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Abstract
In this paper, we investigate the condition

(Cp) α

∫ u

0
f (s)ds≤ uf (u) + βup + γ , u > 0

for some α > 2, γ > 0, and 0 ≤ β ≤ (α–p)λp,0
p , where p > 1, and λp,0 is the first

eigenvalue of the discrete p-Laplacian �p,ω . Using this condition, we obtain blow-up
solutions to discrete p-Laplacian parabolic equations

⎧⎪⎨
⎪⎩
ut(x, t) =�p,ωu(x, t) + f (u(x, t)), (x, t) ∈ S× (0, +∞),

μ(z) ∂u
∂pn

(x, t) + σ (z)|u(x, t)|p–2u(x, t) = 0, (x, t) ∈ ∂S× [0, +∞),

u(x, 0) = u0 ≥ 0 (nontrivial), x ∈ S,

on a discrete network S, where ∂u
∂pn

denotes the discrete p-normal derivative. Here μ

and σ are nonnegative functions on the boundary ∂S of S with μ(z) + σ (z) > 0,
z ∈ ∂S. In fact, we will see that condition (Cp) improves the conditions known so far.

MSC: 39A12; 35F31; 35K91; 35K57
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0 Introduction
These days the discrete version of differential equations has attracted attention of many
researchers. In particular, the p-Laplacian �p,ω on networks (or weighted graphs) is used
to observe various social and scientific phenomena (see [1–3] and references therein),
which can be modeled by the discrete p-Laplacian parabolic equations

ut =
∑
y∈S

∣∣u(y, t) – u(x, t)
∣∣p–2[u(y, t) – u(x, t)

]
ω(x, y) + f (u)

with some boundary and initial conditions, where p > 1. Here S is the set of chemicals or
networks, and ω is a weight function on S.
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Especially, many authors studied blow-up solutions for the reaction–diffusion equa-
tions, which contain p-Laplacian, Laplacian, and so on, in continuous and discrete ana-
logues. For example, in 1973, Levine [4] considered formal parabolic equations of the form

⎧⎨
⎩

P du
dt = –A(t)u + f (u(t)), t ∈ [0, +∞),

u(0) = u0,

where P and A(t) are positive linear operators defined on a dense subdomain D of a real
or complex Hilbert space H . Here he first introduced the “concavity method” to obtained
the blow-up solutions under abstract conditions

2(α + 1)F(x) ≤ (
x, f (x)

)
, F

(
u0(x)

)
>

1
2
(
u0(x), Au0(x)

)

for x ∈ D, where F(x) =
∫ 1

0 (f (ρx), x) dρ .
After this, Philippin and Proytcheva [5] have applied this method to the equations

ut = �u + f (u) in Ω × (0, +∞) (1)

and obtained a blow-up solution under the Dirichlet boundary condition by using the
condition

(A) : (2 + ε)F(u) ≤ uf (u), u > 0,

for some ε > 0 and the initial data u0 satisfying

–
1
2

∫
Ω

∣∣∇u0(x)
∣∣2 dx +

∫
Ω

F
(
u0(x)

)
dx > 0.

For the p-Laplace operator, Messaoudi [6] obtained the blow-up solutions to the equa-
tion

ut = div
(|∇u|p–2∇u

)
+ f (u) in Ω × (0, +∞)

under the Dirichlet boundary condition by using the condition

(Ap) : (p + ε)F(u) ≤ uf (u), u > 0,

for some ε > 0 and the initial data u0 satisfying

–
1
p

∫
Ω

∣∣∇u0(x)
∣∣p dx +

∫
Ω

F
(
u0(x)

)
dx > 0.

Besides, Junning [7] obtained the blow-up solutions to the equation

ut = div
(|∇u|p–2∇u

)
+ f (u) in Ω × (0, +∞)
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under the Dirichlet boundary condition by using the condition

(
A′

p
)

: pF(u) ≤ uf (u), u > 0.

Here the initial data u0 satisfies

–
1
p

∫
Ω

∣∣∇u0(x)
∣∣p dx +

∫
Ω

F
(
u0(x)

)
dx >

4(p – 1)
T(p – 2)2p

∫
Ω

u2
0(x) dx.

Recently, Ding and Hu [8] adopted condition (A) to obtain the blow-up solutions to the
equation

(
g(u)

)
t = ∇ · (ρ(|∇u|2)∇u

)
+ k(t)f (u)

with the nonnegative initial value and the null Dirichlet boundary condition.
On the other hand, condition (A) was relaxed by Bandle and Brunner [9] as follows:

(B) : (2 + ε)F(u) ≤ uf (u) + γ , u > 0,

for some ε > 0. Also, the initial data u0 satisfies

–
1
2

∫
Ω

∣∣∇u0(x)
∣∣2 dx +

∫
Ω

[
F(u0) – γ

]
dx > 0

for some ε > 0 and γ > 0.
Finally, condition (B) was improved by Chung and Choi [10] with the discrete analogue.

They obtained the blow-up solutions to the equation

ut = �ωu(x, t) + f (u) in S × (0, +∞)

under the Dirichlet boundary condition by using the condition

(C) : (2 + ε)F(u) ≤ uf (u) + u2 + γ , u > 0,

for some ε > 0, 0 < β ≤ ελ0
2 , and γ > 0 and the initial data u0 satisfying

–
1
2

∑
x∈S

∣∣u0(x) – u0(y)
∣∣2

ω(x, y) +
∑
x∈S

[
F(u0) – γ

]
dx > 0.

Here λ0 is the first eigenvalue for the discrete Laplace operator �ω .
In 2018, Chung and Choi [11] refines condition (C) in continuous analogue. For p ≥ 2,

they obtained the blow-up solutions to the equation

ut = div
(|∇u|p–2∇u

)
+ f (u) in Ω × (0, +∞)

under the Dirichlet boundary condition by using the condition

(Cp) : (p + ε)F(u) ≤ uf (u) + βup + γ , u > 0,
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for some ε > 0, 0 < β ≤ ελp,0
p , and γ > 0. Here the initial data u0 satisfies

–
1
p

∫
Ω

∣∣∇u0(x)
∣∣p dx +

∫
Ω

F
(
u0(x)

)
dx > 0.

Here λp,0 is the first eigenvalue for the p-Laplace operator.
It is clear that conditions (A), (Ap), (B), and (Bp) are independent of the eigenvalue of

the Laplace operator, and conditions (C) and (Cp) depend on the eigenvalue. As a matter
of fact, it is known that the first eigenvalue for the p-Laplace operator depends not only
on the domain but also on the boundary conditions (see [12]).

Motivated by the works mentioned, we study the blow-up solutions to the following
discrete p-Laplacian parabolic equations:

⎧⎪⎪⎨
⎪⎪⎩

ut(x, t) = �p,ωu(x, t) + f (u(x, t)), (x, t) ∈ S × (0, +∞),

B[u] = 0 on ∂S × [0, +∞),

u(x, 0) = u0(x) ≥ 0, x ∈ S,

(2)

where p > 1, f is a nonnegative locally Lipschitz continuous function on R, and B[u] = 0
on ∂S × [0, +∞) stands for the boundary condition

μ(z)
∂u
∂pn

(z, t) + σ (z)
∣∣u(z, t)

∣∣p–2u(z, t), (z, t) ∈ ∂S × [0, +∞). (3)

Here μ,σ : ∂S → [0, +∞) are functions such that μ(z) + σ (z) > 0, z ∈ ∂S, and ∂u
∂pn denotes

the discrete p-normal derivative (introduced in Sect. 1). It is easy to see that this boundary
value problem includes various boundary value problems such as the Dirichlet boundary,
Neumann boundary, and Robin boundary problems. Note that one of advantages of our
result is a unified approach.

To obtain the blow-up solutions to equation (2), we introduce the following condition:
For p > 1,

(Cp) : αF(u) ≤ uf (u) + up + γ , u > 0,

for some α > 2, 0 ≤ β ≤ (α–p)λp,0
p , and γ ≥ 0.

We discuss condition (Cp) in Section 3 to understand the constants α, β , and γ with
respect to the boundary condition B[u] = 0 and the parameter p > 1, which are crucial
points of our results.

It is worth noting that we obtained the blow-up solutions to equation (2) in the case
p > 1, not in the case p ≥ 2. In fact, there are interesting results in the case 1 < p < 2 with
respect to blow-up property (see [13–15]). Therefore we expect that under condition (Cp),
more interesting results can be obtained even in the continuous case, which will be our
forthcoming work.

We organize this paper as follows. In Sect. 1, we briefly introduce the preliminary con-
cepts on networks and comparison principles. Section 2 is the main section devoted to
blow-up solutions using the concavity method with condition (Cp). Finally, in Sect. 3, we
discuss condition (Cp), comparing it with conditions (Ap) and (Bp), together with the con-
dition B(0) > 0, the parameter p > 1, and the initial data condition.
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1 Preliminaries and discrete comparison principles
In this section, we start with the theoretic graph notions frequently used throughout this
paper. For more detailed information on notations, notions, and conventions, we refer the
reader to [16].

Definition 1.1
(i) A graph G = G(V , E) is a finite set V of vertices with a set E of edges (two-element

subsets of V ). Conventionally used, we denote by x ∈ V or x ∈ G the fact that x is a
vertex in G.

(ii) A graph G is called simple if it has neither multiple edges nor loops.
(iii) G is called connected if for all vertices x and y, there exists a sequence of vertices

x = x0, x1, . . . , xn–1, xn = y such that xj–1 and xj are connected by an edge for
j = 1, . . . , n (called adjacent).

(iv) A graph G′ = G′(V ′, E′) is called a subgraph of G(V , E) if V ′ ⊂ V and E′ ⊂ E. In this
case, G is a host graph of G′. If E′ consists of all the edges from E that connect the
vertices of V ′ in its host graph G, then G′ is called an induced subgraph.

Definition 1.2 For an induced subgraph S of a graph G = G(V , E), the (vertex) boundary
∂S of S is defined as

∂S := {z ∈ V \ S|z ∼ y for some y ∈ S}.

Here, x ∼ y means that two vertices x and y are connected (adjacent) by an edge in E.
Throughout this paper, the subgraph S is assumed to be induced, simple, and connected.

Also, we denote by S the graph with vertices and edges in S∪∂S. We note that by definition
the set S is an induced subgraph of G.

Definition 1.3 A weight on a graph G is a symmetric function ω : V × V → [0, +∞) sat-
isfying the following:

(i) ω(x, x) = 0, x ∈ V ,
(ii) ω(x, y) = ω(y, x) if x ∼ y,

(iii) ω(x, y) > 0 if and only if {x, y} ∈ E,
and a graph G with weight ω is called a network.

Definition 1.4 The degree dωx of a vertex x in a network S (with boundary ∂S) is defined
as

dωx :=
∑
y∈S

ω(x, y).

Definition 1.5 For p > 1 and a function u : S → R, the discrete p-Laplacian �p,ω on S is
defined by

�p,ωu(x) :=
∑
y∈S

∣∣u(y) – u(x)
∣∣p–2[u(y) – u(x)

]
ω(x, y)

for x ∈ S.
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Definition 1.6 For p > 1 and a function u : S → R, the discrete p-normal derivative ∂u
∂pn

on ∂S is defined by

∂u
∂pn

(z) :=
∑
x∈S

∣∣u(z) – u(x)
∣∣p–2[u(z) – u(x)

]
ω(x, z)

for z ∈ ∂S.

The following two lemmas are used throughout this paper.

Lemma 1.7 (See [17]) Let p > 1. For functions f , g : S →R, the discrete p-Laplacian �p,ω

satisfies

2
∑
x∈S

g(x)
[
–�p,ωf (x)

]

=
∑
x,y∈S

∣∣f (y) – f (x)
∣∣p–2[f (y) – f (x)

][
g(y) – g(x)

]
ω(x, y).

In particular, in the case g = f , we have

2
∑
x∈S

f (x)
[
–�p,ωf (x)

]
=

∑
x,y∈S

∣∣f (x) – f (y)
∣∣p

ω(x, y).

Lemma 1.8 (See [12]) For p > 1, there exist λp,0 > 0 and a function φ0(x) > 0, x ∈ S ∪ Γ ,
such that

⎧⎨
⎩

–�p,ωφ0(x) = λp,0|φ0(x)|p–2φ0(x), x ∈ S,

B[φ0] = 0 on ∂S,

where B[φ0] on ∂S stands for

μ(z)
∂φ0

∂pn
(z) + σ (z)

∣∣φ0(z)
∣∣p–2

φ0(z), z ∈ ∂S.

Here Γ := {z ∈ ∂S |μ(z) > 0}, and μ,σ : ∂S → [0, +∞) are functions such that μ(z)+σ (z) > 0
for z ∈ ∂S. Moreover, λp,0 is given by

λp,0 = min
u∈A,u�≡0

1
2
∑

x,y∈S|u(x) – u(y)|pω(x, y) +
∑

z∈Γ
σ (z)
μ(z) |u(z)|p∑

x∈S|u(x)|p ,

where A := {u : S →R|u �≡ 0 in S, u = 0 on ∂S \ Γ }.

The number λp,0 is called the first eigenvalue of �p,ω on a network S with corresponding
eigenfunction φ0 (see [18] and [19] for the spectral theory of the Laplacian operators). In
fact, we note that if Γ is the empty set, then

∑
z∈Γ

σ (z)
μ(z) |u(z)|p is 0.

Remark 1.9 It is clear that the first eigenvalue λp,0 is nonnegative. Moreover, we note here
that the first eigenvalue λp,0 satisfies the following statements:
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(i) If σ ≡ 0, then λp,0 = 0.
(ii) If σ �≡ 0, then λp,0 > 0.

We now discuss the local existence of a solution to equation (2). To discuss the local
existence, we would like to investigate the relationship between the boundary condition
B[u] = 0 and the initial data u0.

Remark 1.10 Consider the function ψ : R→R defined as

ψ(γ ) :=
∑
x∈S

∣∣γ – u(x, t)
∣∣p–2[

γ – u(x, t)
]
a(x) + b|γ |p–2γ ,

where a(x) ≥ 0 for x ∈ S, and b ≥ 0 with a(x) + b > 0 for some x ∈ S. Then it is easy to
see that ψ is a continuous function that is strictly increasing and bijective on R. Therefore
there exists a unique ρ ∈R such that ψ(ρ) = 0. It means that for all z ∈ ∂S, we can uniquely
define the value of u(z, 0) according to the given boundary condition B[u] = 0 and initial
data u0, that is, for every z ∈ ∂S, u(z, 0) is determined such that

μ(z)
∂u
∂pn

(z, 0) + σ (z)
∣∣u(z, 0)

∣∣p–2u(z, 0) = 0, z ∈ ∂S,

where μ,σ : ∂S → [0, +∞) are given functions with μ(z) +σ (z) > 0 for all z ∈ ∂S. Therefore
we have a compatible condition such that the initial data u0 satisfies

μ(z)
∂u0

∂pn
(z) + σ (z)

∣∣u0(z)
∣∣p–2u0(z) = 0, z ∈ ∂S.

We will prove the existence of the solution to equation (2) using the Schauder fixed point
theorem. For this reason, we first define the set C(S × I) for a compact interval I :

C(S × I) :=
{

u : S × I →R|u(x, ·) ∈ C(I) for each x ∈ S
}

.

Also, we need the following modified version of the Arzelà–Ascoli theorem.

Lemma 1.11 (Modified version of the Arzelà–Ascoli theorem) Let F be a compact subset
of R, and let S be a network. Consider the Banach space C(S × F) with the maximum norm
‖u‖S,F := maxx∈S maxt∈F |u(x, t)|. Then a subset A of C(S × F) is relatively compact if A is
uniformly bounded on S × F and equicontinuous on F for each x ∈ S.

Proof This lemma is already proved by Chung and Hwang [14]. �

Theorem 1.12 (Local existence) There exists t0 > 0 such that equation (2) admits at least
one bounded solution u such that u(x, ·) is continuous on [0, t0] and differentiable in (0, t0)
for each x ∈ S.

Proof We first start with the Banach space

C
(
S × [0, t0]

)
:=

{
u : S × [0, t0] → R|u(x, ·) ∈ C

(
[0, t0]

)
for each x ∈ S

}
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with the maximum norm ‖u‖S,t0 := maxx∈S max0≤t≤t0 |u(x, t)|, where t0 ∈ R is a positive
constant, which will be defined later. Now consider the subspace

Bt0 :=
{

u ∈ C
(
S × [0, t0]

)|‖u‖S,t0 ≤ 2‖u0‖S,t0

}

of a Banach space C(S × [0, t0]). Then it is clear that Bt0 is convex. To apply the Schauder
fixed point theorem, we have to show that Bt0 is closed. Let gn be a sequence in Bt0 that
converges to g . Since the convergence is uniform, g is continuous. Moreover, |‖gn‖S,t0 –
‖g‖S,t0 | ≤ ‖gn – g‖S,t0 implies that g ∈ Bt0 . Hence Bt0 is closed.

On the other hand, for every u ∈ Bt0 , we can uniquely define the value of u(z, t) according
to the boundary condition B[u] = 0 in a similar way to Remark 1.10, that is, for every
u ∈ Bt0 , u(z, t) satisfies

μ(z)
∂u
∂pn

(z, t) + σ (z)
∣∣u(z, t)

∣∣p–2u(z, t) = 0, (z, t) ∈ ∂S × [0, t0]

for all (z, t) ∈ ∂S× [0, t0], where μ,σ : ∂S → [0, +∞) are given functions with μ(z)+σ (z) > 0
for all z ∈ ∂S. Then by the boundary condition it is clear that u(z, t) satisfies |u(z, t)| ≤
‖u‖S,t0 , (z, t) ∈ ∂S × [0, t0].

Let us define the operator D : Bt0 → Bt0 by

D[u](x, t) := u0(x) +
∫ t

0
�p,ωu(x, s) + f

(
u(x, s)

)
ds, (x, t) ∈ S × [0, t0],

where u0 : S →R is a given function.
Since f is locally Lipschitz continuous on R, there exists L > 0 such that

∣∣f (a) – f (b)
∣∣ ≤ L|a – b|, a, b ∈ [–m, m],

where m = 2‖u0‖S,t0 . Now put

t0 :=
‖u0‖S,t0

ω0(4‖u0‖S,t0 )p–1 + 4L‖u0‖S,t0
,

where ω0 := maxx∈S
∑

y∈S ω(x, y). Then it is easy to see that the operator D is well-defined.
Now we will show that D is continuous. The verification of the continuity is divided into
two cases as follows:

(i) 1 < p < 2.
For u and v in Bt0 , it follows that

∣∣D[u](x, t) – D[v](x, t)
∣∣ ≤

∣∣∣∣
∫ t0

0

∑
y∈S

22–p‖u – v‖p–1
S,t0

ω(x, y) + L‖u – v‖S,t0 ds
∣∣∣∣

≤ t0
[
22–pω0‖u – v‖p–1

S,t0
+ L‖u – v‖S,t0

]
.

(ii) p ≥ 2.
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For u and v in Bt0 , by the mean value theorem we have

∣∣D[u](x, t) – D[v](x, t)
∣∣

≤
∣∣∣∣
∫ t0

0

∑
y∈S

(p – 1)‖2u0‖p–2
S,t0

2‖u – v‖S,t0ω(x, y) + L‖u – v‖S,t0 ds
∣∣∣∣

≤
∣∣∣∣
∫ t0

0

∑
y∈S

22p–3(p – 1)‖u0‖p–2
S,t0

‖u – v‖S,t0ω(x, y) + L‖u – v‖S,t0 ds
∣∣∣∣

≤ t0
[
22p–3(p – 1)‖u0‖p–2

S,t0
ω0‖u – v‖S,t0 + L‖u – v‖S,t0

]
.

Consequently, for each p > 1, we obtain

∥∥D[u] – D[v]
∥∥

S,t0
≤ C1‖u – v‖p–1

S,t0
+ C2‖u – v‖S,t0 ,

where C1 and C2 are constants depending only on u0, t0, p, L, and ω0. Therefore we
obtain the continuity of D.

Finally, we will show that D(B(t0)) is relatively compact. By Lemma 1.11 it suffices to
show that D(B(t0)) is uniformly bounded on S × [0, t0] and equicontinuous on [0, t0]. Since
D(B(t0)) ∈ B(t0), it is trivial that D(B(t0)) is uniformly bounded. On the other hand, it fol-
lows that for each x ∈ S,

∣∣D[u](x, t1) – D[u](x, t2)
∣∣ ≤ |t1 – t2|

[
ω0

(
4‖u0‖S,t0

)p–1 + 4L‖u0‖S,t0

]

for all t1, t2 ∈ [0, t0] and u ∈ Bt0 , which implies that D(B(t0)) is equicontinuous on [0, t0].
Hence D(B(t0)) is relatively compact by Lemma 1.11. Therefore by the Schauder fixed point
theorem there exists u ∈ B(t0) satisfying D[u] = u and the boundary condition B[u] = 0. It
is clear that u is the solution to equation (2). On the other hand, it is easy to see that u
is bounded. Moreover, u(x, ·) is continuous on [0, t0] and differentiable in (0, t0) for each
x ∈ S by the definition of D and the boundary condition B[u] = 0. �

Now we state two types of comparison principles.

Theorem 1.13 (Comparison principle) Let T > 0 (T may be +∞) and p > 1, and let f
be locally Lipschitz continuous on R. Suppose that real-valued functions u(x, ·), v(x, ·) ∈
C[0, T) are differentiable in (0, T) for each x ∈ S and satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(x, t) – �p,ωu(x, t) – f (u(x, t))

≥ vt(x, t) – �p,ωv(x, t) – f (v(x, t)), (x, t) ∈ S × (0, T),

B[u] ≥ B[v] on ∂S × [0, T),

u(x, 0) ≥ v(x, 0), x ∈ S.

(4)

Then u(x, t) ≥ v(x, t) for all (x, t) ∈ S × [0, T).

Proof Let T ′ > 0 be arbitrarily given with T ′ < T . Since f is locally Lipschitz continuous
on R, there exists L > 0 such that

∣∣f (a) – f (b)
∣∣ ≤ L|a – b|, a, b ∈ [–m, m], (5)
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where m = maxx∈S max0≤t≤T ′ {|u(x, t)|, |v(x, t)|}. Let ũ, ṽ : S × [0, T ′] → R be the functions
defined by

ũ(x, t) := e–2Ltu(x, t), (x, t) ∈ S × [
0, T ′].

ṽ(x, t) := e–2Ltv(x, t), (x, t) ∈ S × [
0, T ′].

Then from (4) we have

[
ũt(x, t) – ṽt(x, t)

]
– e2L(p–2)t[�p,ωũ(x, t) – �p,ωṽ(x, t)

]

+ 2L
[
ũ(x, t) – ṽ(x, t)

]
– e–2Lt[f

(
u(x, t)

)
– f

(
v(x, t)

)] ≥ 0 (6)

for all (x, t) ∈ S × (0, T ′].
We recall that ũ(x, ·) and ṽ(x, ·) are continuous on [0, T ′] for each x ∈ S and S is finite.

Hence we can find (x0, t0) ∈ S × [0, T ′] such that

(ũ – ṽ)(x0, t0) = min
x∈S

min
0≤t≤T ′(ũ – ṽ)(x, t),

which implies that

ṽ(y, t0) – ṽ(x0, t0) ≤ ũ(y, t0) – ũ(x0, t0), y ∈ S. (7)

Then now we have only to show that (ũ – ṽ)(x0, t0) ≥ 0.
Suppose that, on the contrary, (ũ – ṽ)(x0, t0) < 0. Assume that x0 ∈ ∂S. Then we see that

0 ≤ μ(x0)
∑
x∈S

[∣∣ũ(x0, t0) – ũ(x, t0)
∣∣p–2(ũ(x0, t0) – ũ(x, t0)

)

–
∣∣ṽ(x0, t0) – ṽ(x, t0)

∣∣p–2(ṽ(x0, t0) – ṽ(x, t0)
)]

ω(x0, x)

+ σ (x0)
(
ũ(x0, t0) – ṽ(x0, t0)

)
. (8)

Therefore, if σ (x0) > 0, then equation (8) is negative, which leads to a contradiction. If
σ (x0) = 0, then we have

ũ(x0, t0) – ṽ(x0, t0) = ũ(x, t0) – ṽ(x, t0)

for all x ∈ S. Hence there exists x1 ∈ S such that

ũ(x0, t0) – ṽ(x0, t0) = ũ(x1, t0) – ṽ(x1, t0).

Hence we may choose x0 ∈ S. Moreover, since ũ(x, 0) – ṽ(x, 0) ≥ 0 on S, we have (x0, t0) ∈
S × (0, T ′]. Then we obtain from (7) that

�p,ωũ(x0, t0) – �p,ωṽ(x0, t0) ≥ 0, (9)

and from the differentiability of (ũ – ṽ)(x, t) in (0, T ′] for each x ∈ S it follows that

(ũt – ṽt)(x0, t0) ≤ 0. (10)
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According to (5), we have

2L
[
ũ(x0, t0) – ṽ(x0, t0)

]
– e–2Lt0

[
f
(
u(x0, t0)

)
– f

(
v(x0, t0)

)]

≤ 2L
[
ũ(x0, t0) – ṽ(x0, t0)

]
+ Le–2Lt0

∣∣u(x0, t0) – v(x0, t0)
∣∣

= 2L
[
ũ(x0, t0) – ṽ(x0, t0)

]
+ L

∣∣ũ(x0, t0) – ṽ(x0, t0)
∣∣

= L
[
ũ(x0, t0) – ṽ(x0, t0)

]
< 0, (11)

since ũ(x0, t0) < ṽ(x0, t0). Combining (9), (10), and (11), we obtain that

ũ(x0, t0) – ṽ(x0, t0) –
[
�p,ωũ(x0, t0) – �p,ωṽ(x0, t0)

]

+ 2L
[
ũ(x0, t0) – ṽ(x0, t0)

]
– e–2Lt0

[
f
(
u(x0, t0)

)
– f

(
v(x0, t0)

)]
< 0,

which contradicts (6). Therefore ũ(x, t) ≥ ṽ(x, t) for all (x, t) ∈ S × (0, T ′], so that we get
u(x, t) ≥ v(x, t) for all (x, t) ∈ S × [0, T), since T ′ < T is arbitrary. �

When p ≥ 2, we obtain a strong comparison principle.

Theorem 1.14 (Strong comparison principle) Let T > 0 (T maybe +∞) and p ≥ 2, and let
f be locally Lipschitz continuous on R. Suppose that real-valued functions u(x, ·), v(x, ·) ∈
C[0, T) are differentiable in (0, T) for each x ∈ S and satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(x, t) – �p,ωu(x, t) – f (u(x, t))

≥ vt(x, t) – �p,ωv(x, t) – f (v(x, t)), (x, t) ∈ S × (0, T),

B[u] ≥ B[v] on ∂S × [0, T),

u(x, 0) ≥ v(x, 0), x ∈ S.

(12)

If u(x∗, 0) > v(x∗, 0) for some x∗ ∈ S, then u(x, t) > v(x, t) for all (x, t) ∈ S ∪ Γ × (0, T).

Proof First, note that u ≥ v on S × [0, T) by the previous theorem. Let T ′ > 0 be arbitrarily
given with T ′ < T . Since f is locally Lipschitz continuous on R, there exists L > 0 such that

∣∣f (a) – f (b)
∣∣ ≤ L|a – b|, a, b ∈ [–m, m], (13)

where m = maxx∈S max0≤t≤T ′ {|u(x, t)|, |v(x, t)|}. Let τ : S × [0, T ′] →R be the function de-
fined by

τ (x, t) := u(x, t) – v(x, t), (x, t) ∈ S × [
0, T ′].

Then τ (x, t) ≥ 0 for all (x, t) ∈ S × [0, T ′]. From inequality (12) we have

τt
(
x∗, t

)
– �p,ωu

(
x∗, t

)
– �p,ωv

(
x∗, t

)
–

[
f
(
u
(
x∗, t

))
– f

(
v
(
x∗, t

))] ≥ 0 (14)
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for all 0 < t ≤ T ′. Then by the mean value theorem, for each y ∈ S and 0 ≤ t ≤ T ′, it follows
that

∣∣u(y, t) – u
(
x∗, t

)∣∣p–2[u(y, t) – u
(
x∗, t

)]
–

∣∣v(y, t) – v
(
x∗, t

)∣∣p–2[v(y, t) – v
(
x∗, t

)]

= (p – 1)
∣∣ζ (

x∗, y, t
)∣∣p–2[

τ (y, t) – τ (x, t)
]
, (15)

where |ζ (x∗, y, t)| ≤ 2 maxx∈S max0≤t≤T ′ |u(x, t)|, |v(x, t)|. By (13) and (15) inequality (14) be-
comes

τt
(
x∗, t

)

≥ –dωx∗(p – 1)[2M]p–2τ
(
x∗, t

)
– L

∣∣τ(
x∗, t

)∣∣
= –

(
dωx∗(p – 1)[2M]p–2 + L

)
τ
(
x∗, t

)
.

This implies

τ
(
x∗, t

) ≥ τ
(
x∗, 0

)
e–(dωx∗(p–1)[2M]p–2+L)t > 0, t ∈ (0, T ′], (16)

since τ (x∗, 0) > 0. Now suppose there exists (x0, t0) ∈ S ∪ Γ × (0, T ′] such that

τ (x0, t0) = min
x∈S∪Γ ,0<t≤T ′ τ (x, t) = 0.

Case 1: x0 ∈ S.
Since τ (x0, t0) ≤ τ (x, t) for all (x, t) ∈ S × [0, T ′], we have

τt(x0, t0) ≤ 0

and

�p,ωu(x0, t0) – �p,ωv(x0, t0) ≥ 0.

Hence from inequality (12) we obtain

0 ≤ τt(x0, t0) – �p,ωu(x0, t0) + �p,ωv(x0, t0) ≤ 0.

Therefore we have

�p,ωu(x0, t0) – �p,ωv(x0, t0) = 0,

which implies that τ (y, t0) = 0 for all y ∈ S with y ∼ x0. Now, for any x ∈ S, there exists a
path

x0 ∼ x1 ∼ · · · ∼ xn ∼ x,

since S is connected. By applying the same argument as before inductively we see that
τ (x, t0) = 0 for every x ∈ S, which is a contradiction to (16).
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Case 2: x0 ∈ Γ .
By the boundary condition in (12) we have

μ(x)
[

∂u
∂pn

(x0, t0) –
∂v
∂pn

(x0, t0)
]

≥ σ (x)
[∣∣u(x0, t0)

∣∣p–2u(x0, t0) –
∣∣v(x, t)

∣∣p–2v(x0, t0)
]

= 0,

from which it follows that

u(x0, t0) – u(x1, t0) ≥ v(x0, t0) – v(x1, t0)

for some x1 ∈ S with x0 ∼ x1. This means that τ (x1, t0) = 0, which contradicts to Case 1.
Hence we finally obtain that u(x, t) > v(x, t) for all (x, t) ∈ S × (0, T), since T ′ < T is arbi-
trary. �

Note that by the comparison principle, if f (0) = 0, then solutions u to equation (2) are
nonnegative. On the other hand, it is natural that f is assumed to be positive on (0, +∞)
when we deal with the blow-up theory. Hence we always assume that f is a locally Lipschitz
continuous function on R, which is positive in (0, +∞) and f (0) = 0. Moreover, we assume
that the initial data u0 is nontrivial and nonnegative.

2 Blow-up: the concavity method
In this section, we discuss the blow-up phenomena of the solutions to equation (2), which
is the main part of this paper.

Definition 2.1 (Blow-up) We say that a solution u to equation (2) blows up at finite
time T > 0 if there exists x ∈ S such that |u(x, t)| → +∞ as t ↗ T– or, equivalently,∑

x∈S |u(x, t)| → +∞ as t ↗ T–.

To state and prove our result, we introduce the following condition:

(Cp) αF(u) ≤ uf (u) + βup + γ , u > 0,

for some α > 2, β ≥ 0, and γ > 0 with 0 ≤ β ≤ (α–p)λp,0
p .

Remark 2.2 We have the fact that λp,0 = 0 if and only if σ ≡ 0 (see [12]). Therefore we can
easily obtain that the condition on α in (Cp) depends on the boundary condition and p > 1
as follows:

(i) If σ ≡ 0, then α > 2 for all p > 1.
(ii) If σ �≡ 0, then α > 2 for all 1 < p ≤ 2.

(iii) If σ �≡ 0, then α ≥ p for all p > 2.

We now state the main theorem of this paper:
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Theorem 2.3 For p > 1 and the function f with hypothesis (Cp), if the initial data u0 sat-
isfies

–
1

2p
∑
x,y∈S

∣∣u0(x) – u0(y)
∣∣p

ω(x, y) –
1
p

∑
z∈Γ

σ (z)
μ(z)

∣∣u0(z)
∣∣p

+
∑
x∈S

[
F
(
u0(x)

)
– γ

]
> 0, (17)

then the solutions u to equation (2) blow up at finite time T∗ in the sense that

lim
t→T∗

∑
x∈S

u2(x, t) = +∞,

where γ is the constant in e condition (Cp).

Proof First, let us define functionals by

A(t) :=
∑
x∈S

u2(x, t), t ≥ 0,

and

B(t) := –
1

2p
∑
x,y∈S

∣∣u(x, t) – u(y, t)
∣∣p

ω(x, y) –
1
p

∑
z∈Γ

σ (z)
μ(z)

∣∣u(z, t)
∣∣p

+
∑
x∈S

[
F
(
u(x, t)

)
– γ

]
, t ≥ 0.

Then we have from equation (2) and Lemma 1.7 that

A′(t) = 2
∑
x∈S

u(x, t)
[
�p,ωu(x, t) + f

(
u(x, t)

)]

= 2
∑
x∈S

u(x, t)�p,ωu(x, t) + 2
∑
z∈Γ

u(z, t)
∂u
∂pn

(z, t) + 2
∑
x∈S

u(x, t)f
(
u(x, t)

)

= –
∑
x,y∈S

∣∣u(x, t) – u(y, t)
∣∣p

ω(x, y) – 2
∑
z∈Γ

σ (z)
μ(z)

∣∣u(z, t)
∣∣p

+ 2
∑
x∈S

u(x, t)f
(
u(x, t)

)
. (18)

Applying condition (Cp) and Lemma 1.8, we can see that (18) implies

A′(t) ≥ 2
∑
x∈S

[
αF

(
u(x, t)

)
– βup(x, t) – γ

]
–

∑
x,y∈S

∣∣u(x, t) – u(y, t)
∣∣p

ω(x, y)

– 2
∑
z∈Γ

σ (z)
μ(z)

∣∣u(z, t)
∣∣p

≥2αB(t) – 2β
∑
x∈S

up(x, t) +
(

α

p
– 1

) ∑
x,y∈S

∣∣u(x, t) – u(y, t)
∣∣p

ω(x, y)
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+ 2
(

α

p
– 1

)∑
z∈Γ

σ (z)
μ(z)

∣∣u(z, t)
∣∣p

≥ 2αB(t) + 2
[

(α – p)λp,0

p
– β

]∑
x∈S

up(x, t)

≥ 2αB(t). (19)

Here it is easy to see that if λp,0 = 0 or α = p, then β = 0. Therefore, even though λp,0 = 0
or α = p, (19) is true.

On the other hand, we have from equation (2) and Lemma 1.7 that

B′(t) = –
1
2

∑
x,y∈S

∣∣u(y, t) – u(x, t)
∣∣p–2[u(y, t) – u(x, t)

][
ut(y, t) – ut(x, t)

]
ω(x, y)

–
∑
z∈Γ

σ (z)
μ(z)

∣∣u(z, t)
∣∣p–2u(z, t)ut(z, t) +

∑
x∈S

f
(
u(x, t)

)
ut(x, t)

=
∑
x∈S

�p,ωu(x, t)ut(x, t) +
∑
z∈∂S

∂u
∂pn

(z, t)ut(z, t) +
∑
x∈S

f
(
u(x, t)

)
ut(x, t)

=
∑
x∈S

ut(x, t)
[
�p,ωu(x, t) + f

(
u(x, t)

)]

=
∑
x∈S

u2
t (x, t) ≥ 0. (20)

Now we will show that

d
dt

[
A– α

2 (t)B(t)
]

= –
α

2
A– α

2 –1A′(t)B(t) + A– α
2 B′(t) ≥ 0 (21)

for all t > 0. Using the Schwarz inequality, from (19) and (20) we obtain that

α

2
A′(t)B(t) ≤ 1

4
[
A′(t)

]2 =
[∑

x∈S

u(x, t)ut(x, t)
]2

≤
∑
x∈S

u2(x, t)
∑
x∈S

u2
t (x, t)

= A(t)B′(t)

for all t > 0. Therefore inequality (21) is true, which implies that

1
2α

A– α
2 (t)A′(t) ≥ A– α

2 (t)B(t) ≥ A– α
2 (0)B(0) > 0. (22)

Solving the differential inequality (22), we obtain

A(t) ≥
[

1
–(α – 2)αA– α

2 (0)B(0)t + A 2–α
2 (0)

] 2
α–2

.

Hence A(t) blows up in finite time T with 0 < T ≤ A(0)
(α–2)αB(0) . �
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Remark 2.4 The blow-up time can be estimated roughly as

0 < T ≤
1

(α–2)α
∑

x∈S u2
0(x)

–
∑

x,y∈S |u0(x)–u0(y)|pω(x,y)
2p –

∑
z∈Γ

σ (z)
μ(z) up

0(z)
p +

∑
x∈S[F(u0(x)) – γ ]

.

Remark 2.5 Chung and Choi [11] obtained the blow-up results for equation (2) under the
Dirichlet boundary condition in the continuous setting, where p ≥ 2 by using condition
(Cp). In fact, their condition had the assumption α > p, which is one of the main differences
to us.

3 Discussion on condition (Cp) with the initial data conditions
In this section, we compare conditions (Ap), (Bp), and (Cp) and discuss the role of B(0) > 0.

First, we consider the Neumann boundary condition σ ≡ 0. Summing up over S to equa-
tion (2), we have

∑
x∈S

ut(x, t) =
∑
x∈S

�p,ωu(x, t) –
∑
z∈∂S

�p,ωu(z, t) +
∑
x∈S

f
(
u(x, t)

)

=
∑
x∈S

f
(
u(x, t)

)
.

From this equality we can obtain that the time behavior of
∑

x∈S u(x, t) is determined by∑
x∈S f (u(x, t)). Therefore by the definition of the blow-up we can expect that the blow-up

condition for the solution u depends only on f , not on p. On the other hand, for all p > 1,
condition (Cp) is represented by

(2 + ε)F(u) ≤ uf (u) + γ

for some ε > 0 and γ > 0, which also does not depend on p.
From now on we consider the boundary condition σ �≡ 0. Let us recall the following

conditions:
for 1 < p ≤ 2,

(Ap) (2 + ε)F(u) ≤ uf (u),

(Bp) (2 + ε)F(u) ≤ uf (u) + γ ,

(Cp) (2 + ε)F(u) ≤ uf (u) + βup + γ ,

where

ε > 0, 0 ≤ β ≤ (2 + ε – p)λp,0

p
, and γ > 0,

and for p > 2,

(Ap) (p + ε)F(u) ≤ uf (u),

(Bp) (p + ε)F(u) ≤ uf (u) + γ ,
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(Cp) (p + ε)F(u) ≤ uf (u) + βup + γ ,

where

ε ≥ 0, 0 ≤ β ≤ ελp,0

p
, and γ > 0

for every u ≥ 0. Here F(u) :=
∫ u

0 f (s) ds.
It is easy to see that (Ap) implies (Bp) and in turn (Bp) implies (Cp). In fact, the first

eigenvalue λp,0, which depends on the domain, is not contained in conditions (Ap) and
(Bp). However, condition (Cp) depends on the domain due to the term βup. From this
point of view, condition (Cp) can be understood as a refinement of (Bp), corresponding to
the domain. On the contrary, if a function f satisfies (Cp) for every domain, then the first
eigenvalue λp,0 can be arbitrarily small so that condition (Cp) gets arbitrarily closer to (Bp).

Remark 3.1 In fact, there have been efforts to obtain the condition ε = 0 in the continu-
ous analogue. For example, Junning studied the blow-up solutions to equation (2) in the
continuous setting under the Dirichlet boundary condition with the assumption ε = 0 in
(Ap) and the initial data u0 satisfying

–
1
p

∫
Ω

∣∣∇u0(x)
∣∣p dx +

∫
Ω

F
(
u0(x)

)
dx ≥ 4(p – 1)

T(p – 2)2p

∫
Ω

u2
0(x) dx,

where p > 2 and Ω ⊂ R
N (see [7]). From this point of view, for p > 2, our condition ε ≥ 0

with B(0) > 0 improves the conventional results.

Now we consider the cases p > 2 and 1 < p ≤ 2 to investigate conditions (Ap), (Bp), and
(Cp).

Case 1: p > 2.
Assuming that ε > 0, we obtain that condition (Cp) is equivalent to

d
du

(
F(u)
up+ε

–
γ

p + ε
· 1

up+ε
–

β

ε
· 1

uε

)
≥ 0, u > 0. (23)

In a similar way, assuming that ε = 0, we have

d
du

(
F(u)
up –

γ

p
· 1

up

)
≥ 0, u > 0. (24)

Hence (23) and (24) imply that for all u > 0 and p > 2,

(Ap) holds if and only if F(u) = up+εh1(u),

(Bp) holds if and only if F(u) = up+εh2(u) + b,

(Cp) holds if and only if F(u) = up+εh3(u) + aup + b,

for some constants ε > 0, a ≥ 0, and b > 0 with 0 ≤ a ≤ λp,0
p , where h1, h2, and h3 are

nondecreasing function on (0, +∞).
Case 2: 1 < p ≤ 2.
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We obtain that (Cp) is equivalent to

d
du

(
F(u)
u2+ε

–
γ

2 + ε
· 1

u2+ε
–

β

2 + ε – p
· 1

u2+ε–p

)
≥ 0, u > 0,

which implies that for all u > 0 and 1 < p ≤ 2,

(Ap) holds if and only if F(u) = u2+εh1(u),

(Bp) holds if and only if F(u) = u2+εh2(u) + b,

(Cp) holds if and only if F(u) = u2+εh3(u) + aup + b,

for some constants ε > 0, a ≥ 0, and b > 0 with 0 ≤ a ≤ λp,0
p , where h1, h2, and h3 are

nondecreasing function on (0, +∞).
In case 1 and case 2, the constants ε, a, and b may be different in each case. Also, the

nondecreasing function h1 is nonnegative on (0, +∞), but h2 and h3 may be not nonneg-
ative in general.

Theorem 3.2 For p > 1, let f be a real-valued function satisfying condition (Cp). Suppose
that f (u) ≥ λup–1, u > 0, for some λ > λp,0. Then the following statements are true.

(i) There exists m > 0 such that h3(u) > 0 for u ≥ m.
(ii) There exists ζ > 0 such that f (u) ≥ ζumax{p–1,1}+ε , u ≥ m.

(iii) Conditions (Bp) and (Cp) are equivalent when p ≥ 2.

Proof (i): First, it follows from the fact F(u) ≥ λ
p up > λp,0

p up that

umax{p,2}+εh3(u) = F(u) – aup – b ≥ λ – λp,0

p
up – b,

which goes to +∞ as u → +∞. Therefore we can find m > 0 such that h3(m) > 0.
(ii): (i) implies that

F(u) ≥ umax{p,2}+εh3(u), u ≥ m.

Putting it into condition (Cp), we obtain

αumax{p,2}+εh3(m) ≤ uf (u) + βup + γ .

Hence we obtain that

αumax{p–1,1}+εh3(m) ≤ f (u) + βup–1 +
γ

u
≤

(
1 +

β

λp,0

)
f (u) + γ , u ≥ m > 0,

which gives

f (u) ≥ ζu1+ε , u ≥ m > 0,

for some ζ > 0.
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(iii): Now consider the case p ≥ 2. Then it is trivial that (Bp) and (Cp) are equivalent when
ε = 0. Therefore we may assume that ε > 0. Since 0 ≤ β ≤ ελp,0

p and f (u) ≥ λu > λp,0u, u > 0,
it follows from (Cp) that

ε1F(u) + (p + ε2)F(u) ≤ uf (u) +
ελp,0

p
up + γ ,

where ε1 = ελp,0
λ

> 0 and ε2 = ε – ε1 > 0. This implies that for every u > 0,

uf (u) + γ ≥ (p + ε2)F(u) + ε1

∫ u

0

[
f (s) – λsp–1]ds

≥ (p + ε2)F(u),

which implies (Bp). �

In general, only condition (Cp) may not guarantee the blow-up solutions for every initial
data u0. Therefore, from now on, we are going to discuss when we can find initial data u0

that satisfies B(0) > 0.

Lemma 3.3 Let p > 1. If there exists v0 > 0 such that F(v0) > ω0
p vp

0 + γ1, where γ1 ≥ γ , then
there exists the initial data u0 such that B(0) > 0. Here ω0 := maxx∈S dωx.

Proof First of all, there exist a, b > 0 with 0 < a < b such that F(v) > ω0
p vp + γ1, v ∈ (a, b),

since F is continuous on [0, +∞). Now, we consider the function u0(x) satisfying

⎧⎪⎪⎨
⎪⎪⎩

a < u0(x) < b, x ∈ S,

0 < u0(x) < b, x ∈ Γ ,

u0(x) = 0, x ∈ ∂S \ Γ ,

which satisfies the boundary condition B[u0] = 0. Then we obtain that

B(0) =
1
p

∑
x∈S

∑
y∈S

∣∣u0(y) – u0(x)
∣∣p–2[u0(y) – u0(x)

]
u0(x)ω(x, y)

+
∑
x∈S

[
F
(
u0(x)

)
– γ

]

≥ –
1
p

∑
x∈S

∑
y∈S

up
0(x)ω(x, y) +

∑
x∈S

[
F
(
u0(x)

)
– γ

]

= –
1
p

∑
x∈S

up
0(x)dωx +

∑
x∈S

[
F
(
u0(x)

)
– γ

]

≥
∑
x∈S

[
F
(
u0(x)

)
–

ω0

p
up

0(x)
]

– γ |S|

> γ1|S| – γ |S| ≥ 0,

where |S| denotes the number of vertices in S. �
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Corollary 3.4 The following statements are true.
(i) If there exists (a, b) such that F(v) > ω0

p vp + γ1, γ1 ≥ γ for every v ∈ (a, b), then for
every u0 satisfying the boundary condition B[u0] = 0 such that

⎧⎪⎪⎨
⎪⎪⎩

a < u0(x) < b, x ∈ S,

0 < u0(x) < b, x ∈ Γ ,

u0(x) = 0, x ∈ ∂S \ Γ ,

we see that B(0) > 0.
(ii) If F(v) > ω0vmax{2+ε1,p} + γ1, ε1 > 0, γ1 ≥ γ , for every v ∈ (0, +∞) on S ∪ Γ , then the

solutions blow up for every initial data u0 > 0 on S ∪ Γ . Here ω0 := maxx∈S dωx.
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