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Abstract
In this paper we propose a method for stability studies of functional differential
systems. The idea of our method is to reduce the analysis of an n-dimensional system
to one for an (n +m)-dimensional system, wherem is a natural number, to obtain
stability and then to come back and make conclusions on the stability of the given
n-dimensional system. As an example, a model describing testosterone by distributed
inputs feedback control is considered. The aim of the regulation is to hold
testosterone concentration above an appropriate level. The feedback control with
integral term is proposed. We have to increase the testosterone level to the normal
one. The control we proposed could destroy the stability of the model. That is why we
have to choose the parameters of our distributed control, namely a dosage or
intensity of assimilation of a medicine in a human body in such a form that the
stability of our system is preserved. Thus the problem of regulation of testosterone
level leads us to the stability analysis of the functional differential system describing a
connection between the concentrations of hormones (GnRH), (LH), and testosterone
(Te). Constructing the system, we discard the connections which seem nonessential.
To estimate the effect of these connections is an important problem. We construct
the Cauchy matrix of integro-differential system to estimate this influence.

Keywords: Exponential stability; Cauchy matrix; Integro-differential systems;
Testosterone regulation

1 Introduction
Functional differential equation of the form

X ′(t) + B(t)X(t) + (KX)(t) = f (t), t ∈ [0,∞), (1.1)

where B(t) is an n × n matrix with essentially bounded coefficients and K : Cn → Ln∞ is
a linear bounded operator acting from the space of continuous functions Cn to the space
of essentially bounded functions Ln∞, f ∈ Ln∞ (all functions we understand as x : [0,∞) →
R

n), appears as a mathematical model describing processes in medicine, biology, and tech-
nology [18].
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The operator K can be, for example, of the integral form

(KX)(t) =
∫ t

0
k(t, s)X(s) ds. (1.2)

Although the control with distributed input control frequently appears as a challeng-
ing problem, only a few papers are devoted to it (see, for example, the works [2, 11–14,
16, 17, 23]). Noise in the feedback delay control is the main obstacle appearing in math-
ematical models because of the fact that it is impossible to base our control on the value
of process X(t) at a moment tj only, and we have to use an average value of the process
X(t) = col{x1(t), . . . , xn(t)} at a corresponding neighborhood of the point tj. Increasing the
number of points, we come actually to the control of the integral form (1.2).

It was demonstrated in the works [18, 21] that integro-differential systems can be used to
model endocrine regulation in relation to the delay incurred by transport of hormone from
the secretion site to receptors. It should be noted (see, for example, [17]) that signaling
the receptors is sensitive to the mean value of the hormone concentration over a certain
period of time rather than the instantaneous value. Another way to arrange integral terms
is, for example, the time required for describing assimilation of medicine. The integral
term with a kernel defining a weight of every value adopts this role. It is pointed out in
[23] that models with distributed inputs can appear in population dynamics, in propellant
rocket motors, and in network control systems. Sufficient conditions of stability for IDE
(1.1) were obtained in many well-known works (see, for example, [7, 8, 14, 24, 25, 29]).

In our model, we have to increase the testosterone level to the normal one. The control
we proposed could destroy the stability of the model. We have to be sure that the stability
of the system is preserved. Note the positivity-based approach to stability of delay equa-
tions developed, for example, in the works [1, 9, 10, 15, 19, 20, 26, 28]. Our method and
positivity-based approach can be used also for analysis of nonlinear systems on the basis
of the classical approach of the book [22].

2 Description of the model
Simplifying the process of testosterone regulation, we can depict the signal transduction
pathway initiated in the brain that leads to the testosterone production in the leading cells.
This complex pathway encompasses a number of chemical and biological events and can
be divided into three stages. The first stage takes place at the brain level. The hypothala-
mus produces the gonadotrophin releasing hormone (GnRH) that activates the luteinizing
hormone (LH) in the pituitary gland. The second stage is reflected by release of LH into
the bloodstream. The blood flow transfers the LH hormone to the Leydig cells. The third,
final, stage begins with activation of the cascade of biochemical events in Leydig cells that
results in production and subsequent release of testosterone [3, 5, 6, 27]. This pathway, as
many others in our body, is cyclic and includes the mechanism of negative feedback con-
trol. Thus, when the level of testosterone rises, the hypothalamus receives a signal about a
sufficient level of hormone and stops producing the GnRH that subsequently inhibits LH
release and as a results leads to lowering the concentration of testosterone. After lowering
the level of testosterone, the brain receives a signal about the renewal of the process. Some
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relevant descriptions of the model can be found, for example, in [4–6].

⎧⎪⎪⎨
⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1

∫ t
0 e–α1(t–s)x2(s) ds = 0,

x1(tn) = x1
(
t–
n
)

+ λn, t0 = 0, tn+1 = tn + �tn,

�tn = Φ
(
x3
(
t–
n
))

, λn = F
(
x3
(
t–
n
))

,

(2.1)

where Φ and F are nondecreasing and nonincreasing functions, respectively.
The model describes an interaction of the concentration of hormones GnRH, LH, and Te

which will be denoted as x1, x2, and x3, respectively. The values bi, 1 ≤ i ≤ 3, correspond to
the respective half-life times of GnRH, LH, and Te. In the healthy male body all elements
involved in the process work in consent.

We would like to propose a mechanism that allows us to hold the testosterone on a nor-
mal level T(t), although the normative exchange of information in the biological system
described by the impulses (see the formulas after equation (2.1)) falls and the signals do
not enter the brain at all or their influence is not enough to hold the corresponding level
of testosterone. We will use the control in the form

u(t) = c3

∫ t

0

[
T(s) – x3(s)

]
e–α3(t–s) ds, (2.2)

setting it in the right-hand side of the third equation of system (2.1).
The idea is clear: if T(t) > x3(t), the control has to increase the testosterone level x3(t), if

T(t) < x3(t), it has to decrease. Thus we come to the third equation in (2.1) of the form

x′
3(t) + b3x3(t) – c1

∫ t

0
e–α1(t–s)x2(s) ds + (Kx3)(t) = f (t), (2.3)

where the operator K : C → L∞ (C and L∞ are the spaces of continuous and essentially
bounded functions respectively) is defined by the equality

(Kx3)(t) = c3

∫ t

0
e–α3(t–s)x3(s) ds,

the function f (t) is defined by the equality f (t) = c3
∫ t

0 e–α3(t–s)T(s) ds, where T(s) is a cor-
responding “suitable” testosterone concentration.

After substituting control (2.2) in the third equation of system (2.1), we come to the
following system:

⎧⎪⎪⎨
⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1

∫ t
0 e–α1(t–s)x2(s) ds + c3

∫ t
0 e–α3(t–s)x3(s) ds = f (t).

(2.4)
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The corresponding homogeneous system is

⎧⎪⎪⎨
⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1

∫ t
0 e–α1(t–s)x2(s) ds + c3

∫ t
0 e–α3(t–s)x3(s) ds = 0.

(2.5)

As usual, the coefficients are supposed to be positive, i.e.,

α1 > 0, α3 > 0, b1 > 0, b2 > 0, b3 > 0, c3 > 0. (2.6)

3 Stability of integro-differential system
Our approach is based on the fact that system (2.4) of integro-differential equations can
be reduced to the following system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1x5(t) + c3x4(t) = f (t),

x′
4(t) + α3x4(t) – x3(t) = 0,

x′
5(t) + α1x5(t) – x2(t) = 0.

(3.1)

The corresponding homogeneous system is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1x5(t) + c3x4(t) = 0,

x′
4(t) + α3x4(t) – x3(t) = 0,

x′
5(t) + α1x5(t) – x2(t) = 0.

(3.2)

Lemma 3.1 The solution-vectors col(x1(t), x2(t), x3(t)) of system (2.4) and three first com-
ponents of the solution-vector col(x1(t), x2(t), x3(t), x4(t), x5(t)) of system (3.1) satisfying the
initial condition x4(0) = 0, x5(0) = 0 coincide.

If we write system (3.2) in the form X ′(t) = AX(t), then the matrix of the coefficients is
the following:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

–b1 0 0 0 0
g1 –b2 0 0 0
0 0 –b3 –c3 c1

0 0 1 –α3 0
0 1 0 0 –α1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.3)

Theorem 3.1 System (2.5) is exponentially stable if inequalities (2.6) are true.

Proof The characteristic polynomial of system (3.2) is of the form

P(λ) = (–b1 – λ)(–b2 – λ)(–α1 – λ)
[
λ2 + (b3 + α3)λ + α3b3 + c3

]
. (3.4)
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It is clear that all the roots

λ1 = –b1, λ2 = –b2, λ3 = –α1,

λ4 =
–(α3 + b3) +

√
(α3 – b3)2 – 4c3

2
,

λ5 =
–(α3 + b3) –

√
(α3 – b3)2 – 4c3

2

of P(x) = 0 have negative real parts. It means, according to Lemma 3.1, the exponential
stability of (2.5). �

Remark 3.1 We would like to stress that the control in the form (2.2) in the case of this
biological system cannot destroy stability. It means that there are no additional condi-
tions from the mathematical point of view, only medical limitations should be taken into
account.

4 Construction of the Cauchy matrix
Denote by Ci(t, s) = col{c1i(t, s), . . . , c5i(t, s)} the ith column of the Cauchy matrix C(t, s) =
col{C1(t, s), . . . , C5(t, s}) (the fundamental matrix in another terminology). Consider Ci(t, s)
as a 5-vector-function of t for fixed s. It is known from the general theory of ordinary
differential equations that Ci(t, s) can be defined as the solution of system (3.2) satisfying
the initial conditions cij(s, s) = 0 for i �= j, cii(s, s) = 1.

Below we construct the Cauchy matrix of system (3.2), solving system (3.2) in the case
of

b2 �= b1, α1 �= b1, α1 �= b2, (4.1)

b2
1 + α3b3 + c3 �= b1(α3 + b3),

b2
2 + α3b3 + c3 �= b2(α3 + b3),

α2
1 + α3b3 + c3 �= α1(α3 + b3),

(4.2)

(α3 – b3)2 > 4c3. (4.3)

Remark 4.1 The parameters α3 and c3 can be chosen such that inequalities (4.1) and (4.2)
are fulfilled. It demonstrates that they are actually not limitations. Mathematical sense of
all inequalities in (4.1), (4.2), and (4.3) will be clear below when we construct the Cauchy
matrix C(t, s) of system (3.2). We construct it only in the case of five different real roots
of the characteristic polynomial P(x) = 0 defined in (3.4). This will explain inequalities
(4.1)–(4.3). In the case of complex roots λ4, λ5 or of the multiple roots, the construction
of Cauchy matrix can be made analogously. In this paper, we do not deal with it. The case
of five different real roots looks most relevant from the medical point of view.



Domoshnitsky et al. Boundary Value Problems        (2019) 2019:184 Page 6 of 13

Solving system (3.2) in the case of (4.1)–(4.3), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = D1e–b1t ,

x2(t) = g1D1e–b1t

b2–b1
+ D2e–b2t ,

x3(t) = E1eγ1t + E2eγ2t + K1e–b1t + K2e–b2t + K3e–α1t ,

x4(t) = – 1
c3

⎛
⎜⎜⎝

E1eγ1t[γ1 + b3] + E2eγ2t[γ2 + b3]

+ K1e–b1t[b3 – b1] + K2e–b2t[b3 – b2] + K3e–α1t[b3 – α1]

– c1g1D1e–b1t

(α1–b1)(b2–b1) – c1D2e–b2t

α1–b2
– c1D5e–α1t

⎞
⎟⎟⎠ ,

x5(t) = g1D1e–b1t

(α1–b1)(b2–b1) + D2e–b2t

α1–b2
+ D5e–α1t

(4.4)

where

K1 =
c1g1D1[α3 – b1]

(α1 – b1)(b2 – b1)[b2
1 – b1(α3 + b3) + (α3b3 + c3)]

,

K2 =
c1D2[α3 – b2]

(α1 – b2)[b2
2 – b2(α3 + b3) + (α3b3 + c3)]

, (4.5)

K3 =
c1D5[α3 – α1]

α2
1 – α1(α3 + b3) + (α3b3 + c3)

,

and

γ1 = λ4, γ2 = λ5. (4.6)

Condition (4.3) implies that γ1 and γ2 are different.
Denoting X(t) = col{x1(t), x2(t), x3(t), x4(t), x5(t)} and K = K1 + K2 + K3, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(0) = D1,

x2(0) = g1D1
b2–b1

+ D2,

x3(0) = E1 + E2 + K ,

x4(0) = – 1
c3

⎛
⎜⎜⎝

E1[γ1 + b3] + E2[γ2 + b3]

+ K1[b3 – b1] + K2[b3 – b2] + K3[b3 – α1]

– c1g1D1
(α1–b1)(b2–b1) – c1D2

α1–b2
– c1D5

⎞
⎟⎟⎠ ,

x5(0) = g1D1
(α1–b1)(b2–b1) + D2

α1–b2
+ D5

(1) If X(0) = col{1, 0, 0, 0, 0}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = 1,

D2 = – g1
b2–b1

,

E1 = – K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [b3+γ2]
γ1–γ2

,

E2 = K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

,

D5 = – g1
(α1–b1)(b2–b1) + g1

(α1–b2)(b2–b1) = g1
(α1–b1)(α1–b2) ,
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where

K1 =
c1g1[α3 – b1]

(α1 – b1)(b2 – b1)[b2
1 – b1(α3 + b3) + (α3b3 + c3)]

,

K2 =
c1g1[α3 – b2]

(α1 – b2)(b2 – b1)[b2
2 – b2(α3 + b3) + (α3b3 + c3)]

,

K3 =
c1g1[α3 – α1]

(α1 – b1)(α1 – b2)[α2
1 – α1(α3 + b3) + (α3b3 + c3)]

.

The first column of the Cauchy matrix is the following:

C1(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e–b1(t–s)

g1e–b1(t–s)

b2–b1
– g1e–b2(t–s)

b2–b1⎡
⎢⎢⎣

– K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [b3+γ2]
γ1–γ2

eγ1(t–s)

+ K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

eγ2(t–s)

+ K1e–b1(t–s) + K2e–b2(t–s) + K3e–α1(t–s)

⎤
⎥⎥⎦

– 1
c3

⎡
⎢⎢⎢⎢⎢⎣

– K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [b3+γ2]
γ1–γ2

eγ1(t–s)[γ1 + b3]

+ K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

eγ2(t–s)[γ2 + b3]

+ K1e–b1(t–s)[b3 – b1] + K2e–b2(t–s)[b3 – b2] + K3e–α1(t–s)[b3 – α1]

– c1g1e–b1(t–s)

(α1–b1)(b2–b1) + c1g1e–b2(t–s)

(α1–b2)(b2–b1) – g1c1e–α1(t–s)

(α1–b1)(α1–b2)

⎤
⎥⎥⎥⎥⎥⎦

g1e–b1(t–s)

(α1–b1)(b2–b1) – g1e–b2(t–s)

(α1–b2)(b2–b1) + g1e–α1(t–s)

(α1–b1)(α1–b2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2) If X(0) = col{0, 1, 0, 0, 0}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = 0,

D2 = 1,

E1 = – K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [b3+γ2]
γ1–γ2

,

E2 = K1[b3–b1]+K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

,

D5 = – 1
α1–b2

,

where

K1 = 0,

K2 =
c1[α3 – b2]

(α1 – b2)[b2
2 – b2(α3 + b3) + (α3b3 + c3)]

,

K3 =
c1[α3 – α1]

(b2 – α1)[α2
1 – α1(α3 + b3) + (α3b3 + c3)]

.
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The second column of the Cauchy matrix is the following:

C2(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
e–b2(t–s)⎡

⎢⎢⎣
– K2[b3–b2]+K3[b3–α1]–K [b3+γ2]

γ1–γ2
eγ1(t–s)

+ K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

eγ2(t–s)

+ K2e–b2(t–s) + K3e–α1(t–s)

⎤
⎥⎥⎦

– 1
c3

⎡
⎢⎢⎢⎢⎢⎣

– K2[b3–b2]+K3[b3–α1]–K [b3+γ2]
γ1–γ2

eγ1(t–s)[γ1 + b3]

+ K2[b3–b2]+K3[b3–α1]–K [γ1+b3]
γ1–γ2

eγ2(t–s)[γ2 + b3]

+ K2e–b2(t–s)[b3 – b2] + K3e–α1(t–s)[b3 – α1]

– c1e–b2(t–s)

α1–b2
+ c1e–α1(t–s)

α1–b2

⎤
⎥⎥⎥⎥⎥⎦

e–b2(t–s)

α1–b2
– e–α1(t–s)

α1–b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3) If X(0) = col{0, 0, 1, 0, 0}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = 0,

D2 = 0,

E1 = – K1[b3–b1]+K2[b3–b2]+K3[b3–α1]+(1–K )[b3+γ2]
γ1–γ2

,

E2 = K1[b3–b1]+K2[b3–b2]+K3[b3–α1]+(1–K )[γ1+b3]
γ1–γ2

,

D5 = 0,

where

K1 = 0, K2 = 0, K3 = 0.

The third column of the Cauchy matrix is the following:

C3(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

– eγ1(t–s)

γ1–γ2
+ eγ2(t–s)

γ1–γ2

– 1
c3

(– eγ1(t–s)

γ1–γ2
[γ1 + b3] + eγ2(t–s)

γ1–γ2
[γ2 + b3])

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4) If X(0) = col{0, 0, 0, 1, 0}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = 0,

D2 = 0,

E1 = – –c3–K1[b3–b1]–K2[b3–b2]–K3[b3–α1]+K [γ2+b3]
γ2–γ1

,

E2 = –c3–K1[b3–b1]–K2[b3–b2]–K3[b3–α1]+K [γ1+b3]
γ2–γ1

,

D5 = 0,

where

K1 = 0, K2 = 0, K3 = 0.
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The fourth column of the Cauchy matrix is the following:

C4(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

c3eγ1(t–s)

γ2–γ1
– c3eγ2(t–s)

γ2–γ1

– eγ1(t–s)[γ1+b3]
γ2–γ1

+ eγ2(t–s)[γ2+b3]
γ2–γ1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(5) If X(0) = col{0, 0, 0, 0, 1}, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = 0,

D2 = 0,

E1 = – c1–K1[b3–b1]–K2[b3–b2]–K3[b3–α1]+K [γ2+b3]
γ2–γ1

,

E2 = c1–K1[b3–b1]–K2[b3–b2]–K3[b3–α1]+K [γ1+b3]
γ2–γ1

,

D5 = 1,

where

K1 = 0, K2 = 0, K3 =
c1[α3 – α1]

α2
1 – α1(α3 + b3) + (α3b3 + c3)

.

The fifth column of the Cauchy matrix is the following:

C5(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

– c1+K3[γ2+α1]
γ2–γ1

eγ1(t–s) + c1+K3[γ1+α1]
γ2–γ1

eγ2(t–s) + K3e–α1(t–s)

– 1
c3

[ c1+K3[γ2+α1]
γ2–γ1

eγ1(t–s)[γ1 + b3] + c1+K3[γ1+α1]
γ2–γ1

eγ2(t–s)[γ2 + b3]

+ K3e–α1(t–s)[b3 – α1] – c1e–α1(t–s)

]

e–α1(t–s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Construction of the Cauchy matrix of system with ordinary differential equations can be
found, for example, in [13].

5 Effects of changes in the right-hand side and of uncertain coefficient on the
behavior of solutions

Constructing a system, we neglect the influences of different factors that seem to be
nonessential. We also cannot know exactly the values of the coefficients describing the
model. The Cauchy matrix C(t, s) allows us to estimate the influences of all these factors
on the testosterone concentration.

Consider the systems

X ′(t) – AX(t) = F(t) (5.0)

and

Y ′(t) – AY (t) = F(t) + �F(t), (5.1)
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where the (5 × 5) matrix A is described in (3.3), X(t) = col(x1(t), . . . , x5(t)), and �F(t) de-
scribes a change of the right-hand side. We assume that F(t) and �F(t) are 5-vectors with
essentially bounded components Fi(t) and �Fi(t). The general solution of system (5.0) has
the following representation:

X(t) =
∫ t

0
C(t, s)F(s) ds + C(t, 0)X(0),

where C(t, s) is the Cauchy matrix of system (5.0). In the following assertion, we estimate
the difference between the solution-vector Y (t) of system (5.1) and the solution X(t) of
system (5.0) with the same initial condition (i.e., X(0) = Y (0)).

Theorem 5.1 Under conditions (2.6), (4.1), (4.2), (4.3), system (3.2) is exponentially stable
and the following inequality

∥∥Y (t) – X(t)
∥∥≤ ‖C‖∥∥�F(t)

∥∥

is true, where

‖C‖ = max
1≤j≤5

(
sup
t≥0

∫ t

0

5∑
i=0

∣∣Cij(t, s)
∣∣
)

ds, ‖�F‖ = max
1≤i≤5

esssup
t≥0

∣∣�Fi(t)
∣∣.

The elements Cij(t, s) were obtained in paragraph 4. The proof follows from the repre-
sentation of solution of system (5.0).

Consider now the following system of equations with uncertain coefficient:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1

∫ t
0 e–α1(t–s)x2(s) ds + (c3 + 
c3(t))

∫ t
0 e–α3(t–s)x3(s) ds

= f (t).

(5.2)

A “noise” in this parameter 
c3(t) can be a result of individual conditions of the patient.
For example, assimilation of a drug in the body of different patients can have different
speeds. System (5.2) of integro-differential equations can be reduced to the following sys-
tem of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t) – g1x1(t) = 0,

x′
3(t) + b3x3(t) – c1x5(t) + (c3 + 
c3(t))x4(t) = f (t),

x′
4(t) + α3x4(t) – x3(t) = 0,

x′
5(t) + α1x5(t) – x2(t) = 0,

(5.3)

where x4(0) = 0, x5(0) = 0.
We can write our system in the following form:

X ′ = AX + (�A)X + F(t), (5.4)
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where

X(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

, �A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 – 
 c3(t) 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, F(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

f (t)
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The general solution of the auxiliary system

X ′ – AX = Z (5.5)

can be represented in the following form:

X(t) =
∫ t

0
C(t, s)Z(s) ds + C(t, 0)X(0). (5.6)

Finally, combining (5.5) and (5.4), we have

Z = (�A)X + F(t),

whence, using expression (5.6), we arrive at

Z(t) – (�A)(t)
∫ t

0
C(t, s)Z(s) ds = F(t) +

(
�A(t)

)
C(t, 0)X(0), (5.7)

which can be written in the operator form as follows:

Z(t) = (ΩZ)(t) + F̃(t), (5.8)

where F̃ is the right-hand side in equation (5.7). It is clear from Theorem 3.1 that F̃ ∈ L5∞,
L5∞ is the space of measurable essentially bounded five-component vector-functions, and

Ω : L5
∞ → L5

∞, (ΩZ)(t) = (�A)(t)
∫ t

0
C(t, s)Z(s) ds.

Below we estimate the norm ‖Ω‖ of the operator Ω . It is clear that

‖Ω‖ ≤ max
1≤j≤5

(
sup
t≥0

∫ t

0

5∑
i=0

∣∣(
A(t)C(t, s)
)

ij

∣∣
)

ds.
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Let us denote Qj = esssupt≥0
∫ t

0
∑5

i=0 |(
A(t)C(t, s))ij|) ds, 
c∗
3 = esssupt≥0 | 
 c3(t)|, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∗
1 = 
c∗3

|c3|

⎛
⎜⎜⎜⎜⎜⎜⎝

|K1[b3+b1]+K2[b3+b2]+K3[b3+α1]+K [b3+γ2]
γ1–γ2

γ1+b3
γ1

|
+ |K1[b3+b1]+K2[b3+b2]+K3[b3+α1]+K [γ1+b3]

γ1–γ2
γ2+b3

γ2
|

+ |K1[b3+b1]
b1

| + |K2[b3+b2]
b2

| + |K3[b3+α1]
α1

|
+ | c1g1

b1(α1–b1)(b2–b1) | + | c1g1
b2(α1–b2)(b2–b1) | + | g1c1

α(α1–b1)(α1–b2) |

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Q∗
2 = 
c∗3

|c3|

⎛
⎜⎜⎜⎜⎜⎜⎝

|K2[b3+b2]+K3[b3+α1]+K [b3+γ2]
γ1–γ2

γ1+b3
γ1

|
+ |K2[b3+b2]+K3[b3+α1]+K [γ1+b3]

γ1–γ2
γ2+b3

γ2
|

+ |K2[b3+b2]
b2

| + | b3+α1
α1

|
+ | c1

b2(α1–b2) | + | c1
α1(α1–b2) |

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Q∗
3 = 
c∗3

|c3| (| γ1+b3
γ (γ1–γ2) | + | γ2+b3

γ2(γ1–γ2) |),
Q∗

4 = 
c∗
3(| γ1+b3

γ1(γ2–γ1) | + | γ2+b3
γ2(γ2–γ1) |),

Q∗
5 = 
c∗3

|c3|

⎛
⎝| c1+K3[γ2+α1]

γ2–γ1
γ1+b3

γ1
| + | c1+K3[γ1+α1]

γ2–γ1
γ2+b3

γ2
|

+ |K3[b3–α1]
α1

| + | c1
α1

|

⎞
⎠ .

(5.9)

It is clear from the estimates of the elements of the Cauchy matrix that Qj ≤ Q∗
j for

1 ≤ j ≤ 5.

Theorem 5.2 Let conditions (2.6), (4.1), (4.2), (4.3) and the inequality max1≤j≤5{Q∗
j } < 1

be fulfilled, then system (5.3) with uncertain coefficient is also exponentially stable.
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