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Abstract
This paper focuses on a degenerate boundary value problem arising from the study
of the two-dimensional Riemann problem to the nonlinear wave system. In order to
deal with the parabolic degeneracy, we introduce a partial hodograph transformation
to transform the nonlinear wave system into a new system, which displays a clear
regularity–singularity structure. The local existence of classical solutions for the new
system is established in a weighted metric space. Returning the solution to the
original variables, we obtain the existence of classical solutions to the degenerate
boundary value problem for the nonlinear wave system.
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1 Introduction
We are interested in a degenerate boundary value problem arising from the study of the
two-dimensional four-constant Riemann problem to the nonlinear wave system

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + px = 0,

(ρv)t + py = 0,

(1.1)

where ρ , (u, v), are, respectively, the density and the velocity, and p = p(ρ) is a given func-
tion of ρ . This system is obtained either by ignoring the quadratic terms in the velocity
(u, v) to the two-dimensional isentropic compressible Euler equations in the gas dynamics,
or by writing the nonlinear wave equation as a first-order system. We refer the reader to
references [3, 4] for the background information.

The multidimensional Riemann problem of the quasilinear hyperbolic conservation
laws is one of important problems in mathematical fluid dynamics containing in partic-
ular the oblique shock reflection problem and the dam collapse problem. Most impor-
tantly, the Riemann problem performs the role of ‘building blocks’ for all fields of theory,
numerics, and applications, see the survey [18] and the references therein. The study of
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the two-dimensional Riemann problem to the Euler equations was initiated by Zhang and
Zheng [32]. The authors provided a set of conjectures on the structure of solutions by us-
ing the generalized characteristic analysis method and numerical experiments. However,
until now, none of them has been completely proved due to the existence of transonic
structures [7, 19, 36]. Many pieces of work have been contributed on understanding these
transonic structures for the Euler equations and its related systems. We refer the reader to
[17, 20–23, 25–27, 30] and references cited there, and especially the monographs [19, 36]
for the results of the Euler and pressure-gradient systems. In particular, for the relevant
results of the two-dimensional Riemann problem to the nonlinear wave system (1.1), one
may consult [6, 10–16] and references therein.

We consider in this paper system (1.1) together with a smooth state function p = p(ρ)
satisfying

∀ρ > 0, p(ρ) ≷ 0, p′(ρ) > 0, and p′′(ρ) ≷ 0. (1.2)

It is clear that the well-known equations of state of the polytropic gas p = Aργ (γ > 1) and
of the Chaplygin gas p = –1/ρ satisfy (1.2). The equation of state of the Chaplygin gas was
introduced by Chaplygin [5] and was taken as a suitable mathematical approximation for
calculating the lifting force on a wing of an airplane in aerodynamics by Tsien [28] and von
Karman [29]. Moreover, this equation of state has been advertised as a possible model for
dark energy; see, e.g., [2, 8]. We are looking for the self-similar solutions of (1.1), that is, the
solutions depend only on the self-similar variables (ξ ,η) = (x/t, y/t). In terms of variables
(ξ ,η), system (1.1) can be transformed to

⎧
⎪⎪⎨

⎪⎪⎩

–ξρξ – ηρη + (ρu)ξ + (ρv)η = 0,

–ξ (ρu)ξ – η(ρu)η + pξ = 0,

–ξ (ρv)ξ – η(ρv)η + pη = 0.

(1.3)

The eigenvalues of (1.3) are

Λ0 =
η

ξ
, Λ± =

ξη ± √
p′(ρ)(ξ 2 + η2 – p′(ρ))

ξ 2 – p′(ρ)
. (1.4)

We see from (1.2) and (1.4) that system (1.3) is hyperbolic at the infinity (i.e., |ξ |+ |η| = ∞)
and changes type to elliptic near the origin. The hyperbolic and elliptic regions may be
separated by a boundary curve composed by degenerate curves and shocks, which are
free boundaries to be determined together with the solutions [1]. To construct a global
solution of nonlinear mixed-type system, iterative methods seem to be the most likely
choices.

The purpose of the present paper is to establish the local existence of classical solutions
to the two-dimensional self-similar nonlinear wave system (1.3) with degenerate boundary
data, which is an essential step for using an iterative process to construct a global solution
of mixed type equation. The local existence of classical sonic-supersonic solutions was
investigated for compressible Euler equations with polytropic gases in [9, 33, 35] and for a
pressure-gradient system in [34]. We consider the degenerate boundary value problem of
(1.1) with the convex equation of state satisfying (1.2) in the current paper and will explore
that problem for the general nonconvex equation of state in the next work.
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The rest of the paper is organized as follows. In Sect. 2, we describe the problem in
detail and then state our main result. Section 3 is devoted to reformulating the problem
in the new dependent and independent variables. In Sect. 4, we complete the proof of the
main results by solving the new problem and then converting the solution to the original
coordinates.

2 The problem and the main results
We first decouple p from (ρu) and (ρv) to obtain a second-order quasilinear equation,

(
a(p) – ξ 2)pξξ – 2ξηpξη +

(
a(p) – η2)pηη + b(p)(ξpξ + ηpη)2 – 2(ξpξ + ηpη) = 0, (2.1)

where

a(p) =
1

ρ ′(p)
> 0, b(p) = –

ρ ′′(p)
ρ ′(p)

=
a′(p)
a(p)

(2.2)

for all p > 0 by (1.2). The two eigenvalues of (2.1) are

Λ̃± =
ξη ± √

a(p)(ξ 2 + η2 – a(p))
ξ 2 – a(p)

. (2.3)

For convenience to deal with our problem, we rewrite (2.1) in terms of the polar coordi-
nates (r, θ ) as

Pθθ –
r2(r2 – a(P))

a(P)
Prr + rPr +

b(P)r3

a(P)
P2

r –
2r2

a(P)
Pr = 0, (2.4)

where r =
√

ξ 2 + η2, θ = arctan(η/ξ ) and P(r, θ ) = p(r cos θ , r sin θ ). The two family of char-
acteristics are defined as

Γ± :
dr
dθ

= ±λ, λ =

√
r2(r2 – a(P))

a(P)
. (2.5)

It is clear that Eq. (2.4) is of mixed type: hyperbolic for r2 > a(P), elliptic for r2 < a(P) and
parabolic degenerate for r2 = a(P).

Let ra < rb be two positive constants and Γ : θ = ϕ(r) be a smooth curve defined on
[ra, rb] satisfying |ϕ′(r)| ≤ ϕ0 for same positive constant ϕ0. That means the curve Γ can
not be a circular arc. We assign the boundary data on Γ as follows:

P
(
ϕ(r), r

)
= P0(r), Pθ

(
ϕ(r), r

)
= P1(r) with a

(
P0(r)

)
= r2. (2.6)

The aim of the paper is to look for a classical solution of the boundary value problem (2.4)
(2.6). Since the wave speed λ = 0 on Γ , the hyperbolic problem (2.4) (2.6) is parabolic
degenerate.

In the hyperbolic region, Eq. (2.4) has the interesting characteristic decomposition [10]

⎧
⎨

⎩

∂+∂–P = Q(∂+P – ∂–P)∂–P,

∂–∂+P = Q(∂–P – ∂+P)∂+P,
(2.7)
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where

∂± := ∂θ ± λ∂r , and Q =
a′(P)r2

4a(P)(r2 – a(P))
.

Introduce

R = ∂+P, S = ∂–P,

from this and (2.5) we have

Pθ =
R + S

2
, Pr =

R – S
2λ

=
√

a(P)
2r

· R – S
√

r2 – a(P)
. (2.8)

Moreover, from (2.7), we obtain the system for (P, R, S)

⎧
⎪⎪⎨

⎪⎪⎩

Pθ = R+S
2 ,

Rθ – λRr = a′(P)r2R
4a(P) · S–R

r2–a(P) ,

Sθ + λSr = a′(P)r2S
4a(P) · R–S

r2–a(P) ,

(2.9)

where λ is defined in (2.5). Then we look for a local classical solution of system (2.9) with
the boundary data

(P, R, S)
(
ϕ(r), r

)
=

(
P0(r), P1(r), P1(r)

)
, ∀r ∈ [ra, rb]. (2.10)

We point out that the local existence of the degenerate boundary value problem (2.9)
(2.10) cannot be obtained directly by the classical local existence theory of nonlinear hy-
perbolic equations (see, e.g. [24, 31]). This is because system (2.9) is not a continuously
differentiable system by the degeneracy. The idea we employed here is inspired by the work
of Zhang and Zheng [33] for studying the steady Euler equations. The main technique is
to isolate possible singularities by introducing a partial hodograph transformation. We
establish the local existence and uniqueness of classical solutions for a new system un-
der a suitable function class by using the fixed point method. Converting the solution to
the original coordinates, we thus obtain a local classical solution to the problem (2.9) and
(2.10). The results of this paper can be stated as follows.

Theorem 1 Suppose that the equation of state p = p(·) ∈ C4 satisfies (1.2). Moreover, we
assume the functions (ϕ, P0, P1)(r) satisfy

ϕ(r) ∈ C4([ra, rb]
)

with
∣
∣ϕ′(r)

∣
∣ ≤ ϕ0,

P0(r) ∈ C4([ra, rb]
)
, P1(r) ∈ C3([ra, rb]

)
with

∣
∣P1(r)

∣
∣ ≥ k0,

(2.11)

where ϕ0 and k0 are two positive constants. Then the degenerate boundary value problem
(2.9) (2.10) has a classical solution in the hyperbolic region near Γ .

From Theorem 1, we have the following.

Theorem 2 Let the assumptions in Theorem 1 hold. Then there is a classic solution to the
degenerate boundary value problem (2.4) and (2.6) in the hyperbolic region near Γ .
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3 The problem in new coordinates
In this section, we introduce new dependent and independent variables to reformulate
the problem. To deal with the singularities caused by the degenerate, we first introduce a
partial hodograph transformation as follows:

t =
√

r2 – a
(
P(r, θ )

)
, r̃ = r. (3.1)

Note that the sonic curve Γ is transformed to a segment on t = 0 with r̃ ∈ [ra, rb]. From
(3.1) one has

∂θ = –
a′(P)(R + S)

4t
∂t , ∂r = ∂r̃ +

4r2t – a′(P)
√

a(P)(R – S)
4rt2 ∂t . (3.2)

In terms of (t, r̃), system (2.9) can be rewritten as

⎧
⎨

⎩

Rt + 2rt2

a′(P)
√

a(P)S+2r2t Rr = a′(P)r2R
2
√

a(P)[a′(P)
√

a(P)S+2r2t] · R–S
t ,

St – 2rt2

a′(P)
√

a(P)R–2r2t Sr = a′(P)r2S
2
√

a(P)[a′(P)
√

a(P)R–2r2t] · S–R
t ,

(3.3)

together with a decoupled trivial equation

∂tP = –
2t

a′(P)
. (3.4)

Here and below we still use r to represent r̃ and denote P(t, r) = P(r, θ ), R(t, r) = R(r, θ ),
S(t, r) = S(r, θ ), which will not cause confusion in understanding. Furthermore, we find by
(1.2) that

a
(
P0(r)

) ≥ k1 > 0,
∣
∣a′(P0(r)

)∣
∣ ≥ k2 > 0, ∀r ∈ [ra, rb], (3.5)

for some positive constants k1, k2. Hence we can solve P(t, r) from Eq. (3.4) with the initial
data P(0, r) = P0(r). That means system (3.3) is closed in the coordinates (t, r).

Corresponding to the boundary data (2.10), the initial data of (3.3) are

(R, S)(0, r) =
(
P1(r), P1(r)

)
, ∀r ∈ [ra, rb]. (3.6)

In addition, by (2.6) we see that

Pr
(
ϕ(r), r

)
= P′

0(r) – ϕ′(r)P1(r) := P2(r),

which along with (3.3) yields

(Rt , St)(0, r) =
(
P2(r), –P2(r)

)
, ∀r ∈ [ra, rb], (3.7)

for smooth solutions. Therefore, we look for a classic solution to system (3.3) with the
initial data (3.6) and (3.7).

Next we introduce two new dependent variables to homogenize the initial data,

U(t, r) = R(t, r) – P1(r) – P2(r)t, V (t, r) = S(t, r) – P1(r) + P2(r)t. (3.8)
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Thus by (3.6) and (3.7) we get the homogeneous initial condition

U(0, r) = V (0, r) = Ut(0, r) = Vt(0, r) = 0, ∀r ∈ [ra, rb]. (3.9)

Moreover, system (3.3) is transformed into
⎧
⎨

⎩

Ut + 2rt2

a′√aV +f Ur = U–V
2t + b1(U , V , t, r),

Vt – 2rt2

a′√aU+g Vr = V –U
2t + b2(U , V , t, r),

(3.10)

where f = f (t, r) = a′√a(P1(r) – P2(r)t) + 2r2t, g = g(t, r) = a′√a(P1(r) + P2(r)t) – 2r2t, and

b1(U , V , t, r) =
(

a′r2[U + P1(r) + P2(r)t)]
2
√

a[a′√aV + f ]
–

1
2

)(
U – V

t
+ 2P2(r)

)

–
2t2r

a′√aV + f
(
P′

1(r) + P′
2(r)t

)
,

b2(U , V , t, r) =
(

a′r2[V – P1(r) + P2(r)t)]
2
√

a[a′√aU + g]
–

1
2

)(
V – U

t
– 2P2(r)

)

–
2t2r

a′√aU + g
(
P′

1(r) – P′
2(r)t

)
.

Then the previous problem is reformulated as follows.

Problem 3.1 Under the assumptions in Theorem 1, we seek a classical solution to initial
data problem (3.9) (3.10) in the region t > 0.

To solve Problem (3.1), we first define a suitable function space. Let δ be a small positive
constant. Set

D(δ) :=
{

(t, r)|0 ≤ t ≤ δ, r1(t) ≤ r ≤ r2(t)
}

,

where r1(t), r2(t) are continuously differentiable on 0 ≤ t ≤ δ, r1(0) = ra, r2(0) = rb and
r1(t) < r2(t) for 0 ≤ t ≤ δ.

Definition 3.1 The domain D(δ) is called a strong domain of determinacy to system (3.10)
if for any (ξ ,η) ∈ D(δ) and any smooth functions (U , V ) satisfying the homogeneous initial
condition (3.9), the curves r±(t; ξ ,η) defined by

⎧
⎨

⎩

d
dt r+ = Λ+(V (t, r+)),

r+|t=ξ = η,

⎧
⎨

⎩

d
dt r– = Λ–(U(t, r–)),

r–|t=ξ = η,
(3.11)

are also inside D(δ) for 0 < t ≤ ξ . Here

Λ+(V ) =
2rt2

a′√aV + f
, Λ–(U) = –

2rt2

a′√aU + g
. (3.12)

Next we define a suitable class of functions. Let S = S(M, δ) be a function class consisting
of all continuously differentiable functions F = (f1, f2)T : D(δ) →R

2 satisfying the following
properties
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(S1) f1(0, r) = f2(0, r) = ∂t f1(0, r) = ∂t f2(0, r) = 0,
(S2) ‖ f1

t2 ‖L∞ + ‖ f2
t2 ‖L∞ ≤ M,

(S3) ‖ ∂r f1
t2 ‖L∞ + ‖ ∂r f2

t2 ‖L∞ ≤ M,
(S4) ∂rF is Lipschitz continuous with respect to r with ‖ ∂2

rr f1
t2 ‖L∞ + ‖ ∂2

rr f2
t2 ‖L∞ ≤ M,

where δ and M are two positive constants. Denote by W the function class containing only
continuous functions on D(δ) satisfying (S1) and (S2). It is easy to see that S and W are
subsets of C0(D(δ);R2). Moreover, we define a weighted metric on S and W as follows:

d(F, G) :=
∥
∥
∥
∥

f1 – g1

t2

∥
∥
∥
∥

L∞
+

∥
∥
∥
∥

f2 – g2

t2

∥
∥
∥
∥

L∞
.

It is not difficult to check that (W , d) is a completed metric space, while (S , d) is not a
closed subset in (W , d).

Theorem 1 follows directly from the following theorem.

Theorem 3 Suppose that the conditions listed in Theorem 1 hold and that D(δ0) is a strong
domain of determinacy to the system (3.10) for some positive constant δ0. Then there exit
constants δ ∈ (0, δ0) and M such that the degenerate hyperbolic problem (3.10) and (3.9)
has a classical solution in the function class S(M, δ).

4 Proof of the main theorems
In this section, we use the fixed point method to prove Theorem 3 and then complete the
proof of Theorem 1. The proof is divided into five steps. In Step 1, we construct an inte-
gration iteration mapping in the function class S(M, δ) by the differential system (3.10).
In Step 2, we establish a series of a priori estimates for b1, b2 and Λ±. We show that the
above iteration mapping is a contraction in Step 3. In Step 4, we show that this limit vector
function also belongs to S(M, δ). Finally, in Step 5 we return the solution to the original
coordinates (r, θ ).

Step 1. The iteration mapping. Denote

d
d+(V )

:= ∂t + Λ+(V )∂r ,
d

d–(U)
:= ∂t + Λ–(U)∂r . (4.1)

Then system (3.10) can be rewritten as

d
d+(V )

U =
U – V

2t
+ b1(U , V , r, t),

d
d–(U)

V =
V – U

2t
+ b2(U , V , r, t). (4.2)

Assume the vector functions (u, v)T (t, r) are in the set S , we consider the linear system of
(3.11)

d
d+(v)

U =
u – v

2t
+ b1(u, v, r, t),

d
d–(u)

V =
v – u

2t
+ b2(u, v, r, t), (4.3)

which combined with the property S1 gives

U(ξ ,η) =
∫ ξ

0

{
u – v

2t
+ b1

(
t, r+(t; ξ ,η)

)
}

dt, (4.4)
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V (ξ ,η) =
∫ ξ

0

{
v – u

2t
+ b2

(
t, r–(t; ξ ,η)

)
}

dt, (4.5)

where r± are defined as in (3.11) and

b1
(
t, r+(t; ξ ,η)

)
= b1

(
u
(
t, r+(t; ξ ,η)

)
, v

(
t, r+(t; ξ ,η)

)
, t, r+(t; ξ ,η)

)
,

b2
(
t, r–(t; ξ ,η)

)
= b2

(
u
(
t, r–(t; ξ ,η)

)
, v

(
t, r–(t; ξ ,η)

)
, t, r–(t; ξ ,η)

)
.

It is clear that Eqs. (4.4) and (4.5) define a mapping

T
((

u
v

))

=

(
U
V

)

.

Therefore, our problem is changed to find a fixed point of the mapping T in the set S(M, δ)
for some suitable constants M and δ.

Step 2. A priori estimates. We derive a series of estimates about b1, b2 and Λ± for later
use. We will use K > 1 to denote a constant depending only on C3 norms of a, P1, P2, ϕ′

and k0, k1, k2, ra, rb. Since (u, v)T ∈ S , we see by (2.11) and (3.5) that there exists a small
constant δ0 such that for t ≤ δ0

∣
∣a′√av + f

∣
∣ ≥ k0k1k2

2
≥ 1

K
,

∣
∣a′√au + g

∣
∣ ≥ k0k1k2

2
≥ 1

K
. (4.6)

Moreover, we have

|u – v| ≤ Mt2, |ur – vr| ≤ Mt2, |urr – vrr| ≤ Mt2. (4.7)

To estimate b1, we first note that

a′r2[u + P1(r) + P2(r)t]
2
√

a(a′√av + f )
–

1
2

=
√

ar2(a′√au + g + 2r2t) –
√

a(a
√

av + f )
2
√

a(a′√av + f )

= t · t · aa′(u–v)
t2 + 2aa′P2(r) + a′t[u + P1(r) + P2(r)t] – 2

√
ar2t

2
√

a(a′√av + f )
, (4.8)

from which one has

∣
∣
∣
∣
a′r2[u + P1(r) + P2(r)t]

2
√

a(a′√av + f )
–

1
2

∣
∣
∣
∣ ≤ tK · (1 + Mt). (4.9)

In addition, differentiating (4.8) with respect to r obtains

∣
∣
∣
∣∂r

(
a′r2[u + P1(r) + P2(r)t]

2
√

a(a′√av + f )
–

1
2

)∣
∣
∣
∣ ≤ tK · (1 + Mt), (4.10)

∣
∣
∣
∣∂rr

(
a′r2[u + P1(r) + P2(r)t]

2
√

a(a′√av + f )
–

1
2

)∣
∣
∣
∣ ≤ tK · (1 + Mt). (4.11)



Liu et al. Boundary Value Problems          (2019) 2019:1 Page 9 of 16

Furthermore, we denote the last term in b1 by Φ = 2rt2

a′√av+f (P′
1(r) + P′

2(r)t) and then obtain

|Φ| + |Φr| + |Φrr| ≤ Kt2(1 + Mt)2. (4.12)

Combining (4.9)–(4.12) and using the expression of b1 yield

|b1| + |b1r| + |b1rr| ≤ Kt(1 + Mt)2. (4.13)

By similar arguments for b2 get

|b2| + |b2r| + |b2rr| ≤ Kt(1 + Mt)2. (4.14)

For Λ+, we use the fact

∣
∣a′√av + f

∣
∣ +

∣
∣∂r

(
a′√av + f

)∣
∣ +

∣
∣∂rr

(
a′√av + f

)∣
∣ ≤ K(1 + Mt),

to obtain

|Λ+| + |∂rΛ+| + |∂rrΛ+| ≤ Kt2(1 + Mt)2. (4.15)

Similarly, one has

|Λ–| + |∂rΛ–| + |∂rrΛ–| ≤ Kt2(1 + Mt)2. (4.16)

Step 3. Contraction of the mapping. We have the following lemma.

Lemma 4.1 Under the assumptions of Theorem 3, there exist positive constants δ, M and
0 < β < 1 such that

(1) T maps S into S ;
(2) for any pair F, F̂ in S ,

d
(
T (F),T (F̂)

) ≤ βd(F, F̂). (4.17)

Here the constants M, δ, β depend only on the C3 norms of a, P1(r), P2(r), ϕ′ and k0, k1, k2,
ra, rb.

Proof Let F = (u, v), F̂ = (û, v̂) be in set S and G = T (F) = (U , V ) and Ĝ = T (F̂) = (Û , V̂ ). It
is obvious that U(0,η) = V (0,η) = 0.

Moreover, we use (4.7) and (4.13)–(4.14) to obtain

|U| ≤
∫ ξ

0

{∣
∣
∣
∣
u – v

2t

∣
∣
∣
∣ + |b1|

}

dt ≤
∫ ξ

0

Mt
2

+ Kt(1 + Mδ)2 dt ≤ M
4

ξ 2 + Kξ 2(1 + Mδ)2,

|V | ≤
∫ ξ

0

{∣
∣
∣
∣
v – u

2t

∣
∣
∣
∣ + |b2|

}

dt ≤
∫ ξ

0

Mt
2

+ Kt(1 + Mδ)2 dt ≤ M
4

ξ 2 + Kξ 2(1 + Mδ)2,

from which we have
∣
∣
∣
∣
U(ξ ,η)

ξ 2

∣
∣
∣
∣ +

∣
∣
∣
∣
V (ξ ,η)

ξ 2

∣
∣
∣
∣ ≤ M

2
+ K(1 + Mδ)2. (4.18)
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In order to establish the bound of Ur/t2, we differentiate (4.4) with respect to η to find
that

∂U
∂η

(ξ ,η) =
∫ ξ

0

(
ur – vr

2t
+

∂b1

∂r

)

· ∂r+

∂η
dt, (4.19)

where

∂r+

∂η
(t; ξ ,η) = exp

{∫ t

ξ

∂Λ+(v)
∂r

(
τ , r+(τ ; ξ ,η)

)
dτ

}

. (4.20)

Applying (4.7), (4.13) and (4.15), we derive

∣
∣
∣
∣
∂U
∂η

∣
∣
∣
∣ ≤

∫ ξ

0

(∣
∣
∣
∣
ur – vr

2t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂b1

∂r

∣
∣
∣
∣

)

·
∣
∣
∣
∣
∂r+

∂η

∣
∣
∣
∣dt

≤
∫ ξ

0

(
M
2

t + Kt(1 + Mδ)2
)

exp
{

Kt3(1 + Mδ)2}dt

≤ ξ 2
(

M
4

+ K(1 + Mδ)2
)

exp
{

Kδ3(1 + Mδ)2}.

A similar estimate holds for V . Hence we arrive at

∣
∣
∣
∣
Uη

ξ 2

∣
∣
∣
∣ +

∣
∣
∣
∣
Vη

ξ 2

∣
∣
∣
∣ ≤

(
M
2

+ K(1 + Mδ)2
)

exp
{

Kδ3(1 + Mδ)2}. (4.21)

To estimate Ur/t2 and Vr/t2, we differentiate (4.19) with respect to η to obtain

∂2U
∂η2 (ξ ,η) =

∫ ξ

0

{(
urr – vrr

2t
+

∂2b1

∂r2

)(
∂r+

∂η

)2

+
(

ur – vr

2t
+

∂b1

∂r

)
∂2r+

∂η2

}

dt, (4.22)

where

∂2r+

∂η2 =
∂r+

∂η
·
∫ t

ξ

∂2Λ+

∂r2 · ∂r+

∂η
dτ .

It follows by (4.15) and (4.20) that

∣
∣
∣
∣
∂2r+

∂η2

∣
∣
∣
∣ ≤ Kδ3(1 + Mδ)2 exp

{
Kδ3(1 + Mδ)2}.

Therefore, we have

∣
∣
∣
∣
∂2U
∂η2

∣
∣
∣
∣ ≤

∫ ξ

0

{(∣
∣
∣
∣
urr – vrr

2t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂2b1

∂r2

∣
∣
∣
∣

)∣
∣
∣
∣
∂r+

∂η

∣
∣
∣
∣

2

+
(∣

∣
∣
∣
ur – vr

2t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂b1

∂r

∣
∣
∣
∣

)∣
∣
∣
∣
∂2r+

∂η2

∣
∣
∣
∣

}

dt

≤
∫ ξ

0
{
(

M
2

t + Kt(1 + Mδ)2
)

[
1 + Kδ3(1 + Mδ)2] exp

{
Kδ3(1 + Mδ)2}dt

≤ ξ 2
(

M
4

+ K(1 + Mδ)2
)

[
1 + Kδ3(1 + Mδ)2] exp

{
Kδ3(1 + Mδ)2}. (4.23)
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In the same way we have the bound for Vηη

∣
∣
∣
∣
∂2V
∂η2

∣
∣
∣
∣ ≤ ξ 2

(
M
4

+ K(1 + Mδ)2
)

[
1 + Kδ3(1 + Mδ)2] exp

{
Kδ3(1 + Mδ)2},

which together with (4.23) yields

∣
∣
∣
∣
Uηη

ξ 2

∣
∣
∣
∣ +

∣
∣
∣
∣
Vηη

ξ 2

∣
∣
∣
∣ ≤

(
M
2

+ K(1 + Mδ)2
)

[
1 + Kδ3(1 + Mδ)2] exp

{
Kδ3(1 + Mδ)2}. (4.24)

We choose M ≥ 16K > 16 and then set δ ≤ min{δ0, 1/M} to see that

(
M
2

+ K(1 + Mδ)2
)

[
1 + Kδ3(1 + Mδ)2] exp

{
Kδ3(1 + Mδ)2}

≤
(

M
2

+
M
4

)(

1 +
1

64

)

exp

(
1

64

)

<
5
6

M < M. (4.25)

Therefore, we combine (4.18), (4.21) and (4.24) to conclude that (S2)–(S4) are preserved
by the mapping T .

To prove T (F) ∈ S , it is enough to show that Uξ (0,η) = Vξ (0,η) = 0. We differentiate
(4.4) with respect to ξ to arrive at

∂U
∂ξ

(ξ ,η) =
u – v

2ξ
+ b1 +

∫ ξ

0

(
ur – vr

2t
+

∂b1

∂r

)
∂r+

∂ξ
dt, (4.26)

where

∂r+

∂ξ
(t; ξ ,η) = –Λ+

(
ξ ,η, V (ξ ,η)

) · ∂r+

∂η
(t; ξ ,η). (4.27)

It is easily seen by (4.7), (4.13), (4.15) and (4.20) that Uξ (0,η) = 0. Similarly, we have
Vξ (0,η) = 0, which means that T maps S into itself.

Next we we show that the inequality (4.17) holds for some positive constant β < 1. Ac-
cording to the definition of the mapping T , we have

d
d+(v)

U =
u – v

2t
+ b1(u, v, t, r),

d
d+(v̂)

Û =
û – v̂

2t
+ b1(û, v̂, t, r),

and from this and (4.1) one gets

d
d+(v)

(U – Û)

=
(u – û) – (v – v̂)

2t
+

[
b1(u, v, t, r) – b1(û, v̂, t, r)

]
+

(
Λ+(v) – Λ+(v̂)

)
∂rÛ . (4.28)

Recalling the expression of b1 suggests

b1(u, v, t, r) – b1(û, v̂, t, r)

=
(

a′r2[u + P1(r) + P2(r)t]
2
√

a(a′√av + f )
–

1
2

)(
u – û

t
–

v – v̂
t

)
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+
(

û – v̂
t

+ 2P2(r)
){

a′r2[u + P1(r) + P2(r)t]
2
√

a(a′√av + f )
–

a′r2[û + P1(r) + P2(r)t]
2
√

a(a′√av̂ + f )

}

–
(
Φ(v) – Φ(v̂)

)
:= I + II + III. (4.29)

For I , we find by (4.9) that

|I| ≤ Kt(1 + Mδ)
(∣

∣
∣
∣
u – û

t

∣
∣
∣
∣ –

∣
∣
∣
∣
v – v̂

t

∣
∣
∣
∣

)

≤ Kt2(1 + Mδ)d(F, F̂). (4.30)

For II , one has

|II| ≤ K(1 + Mδ)
∣
∣
∣
∣
u + P1(r) + P2(r)t

a′√av + f
–

û + P1(r) + P2(r)t
a′√av̂ + f

∣
∣
∣
∣

= K(1 + Mδ)
∣
∣
∣
∣
(a′√av̂ + f )(u – û) – [a′√a(P1 + P2t) + û](v – v̂)

(a′√av + f )(a′√av̂ + f )

∣
∣
∣
∣

≤ Kt2(1 + Mδ)d(F, F̂). (4.31)

By the definition of Φ in (4.12), it is easy to obtain

|III| =
∣
∣Φ(v) – Φ(v̂)

∣
∣ ≤ Kt4d(F, F̂). (4.32)

Putting (4.30)–(4.32) into (4.29) yields

∣
∣b1(u, v, t, r) – b1(û, v̂, t, r)

∣
∣ ≤ Kt2(1 + Mδ)d(F, F̂). (4.33)

In addition, we use the definition of Λ+ to obtain

∣
∣Λ+(v) – Λ+(v̂)

∣
∣ =

∣
∣
∣
∣

2rt2

a′√av + f
–

2rt2

a′√av̂ + f

∣
∣
∣
∣ ≤ Kt4d(F, F̂). (4.34)

Combining (4.28) and (4.33)–(4.34), we have

|U – Û| ≤
∫ t

0

(
t
2

+ Kt2(1 + Mδ) + KMt6
)

d(F, F̂) dt

≤ t2
{

1
4

+ Kδ(1 + Mδ)
}

d(F, F̂),

from which one gets

∣
∣
∣
∣
U – Û

t2

∣
∣
∣
∣ ≤

{
1
4

+ Kδ(1 + Mδ)
}

d(F, F̂).

Following the same argument as above one obtains for the estimate |V – V̂ |/t2,

∣
∣
∣
∣
U – Û

t2

∣
∣
∣
∣ +

∣
∣
∣
∣
V – V̂

t2

∣
∣
∣
∣ ≤

{
1
2

+ 2Kδ(1 + Mδ)
}

d(F, F̂) =: βd(F, F̂).

For choosing δ as before, we see that β < 1, which concludes the proof of (4.17). The proof
of Lemma 4.1 is complete. �
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Step 4. Properties of the limit function. We claim that the limit of the iteration sequence
F(n) = T F(n–1) is in the space S . The claim follows directly from the lemma.

Lemma 4.2 Under the assumptions of Theorem 1, for the iteration sequence F(n), ∂tF(n)(t, r)
and ∂rF(n)(t, r) are uniformly Lipschitz continuous on D(δ).

Proof Assume (u, v)T ∈ S , we know by Lemma 4.1 that (U , V )T = T (u, v)T is also in S . The
proof is divided into three steps.

Firstly, we prove that |Ut|+ |Vt| ≤ 2Mt. This follows directly from (4.4) and (4.5). In fact,
we recall the expression of Uξ given in (4.26) and use (4.7), (4.13) and (4.15) to obtain

∣
∣
∣
∣
∂U
∂ξ

∣
∣
∣
∣ ≤

∣
∣
∣
∣
u – v

2ξ

∣
∣
∣
∣ + |b1| +

∫ ξ

0

(∣
∣
∣
∣
ur – vr

2t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂b1

∂r

∣
∣
∣
∣

)∣
∣
∣
∣
∂r+

∂ξ

∣
∣
∣
∣dt

≤ Mξ

2
+ Kξ (1 + Mδ)2

+
∫ ξ

0

(
Mt
2

+ Kt(1 + Mδ)2
)

· Kδ2(1 + Mδ)2 exp
{

Kδ3(1 + Mδ)2}dt ≤ M

for choosing M and δ as in (4.25).
Secondly, we show that |Utr| + |Vtr| ≤ 2Mt. To prove it, we differentiate (4.19) with re-

spect to ξ to obtain

∂2U
∂ξ∂η

=
(

ur – vr

2ξ
+

∂b1

∂r

)
∂r+

∂η

+
∫ ξ

0

{(
urr – vrr

2t
+

∂2b1

∂r2

)
∂r+

∂η

∂r+

∂ξ
+

(
ur – vr

2t
+

∂b1

∂r

)
∂2r+

∂ξ∂η

}

dt, (4.35)

where

∂2r+

∂ξ∂η
=

∂r+

∂η

{∫ t

ξ

∂2Λ+(v)
∂r2 · ∂r+

∂ξ
dτ –

∂Λ+(v)
∂r

}

.

By employing (4.7), (4.13), (4.15), (4.20) and (4.27), we find that

∣
∣
∣
∣
∂2U
∂ξ∂η

∣
∣
∣
∣ ≤

(
Mξ

2
+ Kξ (1 + Mδ)2

)

exp
{

Kδ3(1 + Mδ)2}

+
∫ ξ

0

(
Mt
2

+ Kt(1 + Mδ)2
)

exp
{

2Kδ3(1 + Mδ)2}(Kt2 + Kt2(1 + Mδ)2)dt

≤ Mξ ,

if M and δ are chosen as in (4.25), from which and the corresponding estimate for Vξη we
have |Uξη| + |Vξη| ≤ 2Mξ .

Finally, we claim that |Utt| + |Vtt| ≤ 10M. Differentiating (4.26) with respect to ξ leads
to

∂2U
∂ξ 2 =

uξ – vξ

2ξ
–

u – v
2ξ 2 +

∂b1

∂ξ
+

(
ur – vr

2ξ
+

∂b1

∂r

)
∂r+

∂ξ

+
∫ ξ

0

{(
urr – vrr

2t
+

∂2b1

∂r2

)(
∂r+

∂ξ

)2

+
(

ur – vr

2t
+

∂b1

∂r

)
∂2r+

∂ξ 2

}

dt, (4.36)
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where

∂2r+

∂ξ 2 = –
∂Λ+

∂ξ

∂r+

∂η
– Λ+

∂2r+

∂ξ∂η
.

By a direct calculation, one has

∣
∣
∣
∣
∂2r+

∂ξ 2

∣
∣
∣
∣ ≤ Kξ (1 + Mδ) exp

{
Kδ3(1 + Mδ)2} + Kξ 4(1 + Mδ)2 exp

{
2Kδ3(1 + Mδ)2}

≤ 2Kξ (1 + Mδ) exp
{

Kδ3(1 + Mδ)2}. (4.37)

Furthermore, according the expression of b1 arrives at

∂b1

∂t
=

(
a′r2(u + P1 + P2t)
2
√

a[a′√av + f ]
–

1
2

)(
ut – vt

t
–

u – v
t2

)

+
∂

∂t

(
a′r2(u + P1 + P2t)
2
√

a[a′√av + f ]

)(
u – v

t
+ 2P2

)

–
2t2rP′

2

a′√av + f
–

4tr(P′
1 + P′

2t)
a′√av + f

+
2t2r(P′

1 + P′
2t)

(a′√av + f )2 ∂t
(
a′√av + f

)
,

from which and (4.7), (4.9) and the fact |ut| + |vt| ≤ 2Mt we obtain the estimate of b1t by
a straight forward calculation

∣
∣
∣
∣
∂b1

∂t

∣
∣
∣
∣ ≤ K(1 + Mδ)3.

Inserting the above and (4.37) into (4.36), we see that

∣
∣
∣
∣
∂2U
∂ξ 2

∣
∣
∣
∣ ≤ M + M + K(1 + Mδ)3 + Kδ2(Mδ + Kδ(1 + Mδ)

)
exp

{
2Kδ3(1 + Mδ)2}

+ Kδ2(1 + Mδ)2 exp
{

2Kδ3(1 + Mδ)2} ≤ 5M (4.38)

for choosing M and δ as in (4.25), i.e., M ≥ 16K and δ ≤ 1/M. Repetition of the same
argument for V obtains |Vξξ | ≤ 5M, which together with (4.38) gets |Uξξ | + |Vξξ | ≤ 10M.

The proof of Lemma 4.2 is completed by Lemma 4.1 and the above estimates. �

With the help of Lemma 4.1 and Lemma 4.2, we conclude Theorem 3.
Step 5. Convert solution back to original variables. We now return the solution in the

coordinate plane (t, r̃) into the original coordinate plane (r, θ ). By the definitions of U and
V in (3.8), we first know the functions R(t, r̃) and S(t, r̃). In addition, we see that the coor-
dinate transformation (r, θ ) �→ (t, r̃) is a one-to-one mapping. Indeed, the Jacobian is

J =
∂(t, r̃)
∂(r, θ )

=
a′(P)[U + V + 2P1(r)]

4t
,

which is strictly positive or strictly negative. Therefore, we can obtain R and S as functions
of r and θ . We integrate the first equation of (2.9) to obtain the function P(r, θ ). Thus the
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proof of Theorem 1 is complete. In order to conclude Theorem 2, it suffices to check that
the relation Pr = (R – S)/(2λ) holds on D(δ). By a direct calculation, we find that

∂θ (R – S – 2λPr) = –
a′(P)r2(R + S)

4a(P)[r2 – a(P)]
(R – S – 2λPr). (4.39)

Since Pr = P2(r) is uniformly bounded and R = S = P1(r) on Γ , G := R – S – 2λPr = 0 on Γ .
We note that, in terms of (t, r̃), Eq. (4.39) can be rewritten as

∂tG =
r2

a
· G

t
. (4.40)

Moreover, we have

G
t

∣
∣
∣
∣
t=0

=
U – V + 2P2(r)t – 2rt√

r2–t2 Pr

t

∣
∣
∣
∣
t=0

=
U – V

t

∣
∣
∣
∣
t=0

= 0,

which together with (4.40) leads to G ≡ 0 on D(δ), which completes the proof of Theo-
rem 2.
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