\lambda - (2\pi n)^2\right)^2 - \left(A(\lambda) + A'(\lambda)\right) \left(\lambda - (2\pi n)^2\right)$$

$$+A(\lambda)A'(\lambda)-(q_{2n}+B(\lambda))(q_{-2n}+B'(\lambda))$$

and

$$G(\lambda) := \left(\lambda - (2\pi n)^2\right)^2.$$

It is easy to verify that the inequality

$$|F(\lambda) - G(\lambda)| < |G(\lambda)|$$

holds for all λ from the boundary of U(n). Since the function $G(\lambda)$ has two roots in the set U(n), by Rouche's theorem, $F(\lambda)$ has also two roots in U(n). Therefore L_0 has two eigenvalues (counting with multiplicities) lying in U(n) that are the roots of (3). On the other hand, (3) has preciously two roots (counting with multiplicities) in U(n). Thus $\lambda \in U(n)$ is an eigenvalue of L_0 if and only if (3) holds.

If $\lambda \in U(n)$ is a double eigenvalue of L_0 , then L_0 has no other eigenvalues in U(n) and hence (3) has no other roots. This implies that λ is a double root of (3). By the same way one can prove that if λ is a double root of (3), then it is a double eigenvalue of L_0 .

Now let us substitute $t := \lambda - (2\pi n)^2$ in $F(\lambda) = 0$. Then

$$t^{2} - (A(\lambda) + A'(\lambda))t + A(\lambda)A'(\lambda) - (q_{2n} + B(\lambda))(q_{-2n} + B'(\lambda)) = 0.$$

The solutions of this equation are

$$t_{1,2} = \frac{(A(\lambda) + A'(\lambda)) \pm \sqrt{\Delta(\lambda)}}{2},$$

where

$$\Delta(\lambda) = (A(\lambda) + A'(\lambda))^2 - 4[A(\lambda)A'(\lambda) - (q_{2n} + B(\lambda))(q_{-2n} + B'(\lambda))],$$

which can be written in the form

$$\Delta(\lambda) = (A(\lambda) - A'(\lambda))^2 + 4(q_{2n} + B(\lambda))(q_{-2n} + B'(\lambda)).$$

By Theorem 1, the eigenvalue $\lambda_{n,j}$ is a root either of equation (4) or of equation (5). To use numerical methods, we take finite summations instead of the infinite series in expressions (4) and (5), and get

$$\lambda = (2\pi n)^2 + f_j(\lambda) \tag{18}$$

for j = 1 and j = 2, where

$$\begin{split} f_j(\lambda) &= \frac{1}{2} \Big[\left(A_{m,s}(\lambda) + A'_{m,s}(\lambda) \right) + (-1)^j \sqrt{\Delta_{m,s}(\lambda)} \Big], \\ A_{m,s}(\lambda) &:= \sum_{k=1}^m a_{k,s}(\lambda_{n,j}), \qquad A'_{m,s}(\lambda) := \sum_{k=1}^m a'_{k,s}(\lambda_{n,j}), \end{split}$$

$$a_{k,s}(\lambda_{n,j}) \coloneqq \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n-n_{1}-\dots-n_{k}))^{2}]},$$

$$a_{k,s}'(\lambda_{n,j}) \coloneqq \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n+n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n+n_{1}+\dots+n_{k}))^{2}]},$$

$$\Delta_{m,s}(\lambda) \coloneqq (A_{m,s}(\lambda) - A_{m,s}'(\lambda))^{2} + 4(q_{2n} + B_{m,s}(\lambda))(q_{-2n} + B_{m,s}'(\lambda)),$$

$$B_{m,s}(\lambda) \coloneqq \sum_{k=1}^{m} b_{k,s}(\lambda_{n,j}), \qquad B_{m,s}'(\lambda) \coloneqq \sum_{k=1}^{m} b_{k,s}'(\lambda_{n,j}),$$

$$b_{k,s}(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{2n-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n-n_{1}-\dots-n_{k}))^{2}]},$$

$$b_{k,s}'(\lambda_{n,j}) = \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{2n-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda_{n,j} - (2\pi(n+n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi(n+n_{1}+\dots+n_{k}))^{2}]}.$$
(19)

Now we prove that the eigenvalues of L_0 are close to the roots of (18) for the complexvalued summable potential q in the form $q(x) = 2 \sum_{k=1}^{\infty} q_k \cos 2\pi kx$. We have the following relations for such potential:

$$a_{k,s}(\lambda_{n,j}) = a'_{k,s}(\lambda_{n,j}), \qquad b_{k,s}(\lambda_{n,j}) = b'_{k,s}(\lambda_{n,j}),$$

$$A_{m,s}(\lambda) = A'_{m,s}(\lambda), \qquad B_{m,s}(\lambda) = B'_{m,s}(\lambda),$$

$$a_{k}(\lambda_{n,j}) = a'_{k}(\lambda_{n,j}), \qquad b_{k}(\lambda_{n,j}) = b'_{k}(\lambda_{n,j}), \qquad (20)$$

$$A(\lambda) = A'(\lambda), \qquad B(\lambda) = B'(\lambda),$$

$$\Delta_{m,s}(\lambda) = 4(q_{2n} + B_{m,s}(\lambda))^{2}, \qquad \Delta(\lambda) = 4(q_{2n} + B(\lambda))^{2}.$$

Theorem 2 If (17) holds, then for all x and y from $[(2\pi n)^2 - M, (2\pi n)^2 + M]$ the relations

$$|f_j(x) - f_j(y)| < C_n |x - y|, \qquad C_n = \frac{Qb}{2\rho(n)(\rho(n) - b)} < \frac{1}{4},$$
(21)

hold for j = 1, 2, and for each j, equation (18) has a unique solution $r_{n,j}$ on $[(2\pi n)^2 - M, (2\pi n)^2 + M]$.

Moreover,

$$|\lambda_{n,j} - r_{n,j}| \le \frac{2Qc^{m+1}}{2^m(\rho(n))^m(2\rho(n) - c)(1 - C_n)}$$
(22)

for j = 1, 2 and $s \ge m$.

Proof First let us prove (21) by using the mean-value theorem. For this we estimate $|f'_j(\lambda)|$. By (19) and (20) we have

$$\left| f_{j}'(\lambda) \right| = \left| \frac{1}{2} \left(\frac{d}{d\lambda} A_{m,s}(\lambda) + \frac{d}{d\lambda} A_{m,s}'(\lambda) \right) + (-1)^{j} \frac{1}{4} \frac{\frac{d}{d\lambda} \Delta_{m,s}(\lambda)}{\sqrt{\Delta_{m,s}(\lambda)}} \right|$$
$$\leq \left| \frac{d}{d\lambda} A_{m,s}(\lambda) \right| + \frac{1}{4} \left| \frac{\frac{d}{d\lambda} \Delta_{m,s}(\lambda)}{\sqrt{\Delta_{m,s}(\lambda)}} \right|.$$
(23)

For the first term of (23), we obtain

$$\begin{split} \left| \frac{d}{d\lambda} A_{m,s}(\lambda) \right| \\ &= \left| \sum_{k=1}^{m} \frac{d}{d\lambda} a_{k,s}(\lambda) \right| \\ &= \left| \sum_{k=1}^{m} \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{d}{d\lambda} \frac{q_{n1}q_{n2}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}}{[\lambda - (2\pi(n-n_{1}))^{2}]\cdots[\lambda - (2\pi(n-n_{1}-n_{1}-\dots-n_{k}))^{2}]} \right| \\ &\leq \sum_{n_{1}=-s}^{s} \frac{|q_{n1}q_{-n_{1}}|}{(2\rho(n))^{2}} + \sum_{n_{1},n_{2}=-s}^{s} \frac{2|q_{n1}q_{n2}q_{-n_{1}-n_{2}}|}{(2\rho(n))^{3}} + \cdots \\ &+ \sum_{n_{1},n_{2},\dots,n_{m}=-s}^{s} \frac{m|q_{n1}q_{n2}\cdots q_{n_{m}}q_{-n_{1}-n_{2}-\dots-n_{k}}|}{(2\rho(n))^{m+1}} \\ &= \sum_{k=1}^{m} \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{k|q_{n1}q_{n2}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\dots-n_{k}}|}{(2\rho(n))^{k+1}} \\ &\leq \frac{Qb}{(2\rho(n))^{2}} + \frac{2Qb^{2}}{(2\rho(n))^{3}} + \cdots + \frac{mQb^{m}}{(2\rho(n))^{m+1}} \\ &= \frac{Qb}{(2\rho(n))^{2}} \sum_{i=0}^{m-1} (i+1) \left(\frac{b}{2\rho(n)}\right)^{i} \\ &\leq \frac{Qb}{(2\rho(n))^{2}} \frac{1}{1 - \frac{b}{\rho(n)}} = \frac{Qb}{4\rho(n)(\rho(n)-b)}. \end{split}$$

Similarly, for the second term of (23), we get

$$\begin{aligned} \left| \frac{\frac{d}{d\lambda} \Delta_{m,s}(\lambda)}{\sqrt{\Delta_{m,s}(\lambda)}} \right| &= \left| \frac{\frac{d}{d\lambda} [4(q_{2n} + B_{m,s}(\lambda))^2]}{\sqrt{4(q_{2n} + B_{m,s}(\lambda))^2}} \right| = \left| \frac{8(q_{2n} + B_{m,s}(\lambda)) \frac{d}{d\lambda} B_{m,s}(\lambda)}{2(q_{2n} + B_{m,s}(\lambda))} \right| \\ &= 4 \left| \frac{d}{d\lambda} B_{m,s}(\lambda) \right| \le \frac{Qb}{\rho(n)(\rho(n) - b)}.\end{aligned}$$

Therefore, by the geometric series formula we obtain

$$\left|f_{j}'(\lambda)\right| \leq \frac{Qb}{2\rho(n)(\rho(n)-b)} = C_{n} < \frac{1}{4}.$$

Since the inequality

$$\left|f_{j}'(\lambda)\right| \le C_{n} < 1 \tag{24}$$

is satisfied for all $x, y \in [(2\pi n)^2 - M, (2\pi n)^2 + M]$, (21) holds by the mean value theorem and equation (18) has a unique solution $r_{n,j}$ on $[(2\pi n)^2 - M, (2\pi n)^2 + M]$ for each j (j = 1, 2) by the contraction mapping theorem.

Now let us prove (22). Let us define the function

$$F_j(x) := x - (2\pi n)^2 - f_j(x).$$
⁽²⁵⁾

By the definition of $\{r_{n,j}\}$, we write

$$F_j(r_{n,j})=0$$

for j = 1, 2. Therefore, by (4), (5), and (20), we obtain

$$\begin{aligned} |F_{j}(\lambda_{n,j}) - F_{j}(r_{n,j})| \\ &= |F_{j}(\lambda_{n,j})| \\ &= \left|\lambda_{n,j} - (2\pi n)^{2} - \frac{1}{2} \Big[\left(A_{m,s}(\lambda_{n,j}) + A'_{m,s}(\lambda_{n,j})\right) + (-1)^{j} \sqrt{\Delta_{m,s}(\lambda_{n,j})} \Big] \right| \\ &= \frac{1}{2} \Big| \Big[\left(A(\lambda_{n,j}) + A'(\lambda_{n,j})\right) + (-1)^{j} \sqrt{\Delta(\lambda_{n,j})} \Big] - \Big[\left(A_{m,s}(\lambda_{n,j}) + A'_{m,s}(\lambda_{n,j})\right) \\ &+ (-1)^{j} \sqrt{\Delta_{m,s}(\lambda_{n,j})} \Big] \Big| \\ &\leq \frac{1}{2} \Big| A(\lambda_{n,j}) - A_{m,s}(\lambda_{n,j}) \Big| + \frac{1}{2} \Big| A'(\lambda_{n,j}) - A'_{m,s}(\lambda_{n,j}) \Big| + \frac{1}{2} \Big| \sqrt{\Delta(\lambda_{n,j})} - \sqrt{\Delta_{m,s}(\lambda_{n,j})} \Big| \\ &= |A(\lambda_{n,j}) - A_{m,s}(\lambda_{n,j})| + |B(\lambda_{n,j}) - B_{m,s}(\lambda_{n,j})|. \end{aligned}$$
(26)

First let us estimate the first term of the right-hand side of (26). For $s \ge m$, we obtain

$$\begin{aligned} |A(\lambda_{n,j}) - A_{m,s}(\lambda_{n,j})| \\ &\leq |A(\lambda_{n,j}) - A_m(\lambda_{n,j})| + |A_m(\lambda_{n,j}) - A_{m,s}(\lambda_{n,j})| \\ &= \left|\sum_{k=1}^{\infty} a_k(\lambda_{n,j}) - \sum_{k=1}^{m} a_k(\lambda_{n,j})\right| + \left|\sum_{k=1}^{m} a_k(\lambda_{n,j}) - \sum_{k=1}^{m} a_{k,s}(\lambda_{n,j})\right| \\ &= \left|\sum_{k=m+1}^{\infty} a_k(\lambda_{n,j})\right| + \left|\sum_{k=1}^{m} [a_k(\lambda_{n,j}) - a_{k,s}(\lambda_{n,j})]\right| \\ &\leq 2 \left\{\sum_{n_1,n_2,\dots,n_{m+1}} \frac{|q_{n_1}q_{n_2}\cdots q_{n_{m+1}}q_{-n_1-n_2-\dots-n_{m+1}}|}{|\lambda_{n,j} - (2\pi(n-n_1))^2|\cdots|\lambda_{n,j} - (2\pi(n-n_1-\dots-n_{m+1}))^2|} \\ &+ \sum_{n_1,n_2,\dots,n_{m+2}} \frac{|q_{n_1}q_{n_2}\cdots q_{n_{m+2}}q_{-n_1-n_2-\dots-n_{m+2}}|}{|\lambda_{n,j} - (2\pi(n-n_1))^2|\cdots|\lambda_{n,j} - (2\pi(n-n_1-\dots-n_{m+2}))^2|} + \cdots\right\} \\ &\leq \frac{2Qc^{m+1}}{(2\rho(n))^{m+1}} + \frac{2Qc^{m+2}}{(2\rho(n))^{m+2}} + \cdots \\ &= \frac{2Qc^{m+1}}{(2\rho(n))^{m+1}} \frac{1}{1 - \frac{c}{2\rho(n)}} = \frac{Qc^{m+1}}{(2\rho(n))^m(2\rho(n) - c)}. \end{aligned}$$

Similarly, for the second term of the right-hand side of (26), we obtain

$$|B(\lambda_{n,j}) - B_{m,s}(\lambda_{n,j})| \le \frac{Qc^{m+1}}{(2\rho(n))^m (2\rho(n) - c)}.$$
 (28)

Thus, by (26)–(28) we get

$$\left|F_{j}(\lambda_{n,j}) - F_{j}(r_{n,j})\right| \le \frac{2Qc^{m+1}}{(2\rho(n))^{m}(2\rho(n) - c)}.$$
(29)

To apply the mean value theorem, we estimate $|F'_j(\lambda)|$:

$$\left|F_{j}'(\lambda)\right| = \left|1 - f_{j}'(\lambda)\right| \ge \left|1 - \left|f_{j}'(\lambda)\right|\right| \ge 1 - C_{n}.$$
(30)

By the mean value formula, (29), and (30), we obtain

$$\begin{split} \left|F_{j}(\lambda_{n,j}) - F_{j}(r_{n,j})\right| &= \left|F_{j}'(\xi)\right| |\lambda_{n,j} - r_{n,j}|, \quad \xi \in \left[(2\pi n)^{2} - M, (2\pi n)^{2} + M\right],\\ |\lambda_{n,j} - r_{n,j}| &= \frac{|F_{j}(\lambda_{n,j}) - F_{j}(r_{n,j})|}{|F_{j}'(\xi)|} \leq \frac{2Qc^{m+1}}{(2\rho(n))^{m}(2\rho(n) - c)(1 - C_{n})}. \end{split}$$

Now let us approximate $r_{n,j}$ by the fixed point iterations:

$$x_{n,i+1} = (2\pi n)^2 + f_1(x_{n,i}) \tag{31}$$

and

$$y_{n,i+1} = (2\pi n)^2 + f_2(y_{n,i}), \tag{32}$$

where $f_i(x)$ (i = 1, 2) is defined in (19). Using (20) we get

$$\begin{split} \left| f_{j}(\lambda_{n,j}) \right| &= \frac{1}{2} \left| \left(A_{m,s}(\lambda) + A'_{m,s}(\lambda) \right) + (-1)^{j} \sqrt{\Delta_{m,s}(\lambda)} \right| \\ &\leq \frac{1}{2} \left(2 \left| A_{m,s}(\lambda) \right| + 2 \left| q_{2n} + B_{m,s}(\lambda) \right| \right) \\ &\leq |q_{2n}| + \left| A_{m,s}(\lambda) \right| + \left| B_{m,s}(\lambda) \right|. \end{split}$$
(33)

Since the potential *q* has the form $q(x) = 2 \sum_{k=1}^{\infty} q_k \cos 2\pi kx$, we obtain that

$$x_{n,i} = x_{-n,i}, \qquad y_{n,i} = y_{-n,i}.$$

Now, let us estimate $|A_{m,s}(\lambda)|$. The estimation of $|B_{m,s}(\lambda)|$ is similar.

$$\begin{aligned} A_{m,s}(\lambda) &| \\ &= \left| \sum_{k=1}^{m} a_{k,s}(\lambda_{n,j}) \right| \\ &= \left| \sum_{k=1}^{m} \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\cdots-n_{k}}}{[\lambda_{n,j} - (2\pi (n-n_{1}))^{2}]\cdots [\lambda_{n,j} - (2\pi (n-n_{1}-\dots-n_{k}))^{2}]} \right| \\ &\leq \left| \sum_{k=1}^{m} \sum_{n_{1},n_{2},\dots,n_{k}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{k}}q_{-n_{1}-n_{2}-\cdots-n_{k}}}{(2\delta(n))^{k}} \right| \\ &= \left| \sum_{n_{1}=-s}^{s} \frac{q_{n_{1}}q_{-n_{1}}}{(2\delta(n))} + \sum_{n_{1},n_{2}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}q_{-n_{1}-n_{2}}}{(2\delta(n))^{2}} + \cdots \right| \\ &+ \sum_{n_{1},n_{2},\dots,n_{m}=-s}^{s} \frac{q_{n_{1}}q_{n_{2}}\cdots q_{n_{m}}q_{-n_{1}-n_{2}-\cdots-n_{m}}}{(2\delta(n))^{m}} \right| \end{aligned}$$

$$\leq \frac{Qb}{2\delta(n)} + \frac{Qb^2}{(2\delta(n))^2} + \dots + \frac{Qb^m}{(2\delta(n))^m}$$
$$= \frac{Qb}{2\delta(n)} \frac{1}{1 - \frac{b}{2\delta(n)}} = \frac{Qb}{(2\delta(n) - b)}.$$
(34)

Similarly, we obtain

$$\left|B_{m,s}(\lambda)\right| \leq \frac{Qb}{(2\delta(n)-b)}$$

and

$$\left|f_{j}(\lambda_{n,j})\right| \leq |q_{2n}| + \frac{2Qb}{2\delta(n) - b}.$$
(35)

On the other hand, writing $4\pi^2(2n-1)$ instead of $2\delta(n)$ in (35), we get

$$|f_{j}((2\pi n)^{2})| \leq |q_{2n}| + |A_{m,s}((2\pi n)^{2})| + |B_{m,s}((2\pi n)^{2})|$$

$$\leq |q_{2n}| + \frac{2Qb}{4\pi^{2}(2n-1)-b}$$
(36)

since $|(2\pi n)^2 - (2\pi k)^2| \ge 4\pi^2(2n-1)$ for n = 1, 2, ...

Theorem 3 If (17) holds, then the following estimations hold for the sequences $\{x_{n,i}\}$ and $\{y_{n,i}\}$ defined by (31) and (32):

$$|x_{n,i} - r_{n,1}| \le (C_n)^i \left(\frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)} \right),\tag{37}$$

$$|y_{n,i} - r_{n,2}| \le (C_n)^i \left(\frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)} \right)$$
(38)

for i = 1, 2, 3, ..., where C_n is defined in (21).

Proof Without loss of generality, we can take $x_{n,0} = (2\pi n)^2$. By (21), (25), and (31), we have

$$\begin{aligned} |x_{n,i} - r_{n,1}| &= \left| (2\pi n)^2 + f_1(x_{n,i-1}) - \left((2\pi n)^2 + f_1(r_{n,1}) \right) \right| \\ &= \left| f_1(x_{n,i-1}) - f_1(r_{n,1}) \right| < C_n |x_{n,i-1} - r_{n,1}| < (C_n)^i |x_{n,0} - r_{n,1}|. \end{aligned}$$

Therefore it is enough to estimate $|x_{n,0} - r_{n,1}|$. By definitions of $r_{n,j}$ and $x_{n,0}$ we obtain

$$r_{n,1} - x_{n,0} = f_1(r_{n,1}) + (2\pi n)^2 - x_{n,0} = f_1(r_{n,1}) - f_1(x_{n,0}) + f_1((2\pi n)^2),$$

and by the mean value theorem there exists $x \in [(2\pi n)^2 - M, (2\pi n)^2 + M]$ such that $f_1(r_{n,1}) - f_1(x_{n,0}) = f'_1(x)(r_{n,1} - x_{n,0})$. The last two equalities imply that $(r_{n,1} - x_{n,0})(1 - f'_1(x)) = f_1((2\pi n)^2)$. Hence by (24) and (36) we get

$$|r_{n,1} - x_{n,0}| \le \frac{|f_1((2\pi n)^2)|}{1 - C_n} \le \frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)}$$

n	i	X _{n,i}	$ x_{n,i+1}-x_{n,i} $	Уп,i	$ y_{n,i+1}-y_{n,i} $
±1	0 1 2 3 4 5	1.0000000000 39.472044558692 39.469974401006 39.469974548582 39.469974548572 39.469974548572	38.472044558692 0.002070157686 0.000000147576 0.000000000011 0.000000000000	1.0000000000 39.478417489727 39.478417378628 39.478417378628	38.478417489727 0.000000111099 0.0000000000000
±2	0 1 2 3 4 5	1.00000000000 157.911370091955 157.908604814554 157.908604885553 157.908604885551	156.911370091955 0.002765277401 0.000000070999 0.00000000002 0.00000000000	1.00000000000 157.914499110787 157.913670814745 157.913670814754 157.913670814754	156.914499110787 0.000828296043 0.000000000009 0.000000000000
±3	0 1 2 3 4 5	1.00000000000 355.299384450125 355.302139969517 355.302139933433 355.302139933434 355.302139933434	354.299384450125 0.002755519393 0.000000036084 0.00000000001 0.00000000000	1.00000000000 355.304171727348 355.310824599657 355.310824428906 355.310824428910 355.310824428910	354.304171727348 0.006652872309 0.000000170751 0.000000000004 0.000000000000
±4	0 1 2 3 4 5	1.00000000000 631.651859197264 631.651867232362 631.651867232298 631.651867232298	630.651859197264 0.000008035097 0.000000000064 0.000000000000	1.0000000000 631.653667378752 631.658300314310 631.658300253644 631.658300253645 631.658300253645	630.653667378752 0.004632935559 0.000000060666 0.00000000001 0.0000000000
±5	0 1 2 3 4 5	1.00000000000 986.958854447771 986.958137370115 986.958137373917 986.958137373917 986.958137373917	985.958854447771 0.000717077657 0.00000003802 0.00000000000 0.00000000000	1.0000000000 986.959735986823 986.963254598781 986.963254570909 986.963254570909 986.963254570909	985.959735986823 0.003518611957 0.000000027872 0.000000000000 0.000000000000
±6	0 1 2 3 4	1.0000000000 1421.222019515655 1421.221085279699 1421.221085283246 1421.221085283246	1420.222019515655 0.000934235956 0.00000003547 0.000000000000	1.0000000000 1421.222516542946 1421.225336517065 1421.225336502112 1421.225336502112	1420.222516542946 0.002819974119 0.000000014953 0.0000000000000
±7	0 1 2 3 4	1.0000000000 1934.441758498203 1934.440773930878 1934.440773933686 1934.440773933686	1933.441758498203 0.000984567325 0.00000002808 0.00000000000	1.0000000000 1934.442066670380 1934.444411101068 1934.444411092167 1934.444411092167	1933.442066670380 0.002344430688 0.000000008901 0.000000000000

Table 1 Estimations of eigenvalues for $q(x) = 2\cos(2\pi x)$

and

$$|x_{n,i}-r_{n,1}| \le (C_n)^i \left(\frac{|q_{2n}|}{1-C_n} + \frac{2Qb}{(1-C_n)(4\pi^2(2n-1)-b)}\right).$$

One can easily show in a similar way to (37) that

$$|y_{n,i} - r_{n,2}| \le (C_n)^i \left(\frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)} \right)$$

for iteration (32).

Thus by (22), (37), and (38) we have the approximations $x_{n,i}$ and $y_{n,i}$ for $\lambda_{n,1}$ and $\lambda_{n,2}$, respectively, with the errors

$$|\lambda_{n,1} - x_{n,i}| < \frac{2Qc^{m+1}}{2^m(\rho(n))^m(2\rho(n) - c)(1 - C_n)}$$

n	i	X _{n,i}	$\left x_{n,i+1}-x_{n,i}\right $	У _{п,i}	$ y_{n,i+1}-y_{n,i} $
±1	0 1 2 3 4 5	1.0000000000 38.473844750118 38.472688962751 38.472689008589 38.472689008587 38.472689008587	37.473844750118 0.001155787367 0.00000045838 0.00000000002 0.00000000000	1.0000000000 40.423036168470 40.471787835885 40.471786569354 40.471786569387 40.471786569387	39.423036168470 0.048751667415 0.000001266531 0.00000000033 0.000000000000
±2	0 1 2 3 4 5	1.0000000000 157.708686755063 157.906540179470 157.906534021274 157.906534021465 157.906534021465	156.708686755063 0.197853424408 0.000006158197 0.00000000192 0.000000000000	1.00000000000 157.910954517251 157.913719642989 157.913719639257 157.913719639257	156.910954517251 0.002765125738 0.000000003732 0.000000000000
±3	0 1 2 3 4 5	1.0000000000 355.274676914265 355.300564251475 355.300563843658 355.300563843665 355.300563843665	354.274676914265 0.025887337209 0.000000407817 0.00000000006 0.00000000000	1.00000000000 355.304635333209 355.313997921297 355.313997585704 355.313997585716 355.313997585716	354.304635333209 0.009362588088 0.000000335592 0.00000000012 0.000000000000
±4	0 1 2 3 4 5	1.0000000000 631.645567421755 631.650602854392 631.650602806214 631.650602806214 631.650602806214	630.645567421755 0.005035432636 0.000000048178 0.000000000000 0.000000000000	1.0000000000 631.653044860730 631.660413259797 631.660413130168 631.660413130170 631.660413130170	630.653044860730 0.007368399068 0.000000129629 0.000000000002 0.000000000000
±5	0 1 2 3 4	1.00000000000 986.956043584523 986.957082783600 986.957082776914 986.957082776914	985.956043584523 0.001039199076 0.000000006685 0.000000000000	1.0000000000 986.959230332354 986.964838571940 986.964838513367 986.964838513368 986.964838513368	985.959230332354 0.005608239586 0.000000058572 0.00000000001 0.000000000000
±6	0 1 2 3 4	1.00000000000 1421.220438496119 1421.220181024587 1421.220181025778 1421.220181025777 1421.220181025777	1420.220438496119 0.000257471532 0.000000001190 0.00000000001 0.0000000000	1.0000000000 1421.222125234640 1421.226603425567 1421.226603394604 1421.226603394604 1421.226603394604	1420.222125234640 0.004478190927 0.000000030964 0.00000000000 0.000000000000
±7	0 1 2 3 4	1.0000000000 1934.440746482760 1934.439982571624 1934.439982574285 1934.439982574285	1933.440746482760 0.000763911135 0.00000002660 0.00000000000	1.00000000000 1934.441756076886 1934.445466740559 1934.445466722323 1934.445466722323	1933.441756076886 0.003710663673 0.000000018236 0.0000000000000

Table 2 Estimations of eigenvalues for $q(x) = 2\cos(2\pi x) + 2\cos(4\pi x)$

$$\begin{split} + (C_n)^i \bigg(\frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)} \bigg), \\ |\lambda_{n,2} - y_{n,i}| &< \frac{2Qc^{m+1}}{2^m(\rho(n))^m(2\rho(n) - c)(1 - C_n)} \\ &+ (C_n)^i \bigg(\frac{|q_{2n}|}{1 - C_n} + \frac{2Qb}{(1 - C_n)(4\pi^2(2n - 1) - b)} \bigg). \end{split}$$

By these error formulas it is clear that the error will be very small if m grows.

3 Numerical examples

In this section we estimate the small eigenvalues for the potentials $q_1(x) := 2\cos(2\pi x)$ and $q_2(x) := 2\cos(2\pi x) + 2\cos(4\pi x)$ by iterations (31) and (32). Note that $q_1(x)$ is a famous Mathieu potential and $q_2(x)$ is the generalization of the Mathieu potential. Therefore we consider these potentials in our examples.

Example 1 For $q(x) = 2\cos(2\pi x)$, m = 3, and s = 5 with the initial approximations $x_{n,0} = 1$ and $y_{n,0} = 1$, we have Table 1 for the estimations of the small eigenvalues of $L_0(q)$. The fixed point iterations continue until the tolerance 1e - 18. Usually it takes only 4 or 5 iterations to get this tolerance for any initial value $x_{n,0} \neq 0$, which means that the iterations converge very rapidly. In this table $x_{n,i}$ and $y_{n,i}$ denote the estimations for $\lambda_{n,1}$ and $\lambda_{n,2}$, respectively, where *i* is the number of the iterations.

We see from Table 1 that the eigenvalues $\lambda_{n,1}$ and $\lambda_{n,2}$ are close to each other and they are close to $(2\pi n)^2$.

Example 2 For $q(x) = 2\cos(2\pi x) + 2\cos(4\pi x)$, m = 3, and s = 5 with the initial approximations $x_{n,0} = 1$ and $y_{n,0} = 1$, we have Table 2 for the estimations of the small eigenvalues of $L_0(q)$. $x_{n,i}$ is the estimation for $\lambda_{n,1}$ and $y_{n,i}$ is the estimation for $\lambda_{n,2}$, where *i* is the number of the iterations. Again, the fixed point iterations continue until the tolerance 1e - 18 and converge very fast.

From Table 2 we can see that the first eigenvalues $\lambda_{1,1}$ and $\lambda_{1,2}$ are far from each other but the other eigenvalues $\lambda_{n,1}$ and $\lambda_{n,2}$ are close to each other and they are close to $(2\pi n)^2$.

Acknowledgements

The author acknowledges the support and helpful suggestions of Prof. Dr. Oktay A. Veliev.

Funding

Not applicable.

Availability of data and materials Not applicable.

Competing interests

The author declares that she has no competing interests.

Authors' contributions

The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 October 2018 Accepted: 9 December 2018 Published online: 18 December 2018

References

- Andrew, A.L.: Correction of finite element eigenvalues for problems with natural or periodic boundary conditions. BIT Numer. Math. 28(2), 254–269 (1988)
- 2. Andrew, A.L.: Correction of finite difference eigenvalues of periodic Sturm–Liouville problems. J. Aust. Math. Soc. Ser. B 30(4), 460–469 (1989)
- Birkhoff, G.D.: Boundary value problems and expansion problem of ordinary linear differential equations. Trans. Am. Math. Soc. 9, 373–395 (1908)
- 4. Brown, B.M., Eastham, M.S.P., Schmidt, K.M.: Periodic Differential Operators. Operator Theory: Advances and Applications., vol. 230. Springer, Basel (2013)
- Condon, D.J.: Corrected finite difference eigenvalues of periodic Sturm–Liouville problems. Appl. Numer. Math. 30(4), 393–401 (1999)
- Dernek, N., Veliev, O.A.: On the Riesz basisness of the root functions of the nonself-adjoint Sturm–Liouville operators. Isr. J. Math. 145, 113–123 (2005)
- Dinibütün, S., Veliev, O.A.: On the estimations of the small periodic eigenvalues. Abstr. Appl. Anal. 2013, Article ID 145967 (2013)
- 8. Dunford, N., Schwartz, J.T.: Linear Operators, Part 3, Spectral Operators. Wiley, New York (1988)
- 9. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburg (1973)
- Ji, X., Wong, Y.S.: Prüfer method for periodic and semiperiodic Sturm–Liouville eigenvalue problems. Int. J. Comput. Math. 39, 109–123 (1991)
- 11. Ji, X.Z.: On a shooting algorithm for Sturm–Liouville eigenvalue problems with periodic and semi-periodic boundary conditions. J. Comput. Phys. 111(1), 74–80 (1994)
- 12. Kerimov, N.B., Mamedov, K.R.: On the Riesz basis property of the root functions in certain regular boundary value problems. Math. Notes **64**(4), 483–487 (1998)

- 13. Levy, D.M., Keller, J.B.: Instability intervals of Hill's equation. Commun. Pure Appl. Math. 16, 469–476 (1963)
- 14. Magnus, W., Winkler, S.: Hill Equation. Wiley, New York (1969)
- Malathi, V., Suleiman, M.B., Taib, B.B.: Computing eigenvalues of periodic Sturm–Liouville problems using shooting technique and direct integration method. Int. J. Comput. Math. 68(1–2), 119–132 (1998)
- 16. Marchenko, V.: Sturm–Liouville Operators and Applications. Birkhauser, Basel (1986)
- 17. Naimark, M.A.: Linear Differential Operators. George G. Harap & Company, (1967)
- 18. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, Boston (1987)
- Shkalikov, A.A., Veliev, O.A.: On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm–Liouville problems. Math. Notes 85(5), 647–660 (2009)
- Tamarkin, Y.D.: Some general problem of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions. Math. Z. 27, 1–54 (1927)
- Vanden Berghe, G., Van Daele, M., De Meyer, H.: A modified difference scheme for periodic and semiperiodic Sturm–Liouville problems. Appl. Numer. Math. 18(1–3), 69–78 (1995)
- Veliev, O.A., Duman, M.T.: The spectral expansion for a nonselfadjoint hill operators with a locally integrable potential. J. Math. Anal. Appl. 265(1), 76–90 (2002)
- Wong, Y.S., Ji, X.Z.: On shooting algorithm for Sturm–Liouville eigenvalue problems with periodic and semi-periodic boundary conditions. Appl. Math. Comput. 51(2–3), 87–104 (1992)
- 24. Yılmaz, B., Veliev, O.A.: Asymptotic formulas for Dirichlet boundary value problems. Studia Sci. Math. Hung. 42(2), 153–171 (2005)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com