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1 Introduction
In this paper, we study the Cauchy problem of sixth-order multidimensional generalized
Boussinesq equation with double damping terms

utt – �utt – �u + �2u – �3u + μ�2utt + αut

– β�ut + u + �f (u) = 0, x ∈ Rn, t > 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn. (1.2)

The two damping terms are strong damping αut and frictional damping β�ut , where α >
0, β > 0, μ ≥ 0 are constants and u0(x) and u1(x) are given initial data, f (u) is a given
nonlinear function with

(H) f (z) = a|z|p–1z, a > 0, p > 1.

It is well known that Boussinesq derived some model equations in 1870s, and such models
describe the propagation of small amplitude and long waves on the surface of shallow
water. Boussinesq [1] was the first to give the scientific explanation of the following solitary
wave equation:

utt = –γ uxxxx + uxx +
(
u2)

xx, x ∈ R, t > 0. (1.3)
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Equation (1.3) depends on the sign of γ , indeed, the case γ < 0 is called the “good” Boussi-
nesq equation, because it is linearly stable and governs small nonlinear transverse oscilla-
tions of an elastic beam (see [2]), while equation (1.3) with γ > 0 received the name of “bad”
Boussinesq equation since it possesses the linear instability. Recently, Kiselev and Tan [3]
proposed a two-dimensional model which is called “hyperbolic Boussinesq system” and
describes an incompressible velocity vector field, a simplified Biot–Savart law, and a sim-
plified term modeling buoyancy. The authors showed that finite time blow-up happens for
a natural class of initial data. More background introductions about Boussinesq equation
can be found in references [4, 5].

An and Peirce [6] used a weakly nonlinear analysis and explored the immediate post-
critical behavior of the solution of elastoplastic-microstructure models for a longitudinal
movement of elastic-plastic rod, just like the following equation:

utt + uxxxx = a
(
u2

x
)

x, x ∈ R, t > 0, (1.4)

where a is a constant. Wang and Chen [7] studied the existence and uniqueness of the
global solution for the Cauchy problem of the generalized double dispersion equation

utt – uxx – uxxtt + uxxxx – αuxxt = g(u)xx, x ∈ R, t > 0, (1.5)

and they proved the blow-up result of the solution by using the concavity method and un-
der some suitable conditions. Schneider and Wayne [8] considered the following Boussi-
nesq equation that models the water wave problem with surface tension:

utt – uxx – uxxtt – μuxxxx + uxxxxtt =
(
u2)

xx, x ∈ R, t > 0, (1.6)

the model can also be derived from the 2D water wave problem. They proved that the long
wave limit can be described approximately by two decoupled Kawahara equations. Wang
and Xue [9] considered the Cauchy problem of equation

utt – uxx – uxxtt + αuxxxx + uxxxxtt =
(
β|u|p)xx, x ∈ R, t > 0, (1.7)

where α > 0, β �= 0, and p > 1 are constants. By using the potential well method they ob-
tained the global existence and nonexistence of the solution. Xu et al. [10] considered a
sixth-order 1-D nonlinear wave equations and obtained some sufficient conditions for the
global and non-global existence of solutions at three different initial energy levels, i.e.,
sub-critical level, critical level, and sup-critical level.

Furthermore, Song and Xue [11] considered the nonlinear viscoelastic equation

utt – �u –
∫ t

0
g(t – τ )�u(τ ) dτ – �ut = |u|p–2u, x ∈ Ω , t ∈ [0, T], (1.8)

with initial conditions and Dirichlet boundary conditions. For nonincreasing positive
functions g , they showed the finite time blow-up of some solutions whose initial data have
arbitrarily high initial energy. Liu, Sun, and Wu [12] studied the initial boundary value
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problem for a Petrovsky-type equation with a memory term, nonlinear weak damping,
and a superlinear source

utt – �2u –
∫ t

0
g(t – τ )�2u(τ ) dτ + |ut|m–2ut = |u|p–2u, x ∈ Ω , t ∈ (0, T). (1.9)

When the source is stronger than dissipations, they obtained the existence of certain weak
solutions which blow up in finite time with initial data at arbitrarily high energy level. For
more related works, we refer the reader to [13, 14].

In recent years, multidimensional generalized Boussinesq equation has been studied,
and there are many blow-up results of the solution concerning the Boussinesq equations
(see [15, 16] and the references therein). Wang and Mu [17] studied the Cauchy problem
of the following generalized Boussinesq equation:

utt – a�utt + �2utt + �2u – �u = �f (u), x ∈ Rn, t > 0, (1.10)

the existence and uniqueness of the global solution were obtained, and the blow-up result
of the solution was proved. Wang and Wang [18] studied the Cauchy problem for the
sixth-order damped Boussinesq equation

utt – �utt – �u + �2u – �3u – r�ut = �f (u), x ∈ Rn, t > 0, (1.11)

and they proved the global existence and asymptotic behavior of the solution provided that
the initial value is suitably small. Wang [19] considered equation (1.11) and obtained the
well-posedness of solution, blow-up of solution with high initial energy, and the asymp-
totic behavior of the solution by using the multiplier method. Piskin and Polat [20] con-
sidered the Cauchy problem of a multidimensional generalized Boussinesq-type equation
with a damping term

utt – �u – a�utt + �2u + �2utt – k�ut = �f (u), x ∈ Rn, t > 0, (1.12)

and gave the existence, both locally and globally in time, the global nonexistence with
high initial energy, and the asymptotic behavior of solution. Castro et al. [21] considered
2D Boussinesq equations with a velocity damping term in a strip with impermeable walls
and obtained the asymptotic stability for a specific type of perturbations of a stratified so-
lution by using a suitably weighted energy space combined with linear decay, Duhamel’s
formula, and “bootstrap” arguments. Wang and Su [22] studied multidimensional dissipa-
tive Boussinesq equations and obtained the sufficient conditions for global solutions and
finite time blow-up solutions respectively with three different cases of initial energy. Par-
ticularly, by using some new methods and some analysis techniques, the authors gave the
novel contribution for the blow-up result with initial energy at supercritical initial energy.

In fact, the study of large solutions has a long history. Many results have been obtained
about the existence, uniqueness, and asymptotic behavior of large solutions. Recently, Mo-
hammed et al. [23] discussed the existence, asymptotic boundary estimates, and unique-
ness of large solutions to a fully nonlinear equation by relaxing the conditions used in
most of the aforementioned papers. The monograph [24] emphasized those basic abstract
methods and theories that are useful in the study of nonlinear problems. The authors gave
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a systematic treatment of the basic mathematical theory and constructive methods for
these classes of nonlinear equations as well as their applications to various processes aris-
ing in the applied sciences. Abdelwahed et al. [25] studied the solution of a biharmonic
equation with a homogeneous boundary condition and gave a method based on a dual sin-
gular method which can be used to approximate the leading singularity coefficient of the
bi-Laplacian operator. Some examples are presented to show the efficiency of this method.
For more related work, one can refer to [26] and the reference therein.

Note that as far as we know, in the known works (e.g., [27–31]), as seen from the above
explanations, there is no obvious result on the blow-up of problem (1.1)–(1.2) in finite
time with arbitrarily high initial energy. Therefore, the main purpose of the present paper
is to solve the problem. By using the improved convexity method combined with Fourier
transform, we obtain the finite time blow-up result for problem (1.1)–(1.2).

The structure of this paper is as follows. In Sect. 2, we give some lemmas, some necessary
preliminaries, and our main result. In Sect. 3, we prove the blow-up results of solution for
problem (1.1)–(1.2).

Throughout this paper, we use Lp to denote the space of Lp(Rn)-function with the stan-
dard norm ‖f ‖p = ‖f ‖Lp , 1 ≤ p ≤ ∞, ‖f ‖ = ‖f ‖2, and denote by (·, ·) the inner product of
L2 space. Hs denotes the Sobolev space Hs(Rn) with norm ‖f ‖Hs = ‖(I – �) s

2 f ‖2, s ∈ R.

2 Preliminaries and main results
2.1 Some lemmas and some necessary preliminaries
Lemma 2.1 ([32]) Suppose that Θ(t), t ≥ b ≥ 0 is a twice differentiable and positive func-
tion, which satisfies the inequality

Θ̈(t)Θ(t) – σ
(
Θ̇(t)

)2 ≥ 0

for every t ≥ b and some constant σ > 1. If Θ(b) > 0, Θ̇(b) > 0, then there exists a positive
constant t∗ such that

Θ(t) → ∞ for t → t–
∗ ,

and

t∗ ≤ Θ(b)
(σ – 1)Θ̇(b)

+ b.

Lemma 2.2 ([20] Sobolev imbedding theorem)
(1) If s > n

2 + k, where k is a nonnegative integer, then

Hs ↪→ Ck(Rn) ∩ L∞;

(2) If s = n
2 , then for p ∈ [2, +∞),

Hs ↪→ Lp;

(3) If s < n
2 , then

Hs ↪→ L
2n

n–2 .
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We give the following well-posedness result from [20].

Theorem 2.3 Suppose that f (z) satisfies (H), u0 ∈ Hs+1, and u1 ∈ Hs+1 for some s > n
2 + 1,

n ≥ 1, then problem (1.1)–(1.2) has a unique local solution u(x, t) defined on a maximal
time interval [0, T0), T0 > 0, with

u ∈ C2([0, T0); Hs+1).

Moreover, if

sup
t∈[0,T0)

[∥∥u(·, t)
∥
∥2

s+1 +
∥
∥ut(·, t)

∥
∥2

s+1 +
∥
∥utt(·, t)

∥
∥2

s+1

]
< ∞,

then T0 = ∞.

Lemma 2.4 Suppose that f (z) satisfies (H), F(u) =
∫ u

0 f (τ ) dτ , u0 ∈ H2, (–�)– 1
2 u1 ∈ L2,

u1 ∈ L2, then for the solution u(x, t) of problem (1.1)–(1.2), we have the following energy
identity:

E(t) =
1
2
∥
∥(–�)– 1

2 ut
∥
∥2 +

1
2
‖ut‖2 +

1
2
‖u‖2 +

1
2
‖�u‖2 +

1
2
‖�u‖2 +

μ

2
‖�ut‖2

+ α

∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ + β

∫ t

0
‖uτ‖2 dτ +

1
2
∥∥(–�)– 1

2 u
∥∥2 –

a
p + 1

‖u‖p+1
p+1

≡ E(0). (2.1)

Here and in the sequel, (–�)–αu(x) = F–1[|x|–2αFu(x)], in which F and F–1 denote the
Fourier transformation and the inverse transformation in Rn respectively.

Proof Multiplying equation (1.1) by (–�)–1ut and integrating the product with respect to
x, we have

(
utt – �utt – �u + �2u – �3u + μ�2utt + αut – β�ut + u + �f (u), (–�)–1ut

)
= 0.

After some computation, we obtain

(
(–�)–1utt + utt + u – �u + �2u – μ�utt + α(–�)–1ut

+ βut + (–�)–1u – f (u), ut
)

= 0,

then we can get

1
2

d
dt

{∥∥(–�)– 1
2 ut

∥∥2 + ‖ut‖2 + ‖u‖2 + ‖∇u‖2 + ‖�u‖2 + μ‖∇ut‖2

+ 2α

∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ + 2β

∫ t

0
‖uτ‖2 dτ +

∥∥(–�)– 1
2 u

∥∥2 –
2a

p + 1
‖u‖p+1

p+1

}

= 0. (2.2)

Integrating (2.2) with respect to t over [0, t], we obtain the energy identity (2.1). Thus
Lemma 2.4 is proved. �
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2.2 Main result
Theorem 2.5 Suppose that f (z) satisfies (H), and u0 ∈ H1, u1 ∈ L2, (–�)– 1

2 u0 ∈ L2,
(–�)– 1

2 u1 ∈ L2. If

2
(
(–�)– 1

2 u1, (–�)– 1
2 u0

)
+ 2(u1, u0) + α

∥∥(–�)– 1
2 u0

∥∥2 + β‖u0‖2 + 2μ(∇u1,∇u0)

>
2(p + 1)

κ1
E(0), (2.3)

where

κ1 = sup
ξ∈(0,1)

κ(ξ ),

κ(ξ ) = min

{√
(p + 3)(p – 1) min{√cξ + 1,

√
ξ},

(1 – ξ )(p – 1) min

{
1
α

,
c
β

}
,
√

(p – 1)(p + 3)√
μ

}
,

and c is some positive constant, then the solution u(t) of problem (1.1)–(1.2) blows up in
finite time.

3 Proof of the main result
In this section, our aim is to prove that finite time blow-up result of the solution of problem
(1.1)–(1.2) with initial data has arbitrarily high initial energy.

Proof of Theorem 2.5 Set

Q(t) = 2
(
(–�)– 1

2 u, (–�)– 1
2 ut

)
+ 2(u, ut) + α

∥∥(–�)– 1
2 u

∥∥2

+ β‖u‖2 + 2μ(∇u,∇ut) – mE(0), (3.1)

where m is a positive constant to be determined later. Obviously we have

Q̇(t) = 2
∥∥(–�)– 1

2 ut
∥∥2 + 2

(
(–�)– 1

2 u, (–�)– 1
2 utt

)
+ 2‖ut‖2 + 2(u, utt)

+ 2α
(
(–�)– 1

2 ut , (–�)– 1
2 u

)
+ 2β(ut , u) + 2μ‖∇ut‖2 + 2μ(∇u,∇utt), (3.2)

(
(–�)–1utt , u

)
=

(
(–�)– 1

2 utt , (–�)– 1
2 u

)
, (3.3)

(
(–�)–1ut , u

)
=

(
(–�)– 1

2 ut , (–�)– 1
2 u

)
, (3.4)

and

(–�)–1utt + utt – μ�utt + (–�)–1αut + βut = –u + �u – �2u – (–�)–1u + f (u). (3.5)

Multiplying (3.5) by u and integrating the product over Rn, we obtain

(
(–�)–1utt , u

)
+ (utt , u) – (μ�utt , u) +

(
(–�)–1αut , u

)
+ (βut , u)

= –‖u‖2 – ‖∇u‖2 – ‖�u‖2 –
∥∥(–�)– 1

2 u
∥∥2 + a‖u‖p+1

p+1, (3.6)
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then we have

(
(–�)–1utt , u

)
+ (utt , u) + (μ∇utt ,∇u) +

(
(–�)–1αut , u

)
+ (βut , u)

= –‖u‖2 – ‖∇u‖2 – ‖�u‖2 –
∥
∥(–�)– 1

2 u
∥
∥2 + a‖u‖p+1

p+1. (3.7)

Inserting (3.7) into (3.2), then equation (3.2) can be written as follows:

Q̇(t) = 2
∥
∥(–�)– 1

2 ut
∥
∥2 + 2‖ut‖2 + 2μ‖∇ut‖2 – 2‖u‖2 – 2‖∇u‖2

– 2‖�u‖2 – 2
∥
∥(–�)– 1

2 u
∥
∥2 + 2a‖u‖p+1

p+1. (3.8)

According (2.1), applying (3.8), then we have

Q̇(t) = –2(p + 1)E(0) + (p + 3)
∥
∥(–�)– 1

2 ut
∥
∥2 + (p + 3)‖ut‖2 + (p – 1)‖u‖2

+ (p – 1)‖∇u‖2 + (p – 1)‖�u‖2 + μ(p + 3)‖∇ut‖2 + (p – 1)
∥
∥(–�)– 1

2 u
∥
∥2

+ 2α(p + 1)
∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ + 2β(p + 1)

∫ t

0
‖uτ‖2 dτ , (3.9)

thus we can obtain

Q̇(t) ≥ –2(p + 1)E(0) + (p + 3)
∥
∥(–�)– 1

2 ut
∥
∥2 + (p + 3)‖ut‖2 + (p – 1)‖u‖2

+ (p – 1)‖∇u‖2 + (p – 1)‖�u‖2 + μ(p + 3)‖∇ut‖2

+ (p – 1)
∥∥(–�)– 1

2 u
∥∥2. (3.10)

By using the embedding inequality ‖�u‖2 ≥ c‖u‖2, we have

Q̇(t) ≥ –2(p + 1)E(0) + (p + 3)
∥
∥(–�)– 1

2 ut
∥
∥2 + (p + 3)‖ut‖2 + (p – 1)‖u‖2

+ (p – 1)‖∇u‖2 + (p – 1)c‖u‖2 + μ(p + 3)‖∇ut‖2 + (p – 1)
∥
∥(–�)– 1

2 u
∥
∥2, (3.11)

obviously, we can get

Q̇(t) ≥ –2(p + 1)E(0) + (p + 3)
∥
∥(–�)– 1

2 ut
∥
∥2 + (p + 3)‖ut‖2

+ (p – 1)‖u‖2 + (p – 1)cξ‖u‖2

+ (p – 1)c(1 – ξ )‖u‖2 + ξ (p – 1)
∥
∥(–�)– 1

2 u
∥
∥2 + (1 – ξ )(p – 1)

∥
∥(–�)– 1

2 u
∥
∥2

+ (p – 1)‖∇u‖2 + μ(p + 3)‖∇ut‖2, (3.12)

where ξ ∈ (0, 1) is a constant. From inequality (3.12) and using the Cauchy inequality, we
see that

(p + 3)
∥∥(–�)– 1

2 ut
∥∥2 + ξ (p – 1)

∥∥(–�)– 1
2 u

∥∥2

≥ 2
√

(p + 3)ξ (p – 1)
(
(–�)– 1

2 ut , (–�)– 1
2 u

)
, (3.13)

(p + 3)‖ut‖2 + (cξ + 1)(p – 1)‖u‖2 ≥ 2
√

(p + 3)(cξ + 1)(p – 1)(ut , u), (3.14)
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and

(p – 1)‖∇u‖2 + μ(p + 3)‖∇ut‖2 ≥ 2
√

(p – 1)μ(p + 3)(∇ut ,∇u). (3.15)

Substituting (3.13)–(3.15) into (3.12), we have

Q̇(t) ≥ κ(ξ )
[

2
(
(–�)– 1

2 u, (–�)– 1
2 ut

)
+ 2(u, ut) + α

∥
∥(–�)– 1

2 u
∥
∥2

+ β‖u‖2 + 2μ(∇u,∇ut) –
2(p + 1)

κ(ξ )
E(0)

]
, (3.16)

where

κ(ξ ) = min

{√
(p + 3)(p – 1) min{√cξ + 1,

√
ξ},

(1 – ξ )(p – 1) min

{
1
α

,
c
β

}
,
√

(p – 1)(p + 3)√
μ

}
. (3.17)

It is obvious to see that D(ξ ) :=
√

(p + 3)(p – 1) min{√cξ + 1,
√

ξ} is strictly increasing for
0 < ξ < 1, we have D(0) = 0, D(1) =

√
(p + 3)(p – 1) min{√c + 1, 1}; similarly, G(ξ ) := (1 –

ξ )(p – 1) min{ 1
α

, c
β
} is strictly decreasing for 0 < ξ < 1, G(0) = (p – 1) min{ 1

α
, c

β
}, G(1) = 0.

Then we have κ(ξ ) takes its maximum for ξ = ξ1, where ξ1 is the root of the equation

√
(p + 3)(p – 1) min{√cξ + 1,

√
ξ} = (1 – ξ )(p – 1) min

{
1
α

,
c
β

}
,

and set

κ1 := sup
ξ∈(0,1)

κ(ξ ) = κ(ξ1).

According to (2.3), we can get Q(0) > 0, and by taking m = 2(p+1)
κ1

, we have

Q̇(t) ≥ κ1

((
2(–�)– 1

2 u, (–�)– 1
2 ut

)
+ 2(u, ut) + α

∥
∥(–�)– 1

2 u
∥
∥2

+ β‖u‖2 + 2μ(∇u,∇ut) –
2(p + 1)

κ1
E(0)

)

≥ κ1Q(t), (3.18)

hence we can obtain

Q(t) ≥ Q(0)eκt , t ≥ 0,

therefore we have

lim
t→∞ Q(t) = +∞. (3.19)
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Together with (3.18), we obtain

lim
t→∞ Q̇(t) = +∞.

Now, we let

Θ(t) =
∥∥(–�)– 1

2 u
∥∥2 + ‖u‖2 + μ‖∇u‖2 + α

∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ + β

∫ t

0
‖u‖2 dτ

+ (T – t)α
∥
∥(–�)– 1

2 u0
∥
∥2 + (T – t)β‖u0‖2. (3.20)

By straightforward computations, we can get the following equality:

Θ̇(t) = 2
(
(–�)– 1

2 u, (–�)– 1
2 ut

)
+ 2(u, ut) + 2μ(∇u,∇ut) + α

∥
∥(–�)– 1

2 u
∥
∥2

+ β‖u‖2 – α
∥
∥(–�)– 1

2 u0
∥
∥2 – β‖u0‖2

= 2
(
(–�)– 1

2 u, (–�)– 1
2 ut

)
+ 2(u, ut) + 2μ(∇u,∇ut)

+ 2α

∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)
dτ + 2β

∫ t

0
(uτ , u) dτ , (3.21)

then we have

Θ̈ = 2
∥∥(–�)– 1

2 ut
∥∥2 + 2

(
(–�)– 1

2 u, (–�)– 1
2 utt

)
+ 2‖ut‖2 + 2(u, utt)

+ 2α
(
(–�)– 1

2 ut , (–�)– 1
2 u

)
+ 2β(ut , u) + 2μ‖∇ut‖2 + 2μ(∇u,∇utt). (3.22)

From equation (3.21) we can get

Θ̇2 = 4
{
(
(–�)– 1

2 ut , (–�)– 1
2 u

)2 + (u, ut)2 + μ2(∇ut ,∇u)2

+ α2
(∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)
dτ

)2

+ β2
(∫ t

0
(uτ , u) dτ

)2

+ 2
(
(–�)– 1

2 ut , (–�)– 1
2 u

)
(ut , u)

+ 2α
(
(–�)– 1

2 ut , (–�)– 1
2 u

)∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)
dτ

+ 2β
(
(–�)– 1

2 ut , (–�)– 1
2 u

)∫ t

0
(uτ , u) dτ

+ 2μ
(
(–�)– 1

2 ut , (–�)– 1
2 u

)
(∇ut ,∇u)

+ 2α(ut , u)
∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)2 dτ + 2β(u, ut)
∫ t

0
(uτ , u) dτ

+ 2μ(ut , u)(∇ut ,∇u) + 2αβ

∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)
dτ

∫ t

0
(uτ , u) dτ

+ 2αμ

∫ t

0

(
(–�)– 1

2 uτ , (–�)– 1
2 u

)
dτ (∇ut ,∇u)

+ 2βμ

∫ t

0
(uτ , u) dτ (∇ut ,∇u)

}
. (3.23)
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Next, we estimate the terms on the right-hand side of (3.23), and we denote each term
of the right-hand side of (3.23) by I1, . . . , I15 separately. By using Hölder’s and Cauchy–
Schwarz’s inequalities, we have the following inequalities:

I1 ≤ ∥
∥(–�)– 1

2 ut
∥
∥2∥∥(–�)– 1

2 u
∥
∥2, (3.24)

I2 ≤ ‖ut‖2‖u‖2, (3.25)

I3 ≤ μ2‖∇ut‖2‖∇u‖2, (3.26)

I4 ≤ α2
∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ

∫ t

0

∥
∥(–�)– 1

2 u
∥
∥2 dτ , (3.27)

I5 ≤ β2
∫ t

0
‖uτ‖2 dτ

∫ t

0
‖u‖2 dτ , (3.28)

I6 ≤ 2
∥∥(–�)– 1

2 ut
∥∥∥∥(–�)– 1

2 u
∥∥‖ut‖‖u‖

≤ ∥
∥(–�)– 1

2 ut
∥
∥2‖u‖2 +

∥
∥(–�)– 1

2 u
∥
∥2‖ut‖2, (3.29)

I7 ≤ 2α
∥
∥(–�)– 1

2 ut
∥
∥
∥
∥(–�)– 1

2 u
∥
∥
(∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ

) 1
2
(∫ t

0

∥
∥(–�)– 1

2 u
∥
∥2 dτ

) 1
2

≤ α

(∥∥(–�)– 1
2 ut

∥∥2
∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ

+
∥
∥(–�)– 1

2 u
∥
∥2

∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ

)
, (3.30)

I8 ≤ 2β
∥∥(–�)– 1

2 ut
∥∥∥∥(–�)– 1

2 u
∥∥
(∫ t

0
‖uτ‖2 dτ

) 1
2
(∫ t

0
‖u‖2 dτ

) 1
2

≤ β

(∥
∥(–�)– 1

2 ut
∥
∥2

∫ t

0
‖u‖2 dτ +

∥
∥(–�)– 1

2 u
∥
∥2

∫ t

0
‖uτ‖2 dτ

)
, (3.31)

I9 ≤ 2μ
∥∥(–�)– 1

2 ut
∥∥∥∥(–�)– 1

2 u
∥∥‖∇ut‖‖∇u‖

≤ μ
(∥∥(–�)– 1

2 ut
∥
∥2‖∇u‖2 +

∥
∥(–�)– 1

2 u
∥
∥2‖∇ut‖2), (3.32)

I10 ≤ 2α‖ut‖‖u‖
(∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ

) 1
2
(∫ t

0

∥
∥(–�)– 1

2 u
∥
∥2 dτ

) 1
2

≤ α

(
‖ut‖2

∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ + ‖u‖2
∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ

)
, (3.33)

I11 ≤ 2β‖ut‖‖u‖
(∫ t

0
‖uτ‖2 dτ

) 1
2
(∫ t

0
‖u‖2 dτ

) 1
2

≤ β

(
‖ut‖2

∫ t

0
‖u‖2 dτ + ‖u‖2

∫ t

0
‖uτ‖2 dτ

)
, (3.34)

I12 ≤ 2μ‖ut‖‖u‖‖∇u‖‖∇ut‖ ≤ μ
(‖ut‖2‖∇u‖2 + ‖u‖2‖∇ut‖2), (3.35)

I13 ≤ 2αβ

(∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ

) 1
2
(∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ

) 1
2

×
(∫ t

0
‖uτ‖2 dτ

) 1
2
(∫ t

0
‖u‖2 dτ

) 1
2
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≤ αβ

(∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ

∫ t

0
‖u‖2 dτ

+
∫ t

0

∥
∥(–�)– 1

2 u
∥
∥2 dτ

∫ t

0
‖uτ‖2 dτ

)
, (3.36)

I14 ≤ 2μα‖∇ut‖‖∇u‖
(∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ

) 1
2
(∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ

) 1
2

≤ μα

(
‖∇ut‖2

∫ t

0

∥
∥(–�)– 1

2 u
∥
∥2 dτ + ‖∇u‖2

∫ t

0

∥
∥(–�)– 1

2 uτ

∥
∥2 dτ

)
, (3.37)

and

I15 ≤ 2μβ‖∇ut‖‖∇u‖
(∫ t

0
‖uτ‖2 dτ

) 1
2
(∫ t

0
‖u‖2 dτ

) 1
2

≤ μβ

(
‖∇ut‖2

∫ t

0
‖u‖2 dτ + ‖∇u‖2

∫ t

0
‖uτ‖2 dτ

)
. (3.38)

Thus, substituting the above estimates (3.24)–(3.38) into (3.23), we find that

1
4
Θ̇ ≤ Θ(t)

(∥
∥(–�)

1
2 ut

∥
∥2 + ‖ut‖2 + α

∫ t

0

∥
∥(–�)

1
2 uτ

∥
∥2 dτ

+ β

∫ t

0
‖uτ‖2 dτ + μ‖∇ut‖2

)
. (3.39)

From (3.9), (3.18), and (3.19), we can find that there exists TA > 0 large enough such that,
for t > TA and t → ∞,

Q̇(t) = –2(p + 1)E(0) + (p + 3)
∥∥(–�)– 1

2 ut
∥∥2 + (p + 3)‖ut‖2 + (p – 1)‖u‖2

+ (p – 1)‖∇u‖2 + (p – 1)‖�u‖2 + μ(p + 3)‖∇ut‖2 + (p – 1)
∥∥(–�)– 1

2 u
∥∥2

+ 2α(p + 1)
∫ t

0

∥∥(–�)– 1
2 uτ

∥∥2 dτ + 2β(p + 1)
∫ t

0
‖uτ‖2 dτ → ∞. (3.40)

Since Θ̈ = Q̇ and (3.19), hence we can find Θ̇(t) > Θ̇(TA) > 0, where t > TA, at the same
time we can get from (3.9)

Θ̈(t)Θ(t) –
p + 3

4
Θ̇2(t) ≥ Θ(t)

{
Θ̈ – (p + 3)

(∥
∥(–�)

1
2 ut

∥
∥2 + α

∫ t

0

∥
∥(–�)

1
2 uτ

∥
∥2 dτ

+ β

∫ t

0
‖uτ‖2 dτ + ‖ut‖2 + μ‖∇ut‖2

)}
. (3.41)

Consequently, using (3.9) again, we obtain

Θ̈(t)Θ(t) –
p + 3

4
Θ̇2(t) > 0, t > TA. (3.42)
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Set Θ̃(s) = Θ(s + TA), s = t – TA, it is obvious that ˙̃
Θ > 0, we can verify that ¨̃

Θ(s)Θ̃(s) –
σ

˙̃
Θ2(s) > 0 for s ≥ 0. According to Lemma 2.1, we have, for some T > TA,

lim
t–TA→T–

Θ̃(t) = +∞, where T ≤ Θ̃(0)

(σ – 1) ˙̃
Θ(0)

,

similarly, we can get

lim
t→(T+TA)–

∥∥(–�)– 1
2 u

∥∥2 + ‖u‖2 + μ‖∇u‖2 + α

∫ t

0

∥∥(–�)– 1
2 u

∥∥2 dτ + β

∫ t

0
‖u‖2 dτ

+ (T – t)α
∥∥(–�)– 1

2 u0
∥∥2 + (T – t)β‖u0‖2 = +∞.

Thus Theorem 2.5 is proved. �

Remark 3.1 In the case of μ = 0, the blow-up result of problem (1.1)–(1.2) holds. In the
case of μ = 1, the blow-up result of problem (1.1)–(1.2) holds too.
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