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Abstract
This paper is concerned with the existence of extremal mild solutions for Hilfer
fractional evolution equations with nonlocal conditions in an ordered Banach space E.
By employing the method of lower and upper solutions, the measure of
noncompactness, and Sadovskii’s fixed point theorem, we obtain the existence of
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semigroups. Finally, an example is provided to illustrate the feasibility of our main
results.
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1 Introduction
In recent years, many authors began to consider Hilfer fractional differential equations,
see [1–7]. Presently, Hilfer fractional evolution equations have also been widely dealt with
by many scholars. In [2], Gu and Trujillo investigated a class of Hilfer fractional evolution
equations and established the existence results of mild solutions to such issues, and then
Furati et al. [8] considered an initial value problem for a class of Hilfer fractional differential
equations.

Later, the nonlocal problems have had better effects in applications than the initial prob-
lem, many contributions have been made in applications of fractional evolution equations
with nonlocal conditions, see [7, 9, 10] and the references therein. For example, Liang and
Yang [11] investigated the exact controllability of the nonlocal Cauchy problem for the
fractional integro differential evolution equations in Banach spaces E:

⎧
⎨

⎩

Dqx(t) + Ax(t) = f (t, x(t), Gx(t)) + Bu(t), t ∈ J ,

x(0) =
∑m

k=1 ckx(tk),

where Dq denotes the Caputo fractional derivative of order q ∈ (0, 1), –A : D(A) ⊂ E → E
is the infinitesimal generator of a C0-semigroup T(t) (t ≥ 0) of uniformly bounded linear
operators, B is a linear bounded operator; f is a given function and the operator is given
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by

Gx(t) =
∫ t

0
K(t, s)x(s) ds.

Over the past year, some recent papers investigated the existence of mild solutions for
Hilfer fractional evolution equations with nonlocal conditions. In [3], Min Yang et al. stud-
ied the existence and uniqueness of mild solutions to the following Hilfer fractional evo-
lution equations:

⎧
⎨

⎩

Dν,μ
0+ [u(t) – h(t, u(t))] = Au(t) + f (t, u(t)), t ∈ J ′ = (0, b],

I(1–ν)(1–μ)
0+ [u(0) – h(0, u(0))] – g(u) = u0,

with the associated C0-semigroup being compact or not, where Dν,μ
0+ denotes the Hilfer

fractional derivative of order μ and type ν , 0 ≤ ν ≤ 1, 0 < μ < 1. In [5], Ahmed et al.
studied the existence of mild solutions for Hilfer fractional stochastic integro-differential
equations of the form

⎧
⎨

⎩

Dν,μ
0+ [u(t) + F(t, v(t))] + Au(t) =

∫ t
0 G(s,η(s)) dω(s), t ∈ J := (0, b],

I(1–ν)(1–μ)
0+ u(0) – g(u) = u0,

where (t, v(t)) = (t, u(t), u(b1(t))), . . . , u(bm(t))) and (t,η(t)) = (t, u(t), u(a1(t))), . . . , u(an(t))),
Dν,μ

0+ denotes the Hilfer fractional derivative 0 ≤ ν ≤ 1, 0 < μ < 1, –A is the infinitesimal
generator of an analytic semigroup of bounded linear operators S(t), t ≥ 0 on a separable
Hilbert space.

In [6], Ahmed et al. studied the existence and controllability results for nonlinear delay
Hilfer fractional differential equation with impulsive condition of the form

⎧
⎪⎪⎨

⎪⎪⎩

Dν,μ
0+ u(t) = Au(t) + f (t, u(γ1(t)),

∫ t
0 h(t, s)g(s, u(γ2(s))) ds), t ∈ J = (0, b], t �= tk ,

�u(tk) = Ik(u(t–
k )), k = 1, 2, . . . , m,

I(1–ν)(1–μ)
0+ u(0) = u0,

where Dν,μ
0+ is the Hilfer fractional derivative, A is the infinitesimal generator of a C0-

semigroup T(t) on E.
On the other hand, by employing the method of lower and upper solutions to study the

existence of an extremal mild solution for a class of fractional evolution equation is an
interesting issue, which has been the focus of attention in [9, 10, 12–14]. In [14], Chen
and Li used the monotone iterative method and lower and upper solutions method to
discuss the existence and uniqueness of mild solutions for a class of semilinear evolution
equations with nonlocal conditions in an ordered Banach space E:

⎧
⎨

⎩

u′(t) + Au(t) = f (t, u(t)), t ∈ J = [0, b],

u(0) =
∑p

k=1 cku(tk) + u0,

where A : D(A) ⊂ E → E is a closed linear operator and –A generates a C0-semigroup
T(t)(t ≥ 0) on E, f ∈ C(J × E, E), J = [0, b], b > 0 is a constant, 0 < t1 < t2 < · · · < tb, p ∈N, ck

are real numbers, ck �= 0, k = 1, 2, . . . , p, u0 ∈ E.
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In [15], Vikram Singh et al. investigated the existence and uniqueness of mild solutions
for Sobolev type fractional impulsive differential systems with nonlocal conditions

⎧
⎪⎪⎨

⎪⎪⎩

cDβ [Bu(t)] = Au(t) + f (t, u(t),
∫ t

0 K(t, s, u(s)) ds), t ∈ J = [0, a], t �= tj,

�u|t=tj = Ij(u(tj)), j = 1, 2, . . . , m, m ∈N,
LD1–β [Tu(0)] = u0 + g(u(t)),

where cDq, LDq denote Caputo and Riemann–Liouville fractional order derivatives of or-
der q ∈ (0, 1), respectively, by applying the monotone iterative technique coupled with the
method of lower and upper solutions.

However, as far as we know, there have been few applicable results on the existence
and uniqueness of solutions to the Hilfer fractional evolution equations by applying the
monotone iterative technique and the method of upper and lower solutions. So far we
have not seen relevant papers that study Hilfer fractional evolution equations with nonlo-
cal problems by applying the monotone iterative technique and the method of lower and
upper solutions. Motivated by these facts, in this work, we use the fixed point theorem
combined with monotone iterative technique to discuss the existence of extremal mild
solutions for Hilfer fractional evolution equations with nonlocal conditions

⎧
⎨

⎩

Dν,μ
0+ u(t) + Au(t) = f (t, u(t), Gu(t)), t ∈ (0, b],

I(1–ν)(1–μ)
0+ u(0) = u0 +

∑m
i=1 λiu(τi), τi ∈ (0, b],

(1.1)

where Dν,μ
0+ denotes the Hilfer fractional derivative of order μ and type ν , which will be

given in the next section, 0 ≤ ν ≤ 1, 1
2 < μ < 1, the state u(·) takes value in a Banach space

E with norm ‖ · ‖ and –A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup
{T(t)}t≥0 of uniformly bounded linear operators in E. J = [0, b](b > 0), J ′ = (0, b], f : J ′ ×E ×
E → E are given functions satisfying some assumptions, u0 ∈ E and τi(i = 1, 2, . . . , m) are
prefixed points satisfying 0 < τ1 ≤ · · · ≤ τm < b, and λi are real numbers. Here the nonlocal
condition I1–γ

0+ u(0) = u0 +
∑m

i=1 λiu(τi) can be applied in a physical problem with better
effect than the initial condition I1–γ

0+ u(0) = u0. The operator G is given by

Gu(t) =
∫ t

0
K(t, s)u(s) ds (1.2)

is a Volterra integral operator with integral kernel K ∈ C(∇ ,R+), ∇ = {(t, s) : 0 ≤ s ≤ t ≤ b}.
Throughout this paper, we always assume that

K0 = sup
t∈J

∫ t

0
K(t, s) ds.

As far as we know, the nonlocal condition can have a better effect than the initial condi-
tion u(0) = u0 in physics application. In this article, the nonlocal function g(u) can be given
by g(u) =

∑m
i=1 λiu(τi), we only assume that λi(i = 1, 2, . . . , m) satisfy condition (F1) (see in

Sect. 2) without the compactness of nonlocal function. Firstly, we introduce the defini-
tion of mild solutions of problem (1.1), and then we prove the existence of extremal mild
solutions of problem (1.1) by employing Sadovskii’s fixed point theorem. What is more,
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an existence result without using the noncompactness measure condition is obtained in
ordered and weakly sequentially complete Banach spaces, which is very useful in applica-
tion.

Our work is organized as follows: In Sect. 2, we review some essential facts and introduce
some notations. In Sect. 3, we state and prove the existence of mild solutions for Hilfer
fractional differential system (1.1). Finally, in Sect. 4, an example is given to illustrate the
effectiveness of the abstract results.

2 Preliminaries
Throughout this paper, by C(J , E) and C(J ′, E) we denote the spaces of all continuous func-
tions from J to E and J ′ to E, respectively. Let E be an ordered Banach space with the norm
‖ · ‖ and partial order ≤, whose positive cone P = {x ∈ E : x ≥ θ} is normal with normal
constant N .

Let γ = ν +μ–νμ, then 1 –γ = (1 –ν)(1 –μ), define C1–γ (J , E) = {u ∈ C(J ′, E) : t1–γ u(t) ∈
C(J , E)}. Clearly, C1–γ (J , E) is a Banach space with the norm ‖u‖γ = supt∈J ′ |t1–γ u(t)|. And
C1–γ (J , E) is also an ordered Banach space with the partial order ≤ induced by the posi-
tive cone P′ = {u ∈ C1–γ (J , E)|u(t) ≥ θ , t ∈ J}, which is also normal with the same normal
constant N .

For the convenience of discussion, we recall some definitions and basic results on frac-
tional calculus; for more details, see [2–4, 8, 16].

Definition 2.1 The Riemann–Liouville fractional integral of order α of a function f :
[0,∞) → R is defined as

Iα
0+f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds, t > 0,α > 0,

provided the right-hand side is point-wise defined on [0,∞).

Definition 2.2 The Riemann–Liouville derivative of order α with the lower limit zero for
a function f : [0,∞) → R can be written as

Dα
0+ f (t) =

1
Γ (n – α)

dn

dtn

∫ t

0

f (s)
(t – s)α+1–n ds, t > 0, n – 1 < α < n.

Definition 2.3 The Caputo fractional derivative of order α for a function f : [0,∞) → R
can be written as

cDα
0+ f (t) = Dα

0+

[

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n – 1 < α < n,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.4 (Hilfer fractional derivative see [1]) The generalized Riemann–Liouville
fractional derivative of order 0 ≤ ν ≤ 1 and 0 < μ < 1 with lower limit a is defined as

Dν,μ
a+ f (t) = Iν(1–μ)

a+
d
dt

I(1–ν)(1–μ)
a+ f (t)

for functions such that the expression on the right-hand side exists.
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Remark 2.1
(i) If ν = 0, 0 < μ < 1, and a = 0, the Hilfer fractional derivative corresponds to the

classical Riemann–Liouville fractional derivative

D0,μ
0+ f (t) =

d
dt

I1–μ
0+ f (t) = Dμ

0+f (t).

(ii) If ν = 1, 0 < μ < 1, and a = 0, the Hilfer fractional derivative corresponds to the
classical Caputo fractional derivative

D1,μ
0+ f (t) = I1–μ

0+
d
dt

f (t) = cDμ

0+ f (t).

Remark 2.2 The Hilfer fractional derivative is considered as an interpolator between the
Riemann–Liouville and Caputo derivatives.

Remark 2.3 For 0 < μ < 1, the Laplace transformation of Hilfer fractional derivatives is
given by

L
[
Dμ,ν

0+ f (x)
]
(λ) = λμL

[
f (x)

]
(λ) – λν(μ–1)(I(1–ν)(1–μ)

0+ f
)
(0+),

where (I(1–ν)(1–μ)
0+ f )(0+) is the Riemann–Liouville fractional integral of order (1 – ν)(1 – μ)

in the limits as t → 0+, and

L
[
f (x)

]
(λ) =

∫ ∞

0
e–λxf (x) dx. (2.1)

The symbol α(·) is the Kuratowski noncompactness measure defined on a bounded sub-
set Ω of E. For any Ω ⊂ C(J , E) and t ∈ J , set Ω(t) = {u(t) : u ∈ B} ⊂ E. If B is bounded in
C(J , E), then Ω(t) is bounded in E, and α(Ω(t)) ≤ α(Ω). As is well known, the Kuratowski
measure of noncompactness has the following properties.

Lemma 2.1 ([17]) Let B ⊂ C(J , E) be bounded and equicontinuous, then coB ⊂ C(J , E) is
also bounded and equicontinuous.

Lemma 2.2 ([18]) Let E be a Banach space, and let D ⊂ E be bounded. Then there exists
a countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Lemma 2.3 ([19]) Let E be a Banach space, and let Ω ⊂ C(J , E) be equicontinuous and
bounded, then α(Ω(t)) is continuous on J , and α(Ω) = maxt∈J α(Ω(t)).

Lemma 2.4 ([20]) Let Ω = {un}∞n=1 ⊂ C(J , E) be a bounded and countable set, and there
exists a function m ∈ L1(J , R+) such that, for every n ∈ N ,

∥
∥un(t)

∥
∥ ≤ m(t), a.e. t ∈ J .

Then α(Ω(t)) is Lebesgue integral on J , and

α

({∫

J
un(t) dt : n ∈N

})

≤ 2
∫

J
α
(
Ω(t)

)
dt.



Gou and Li Boundary Value Problems        (2019) 2019:187 Page 6 of 25

Based on Lemma 2.12 in paper [2], we give the following the lemma.

Lemma 2.5 Assume that –A is the infinitesimal generator of a C0-semigroup {T(t)}t≥0 of
uniformly bounded linear operators in E. If f ∈ C1–γ (J , E) for any u ∈ C1–γ (J , E), a function
u is a solution of the equation

⎧
⎨

⎩

Dν,μ
0+ u(t) + Au(t) = f (t, u(t), Gu(t)), t ∈ J ′,

I1–γ
0+ u(0) = u0,

(2.2)

if and only if u satisfies the following integral equation:

u(t) = Sν,μ(t)u0 +
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds,

where

Sν,μ(t) = Iν(1–μ)
0+ Kμ(t), Kμ(t) = μ

∫ ∞

0
σ tμ–1ξμ(σ )T

(
tμσ

)
u0 dσ , (2.3)

the function ξμ is the function of Wright type

ξμ(σ ) =
1

πμ

∞∑

n=1

(–σ )n–1 Γ (nμ + 1)
n!

sin(nπμ), σ ∈ (0,∞).

Lemma 2.6 ([2]) Assume that A generates a C0-semigroup {T(t)}t≥0 of uniformly bounded
linear operators in E and T(t) is continuous in the uniform operator topology for t > 0. That
is, there exists M ≥ 1 such that supt∈[0,+∞) |T(t)| ≤ M. Then the operators Sν,μ(t) and Kμ(t)
have the following properties.

(i) For any fixed t ≥ 0, {Sν,μ(t)}t>0 and {Kμ(t)}t>0 are linear operators, and for any
u ∈ E,

∥
∥Sν,μ(t)u

∥
∥ ≤ Mtγ –1

Γ (γ )
‖u‖,

∥
∥Kμ(t)u

∥
∥ ≤ Mtμ–1

Γ (μ)
‖u‖.

(ii) The operators Sν,μ(t) and Kμ(t) are strongly continuous for all t ≥ 0.
(iii) If T(t)(t ≥ 0) is an equicontinuous semigroup, then Sν,μ(t) and Kμ(t) are

equicontinuous in E for t > 0.

In view of [2], from Lemma 2.6, we adopt the following definition of mild solution of
system (2.2).

Definition 2.5 A function u ∈ C1–γ (J , E) is said to be a mild solution of (2.2) if u0 ∈ E, the
integral equation

u(t) = Sν,μ(t)u0 +
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

is satisfied for all t ∈ J ′.
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Next, we present a useful lemma that plays an important role in our main results.

Lemma 2.7 Suppose that A is the infinitesimal generator of a C0-semigroup {T(t)}t≥0 of
uniformly bounded linear operators in E for 0 ≤ ν ≤ 1, 0 < μ < 1, then

Dν,μ
0+

(
Sν,μ(t)u0

)
= A

(
Sν,μ(t)u0

)

and

Dν,μ
0+

(∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

)

= A
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds + f

(
t, u(t), Gu(t)

)
. (2.4)

Proof Let λ > 0, we consider the one-sided stable probability density as follows:

�μ(σ ) =
1
π

∞∑

n=1

(–1)n–1σ –μn–1 Γ (nμ + 1)
n!

sin(nπμ), σ ∈ (0,∞),

whose Laplace transform is given by

∫ ∞

0
e–λσ�μ(σ ) dσ = e–λμ

, μ ∈ (0, 1). (2.5)

Then, using (2.5), we have

(
λμI – A

)–1u =
∫ ∞

0
e–λμsT(s)u0 ds =

∫ ∞

0
μtμ–1e–(λt)μT

(
tμ

)
u dt

=
∫ ∞

0

∫ ∞

0
e–(λtσ )μtμ–1�μ(σ )W

(
tμ

)
u dσ dt

= μ

∫ ∞

0

∫ ∞

0
e–λθ θμ–1

σμ
�μ(σ )T

(
θμ

σμ

)

u dθ dσ

=
∫ ∞

0
e–λτ

[

μ

∫ ∞

0

τμ–1

σμ
�μ(σ )T

(
τμ

σμ

)

u dσ

]

dτ

=
∫ ∞

0
e–λt

[

μ

∫ ∞

0

tμ–1

σμ
�μ(σ )T

(
tμ

σμ

)

u dσ

]

dt

=
∫ ∞

0
e–λt

[

μ

∫ ∞

0
σ tμ–1ξμ(σ )T

(
tμσ

)
u dσ

]

dt

=
∫ ∞

0
e–λtKμ(t)u dt, (2.6)

where ξμ is a probability density function defined on (0,∞) such that

ξμ(σ ) =
1
μ

σ
–1– 1

μ �μ

(
σ

– 1
μ
) ≥ 0.
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Since the Laplace inverse transform of λν(μ–1) is

L–1(λν(μ–1)) =

⎧
⎨

⎩

tν(1–μ)–1

Γ (ν(1–μ)) , 0 < ν ≤ 1,

δ(t), ν = 0,
(2.7)

where δ(t) is the delta function.
From (2.6), (2.7), and the Laplace transform, it is obvious to see that

L
(
Sν,μ(t)u0

)
= L

(
Iν(1–μ)

0+ Kμ(t)u0
)

= L
(

tν(1–μ)–1

Γ (ν(1 – μ))
∗ Kμ(t)u0

)

= L
(
L–1(λν(μ–1)) ∗ Kμ(t)u0

)

= λν(μ–1)(λμI – A
)–1u0, (2.8)

where ∗ denotes the convolution of functions. By Remark 2.2, we obtain

L
(
Dν,μ

0+
[
Sν,μ(t)u0

])
= λμL

(
Sν,μ(t)u0

)
– λν(μ–1)u0

= λμ
[
λν(μ–1)(λμI – A

)–1]u0 – λν(μ–1)u0

= λν(μ–1)(λμI – A
)–1[

λμ –
(
λμ – A

)]
u0

= λν(μ–1)(λμI – A
)–1[

λμ – λμ + A
]
u0

= λν(μ–1)(λμI – A
)–1Au0

= Aλν(μ–1)(λμI – A
)–1u0. (2.9)

Combining (2.8) and (2.9) yields

Dν,μ
0+

[
Sν,μ(t)u0

]
= A

[
Sν,μ(t)u0

]
.

Similarly, we have

L
(∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

)

= L
(
Kμ(t)

) ·L(
f
(
t, u(t), Gu(t)

))
, (2.10)

and

L
(

Dν,μ
0+

[∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

])

= λμL
(∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

)

– λν(μ–1) · 0

= λμL
(
Kμ(t)

) ·L(
f
(
t, u(t), Gu(t)

))

= λμ
(
λμI – A

)–1 ·L(
f
(
t, u(t), Gu(t)

))

=
(
λμI – A + A

)(
λμI – A

)–1 ·L(
f
(
t, u(t), Gu(t)

))

= A
(
λμI – A

)–1 ·L(
f
(
t, u(t), Gu(t)

))
+ L

(
f
(
t, u(t), Gu(t)

))
. (2.11)
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Thus, it follows from (2.10) and (2.11) that

Dν,μ
0+

[∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

]

= A
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds + f

(
t, u(t), Gu(t)

)
, (2.12)

which completes the proof of Lemma 2.7. �

For the convenience of discussion, we assume the following:
(H0) Assume that A generates a C0-semigroup {T(t)}t≥0 of uniformly bounded linear

operators in E and T(t) is continuous in the uniform operator topology for t > 0.
That is, there exists M ≥ 1 such that supt∈[0,+∞) ‖T(t)‖ ≤ M.

(H1) λi > 0(i = 1, 2, . . . , m) and
∑m

i=1 λi < Γ (γ )
Mbγ –1 .

In view of [14] and [11], we present the following lemma.

Lemma 2.8 Assume that (H0) and (H1) hold. For any u ∈ C1–γ (J) such that f (·, u, Gu) ∈
C1–γ (J), problem (1.1) has a unique mild solution u ∈ C1–γ (J) given by

u(t) = Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds, (2.13)

where Θ = [I –
∑m

i=1 λiSν,μ(τi)]–1.

Proof By assumption (H0), we have

∥
∥
∥
∥
∥

m∑

i=1

λiSν,μ(t)

∥
∥
∥
∥
∥

≤
m∑

i=1

|λi| ·
∥
∥Sν,μ(t)

∥
∥ ≤

m∑

i=1

|λi|Mbγ –1

Γ (γ )
< 1.

By operator spectrum theorem, the operator Θ := (I –
∑m

i=1 λiSν,μ(τi)))–1 exists and is
bounded. Furthermore, by Neumann’s expression, we obtain

‖Θ‖ ≤
∞∑

i=0

∥
∥
∥
∥
∥

m∑

i=1

λiSν,μ(τi)

∥
∥
∥
∥
∥

n

=
1

1 – ‖∑m
i=1 λiSν,μ(τi)‖ ≤ 1

1 – Mbγ –1
Γ (γ )

∑m
i=1 λi

.

According to Definition 2.5, a solution of system (2.2) can be expressed by

u(t) = Sν,μ(t)I1–γ
0+ u(0) +

∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds. (2.14)

Next, we substitute t = τi into (2.13), and by applying λi to both sides of (2.13), we have

λiu(τi) = λiSν,μ(τi)I1–γ
0+ u(0) + λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds. (2.15)



Gou and Li Boundary Value Problems        (2019) 2019:187 Page 10 of 25

Thus, we have

I1–γ
0+ u(0) = u0 +

m∑

i=1

λiu(τi)

= u0 +
m∑

i=1

λiSν,μ(τi)I1–γ
0+ u(0) +

m∑

i=1

λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

= u0 +
m∑

i=1

λiSν,μ(τi)I1–γ
0+ u(0) +

m∑

i=1

λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds.

Since I –
∑m

i=1 λiSν,μ(τi) has a bounded inverse operator Θ , it implies

I1–γ
0+ u(0)

=

[

I –
m∑

i=1

λiSν,μ(τi)

]–1(

u0 +
m∑

i=1

λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

)

= Θu0 +
m∑

i=1

λi

∫ τi

0
ΘKμ(τi – s)f

(
s, u(s), Gu(s)

)
ds. (2.16)

Submitting (2.1) to (2.14), we obtain that (2.13). It implies that u is also a solution of the
integral of Eq. (2.13) when u is a solution of system (2.12).

The necessity has been proved. Next, we will prove its sufficiency. Applying I1–γ
0+ to both

sides of (2.12), and by Lemma 2.7, we have

I1–γ
0+ u(t) = I1–γ

0+

(

Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

)

.

Therefore, we have

lim
t→0

I1–γ
0+ u(t)

= lim
t→0

I1–γ
0+ Sν,μ(t)Θu0 +

m∑

i=1

λi lim
t→0

I1–γ
0+ Sν,μ(t)Θ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

= I1–γ
0+ (lim

t→0
Sν,μ(t)(Θu0) + I1–γ

0+ lim
t→0

Sν,μ(t)
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

= I1–γ
0+

(
Θu0

Γ (γ )
tγ –1

)

+ I1–γ
0+

(∑m
i=1 λiΘ

∫ τi
0 Kμ(τi – s)f (s, u(s), Gu(s)) ds

Γ (γ )
tγ –1

)

= Θu0 +
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds. (2.17)
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Substituting t = τi into (2.12), we have

u(τi) = Sν,μ(τi)Θu0 +
m∑

i=1

λiSν,μ(τi)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds.

Then we obtain

u0 +
m∑

i=1

λiu(τi)

= u0 +
m∑

i=1

λiSν,μ(τi)Θu0 +
m∑

i=1

λi

m∑

i=1

λiSν,μ(τi)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
m∑

i=1

λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

=

(

I +
m∑

i=1

λiSν,μ(τi)Θ

)(

u0 +
m∑

i=1

λi

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

)

=

(

Θ
–1 +

m∑

i=1

λiSν,μ(τi)

)(

Θu0 +
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

)

= Θu0 +
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds. (2.18)

It follows from (2.16) and (2.17) that I1–γ
0+ u(0) = u0 +

∑m
i=1 λiu(τi).

Next, by using Dν,μ
0+ to both sides of (2.12) and Lemma 2.9, we have

Dν,μ
0+ u(t) = Dν,μ

0+

[

Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

]

= Dν,μ
0+

[

Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

]

+ Dν,μ
0+

[∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

]

=

[

Θu0 +
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

]

Dν,μ
0+

[
Sν,μ(t)

]

+ Dν,μ
0+

[∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
]

=

[

Θu0 +
m∑

i=1

λiΘ

∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

]

ASν,μ(t)

+ A
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds + f

(
t, u(t), Gu(t)

)
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= A

(

Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds

)

+ f
(
t, u(t), Gu(t)

)

= Au(t) + f
(
t, u(t), Gu(t)

)
.

Hence,

Dν,μ
0+ u(t) = Au(t) + f

(
s, u(t), Gu(t)

)
.

This proof is completed. �

From Lemma 2.8, we adopt the following definition of a mild solution of problem (1.1).

Definition 2.6 A function u ∈ C1–γ (J , E) is said to be a mild solution of problem (1.1) if it
satisfies the operator equation

u(t) = Sν,μ(t)Θu0 +
m∑

i=1

λiSν,μ(t)Θ
∫ τi

0
Kμ(τi – s)f

(
s, u(s), Gu(s)

)
ds

+
∫ t

0
Kμ(t – s)f

(
s, u(s), Gu(s)

)
ds, t ∈ J ′, (2.19)

where the operators Sν,μ(t) and Kμ(t) are given by (2.3).

Definition 2.7 A C0-semigroup {T(t)}t≥0 in E is said to be positive if the order inequality
T(t)x ≥ θ holds for each x ≥ θ , x ∈ E, and t ≥ 0.

Remark 2.4 For any C ≥ 0, –(A + CI) also generates a C0-semigroup S(t) = e–CtT(t)(t ≥ 0)
on E. And S(t)(t ≥ 0) is a positive C0-semigroup if T(t)(t ≥ 0) is a positive C0-semigroup.
For details, see [18, 21].

For u ∈ E, we define two families {S∗
ν,μ(t)}t≥ and {K∗

μ(t)}t≥0 of operators by

S∗
ν,μ(t)u = Iν(1–μ)

0+ K∗
μ(t)u, K∗

μ(t)u = μ

∫ ∞

0
σ tμ–1ξμ(σ )S

(
tμσ

)
u dσ ,

where ξμ(σ ) is given by (2.3).
Since T(t)(t ≥ 0) is positive, by Remark 2.4, it is easy to know that S(t)(t ≥ 0) is also

positive. And by the definition of ξμ(σ ), the operators S∗
ν,μ(t) and K∗

μ(t) are also positive
for all t ≥ 0.

To prove our main result, for any C > 0, we consider the following system:

⎧
⎨

⎩

Dν,μ
0+ u(t) + (A + CI)u(t) = f (t, u(t), Gu(t)) + Cu(t), t ∈ (0, b],

I(1–ν)(1–μ)
0+ u(0) = u0 +

∑m
i=1 λiu(τi), τi ∈ (0, b].

(2.20)

First, we assume the following:
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(F0) For any C ≥ 0, –(A + CI) also generates a C0-semigroup S(t) = e–CtT(t)(t ≥ 0) on E
and S(t) is continuous in the uniform operator topology for t > 0. That is, there
exists M∗ ≥ 1 such that supt∈[0,+∞) |S(t)| ≤ M∗.

(F1) λi > 0(i = 1, 2, . . . , m) and
∑m

i=1 λi < Γ (γ )
M∗bγ –1 .

By assumption (F1), we have

∥
∥
∥
∥
∥

m∑

i=1

λiS∗
ν,μ(t)

∥
∥
∥
∥
∥

≤ M∗bγ –1

Γ (γ )

m∑

i=1

λi < 1.

By operator spectrum theorem, the operator I –
∑m

i=1 λiS∗
ν,μ(τi)) has a bounded inverse

operator

Θ :=

(

I –
m∑

i=1

λiS∗
ν,μ(τi)

)

)–1.

Furthermore, by Neumann’s expression, Θ can be expressed by

Θ =
∞∑

i=0

( m∑

i=1

λiS∗
ν,μ(τi)

)n

.

By the positivity of C0-semigroup S(t)(t ≥ 0), it is easy to know that S∗
ν,μ(t) is positive, we

have

Θu =
∞∑

i=0

( m∑

i=1

λiS∗
ν,μ(τi)

)n

u ≥ u ≥ θ , ∀u ≥ θ .

So, Θ is a positive operator, and

‖Θ‖ ≤
∞∑

i=0

∥
∥
∥
∥
∥

m∑

i=1

λiS∗
ν,μ(τi)

∥
∥
∥
∥
∥

n

=
1

1 – ‖∑m
i=1 λiS∗

ν,μ(τi)‖ ≤ 1
1 – M∗bγ –1

Γ (γ )
∑m

i=1 λi
.

In view of Lemma 2.8, we present the following lemma.

Lemma 2.9 Assume that (F0) and (F1) hold. For any u ∈ C1–γ (J) such that f (·, u, Gu) ∈
C1–γ (J), problem (2.20) has a unique mild solution u ∈ C1–γ (J) given by

u(t) = S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds, (2.21)

where Θ = [I –
∑m

i=1 λiS∗
ν,μ(τi)]–1.

From Lemma 2.9 and Definition 2.7, we state the following definition of a mild solution
of problem (2.20).
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Definition 2.8 A function u ∈ C1–γ (J , E) is said to be a mild solution of problem (2.20) if,
for any u ∈ C1–γ (J , E), the integral equation

u(t) = S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

is satisfied.

In the following, we will state some lemmas whose proofs are similar to those of the
paper [2]. Here, we omit it.

Lemma 2.10 Under assumption (F0), the operators S∗
ν,μ(t) and K∗

μ(t) have the following
properties:

(i) For any fixed t > 0, {K∗
μ(t)}t>0 and {S∗

ν,μ(t)}t>0 are linear operators, and for any u ∈ E,

∥
∥K∗

μ(t)
∥
∥ ≤ M∗tμ–1

Γ (μ)
,

∥
∥S∗

ν,μ(t)
∥
∥ ≤ M∗tγ –1

Γ (γ )
.

(ii) The operators {K∗
μ(t)}t>0 and {S∗

ν,μ(t)}t>0 are strongly continuous for t > 0.
(iii) If S(t)(t ≥ 0) is an equicontinuous semigroup, then S∗

ν,μ(t) and K∗
μ(t) are

equicontinuous in E for t > 0.

To end this section, we state a fixed point theorem, which plays a major role in the proof
of our main results.

Lemma 2.11 (Sadovskii’s fixed point theorem) Let D be a convex, closed, and bounded
subset of a Banach space E and Q : D → D be a condensing map. Then Q has one fixed
point in D.

Lemma 2.12 ([22]) Let a ≥ 0, μ > 0, c(t), and u(t) be the nonnegative locally integrable
functions on 0 ≤ t < T < +∞ such that

u(t) ≤ c(t) + a
∫ t

0
(t – s)μ–1u(s) ds,

then

u(t) ≤ c(t) +
∫ t

0

[ ∞∑

n=1

(aΓ (μ))n

Γ (nμ)
(t – s)nμ–1c(s)

]

ds, 0 ≤ t < T .

3 Main results
In this section, we discuss the existence of extremal mild solutions for problem (1.1).

Definition 3.1 An abstract function u ∈ C1–γ (J , E) is called a solution of problem (1.1) if
u(t) satisfies all the equalities of (1.1).
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Definition 3.2 If the function v0 ∈ C1–γ (J , E) satisfies

⎧
⎨

⎩

Dν,μ
0+ v0(t) + Av0(t) ≤ f (t, v0(t), Gv0(t)), t ∈ J ,

I1–γ
0+ v0(0) ≤ u0 +

∑m
i=1 λiv0(τi),

(3.1)

then v0 is said to be a lower solution of problem (1.1). If all the inequalities in (3.1) are
reversed, then v0 is called an upper solution of problem (1.1).

Theorem 3.1 Assume that E is an ordered Banach space, its positive cone P is normal,
and –A generates a positive C0-semigroup {T(t)}t≥0 on E, f ∈ C(J × E × E, E), and u0 ∈ E.
If problem (1.1) has a lower solution v0 ∈ C1–γ (J , E) and an upper solution w0 ∈ C1–γ (J , E)
with v0 ≤ w0. Suppose also that conditions (F0), (F1) and the following conditions are sat-
isfied:

(F2) There exists a constant C > 0 satisfying

f (t, u2, v2) – f (t, u1, v1) ≥ –C(u2 – u1)

for ∀ ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Gv0(t) ≤ v1 ≤ v2 ≤ Gw0(t).
(F3) There exists a constant L > 0 satisfying

α
({

f (t, un, vn)
}) ≤ L

(
α
({un}

)
+ α

({vn}
))

for ∀t ∈ J , and increasing or decreasing monotonic sequences {un} ⊂ [v0(t), w0(t)]
and {vn} ⊂ [Gv0(t), Gw0(t)].

(F4) Let vn = Qvn–1, wn = Qwn–1, n = 1, 2, . . . , such that the sequences vn(0) and wn(0)
are convergent.

Then problem (1.1) has minimal and maximal mild solutions u and u between v0 and w0,
which can be obtained by using the monotone iterative procedure starting from v0 and w0

respectively.

Proof Since C > 0, problem (1.1) can be written as system (2.20). By (2.21), we can define
operator Q : [v0, w0] → C1–γ (J , E) as follows:

(Qu)(t) = S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds, t ∈ J ′. (3.2)

Since f is continuous, it is easily seen that the map Q : [v0, w0] → C1–γ (J , E) is continuous.
And by Lemma 2.9, the mild solutions of problem (1.1) are equivalent to the fixed points
of the operator Q. We will divide the proof in the following steps.

Step 1. We show that Q : [v0, w0] → C1–γ (J , E) is an increasing monotone operator.
In fact, for ∀t ∈ J ′, v0(t) ≤ u ≤ v ≤ w0, by assumptions (F2) and (F3), we have

f
(
s, v0(s), Gv0(s)

)
+ Cv0(s) ≤ f

(
s, w0(s), Gw0(s)

)
+ Cw0(s).
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So

∫ t

0
K∗

μ(t – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

≤
∫ t

0
K∗

μ(t – s)
[
f
(
s, v(s), Gv(s)

)
+ Cv(s)

]
ds.

Thus, from (3.2) we have Qu ≤ Qv.
Step 2. We show that v0 ≤ Qv0 and Qw0 ≤ w0. Let h(t) = Dν,μ

0+ v0(t) + Av0(t) + Cv0(t),
h ∈ C1–γ (J , E), and h(t) ≤ f (t, v0(t), Gv0(t)) + Cv0(t), t ∈ J ′. By Definitions 2.7 and 3.2, we
have

v0(t) = S∗
ν,μ(t)v0(0) +

∫ t

0
K∗

μ(t – s)h(s) ds

≤ S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, v0(s), Gv0(s)

)
+ Cv0(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, v0(s), Gv0(s)

)
+ Cv0(s)

]
ds

= Qv0(t), t ∈ J ′.

It implies that v0 ≤ Qv0. Similarly, it can prove that Qw0 ≤ w0. Thus, Q : [v0, w0] → [v0, w0]
is a continuous increasing monotone operator.

Now, we define two sequences {vn} and {wn} in [v0, w0] by the iterative scheme

vn = Qvn–1, wn = Qwn–1, n = 1, 2, . . . . (3.3)

Then, from the monotonicity of Q, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.4)

Step 3. We prove that {vn} and {wn} are convergent in J ′.
Let B = {vn : n ∈N} and B0 = {vn–1 : n ∈N}. Then B = Q(B0). From B0 = B ∪{v0} it follows

that α(B0(t)) = α(B(t)) for t ∈ J ′. Let ϕ(t) := α(B(t)), t ∈ J ′, we will show that ϕ(t) ≡ 0 in J ′.
For t ∈ J ′, by (1.2) and Lemma 2.4, we get

α
(
G(B0)(t)

)
= α

({∫ t

0
K(t, s)vn–1(s) ds : n ∈N

})

≤ 2K0

∫ t

0
α
(
B0(s)

)
ds

= 2K0

∫ t

0
ϕ(s) ds,

therefore

∫ t

0
α
(
G(B0)(s)

)
ds ≤ 2bK0

∫ t

0
ϕ(s) ds.
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For t ∈ J ′, from (3.2), using Lemma 2.2, assumptions (F3) and (F4), we have

ϕ(t) = α
(
B(t)

)
= α

(
Q(B0)(t)

)

= α

({

S∗
ν,μ(t)Θu0

+
m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds

})

≤ M∗bγ –1

Γ (γ )

× α

({

Θu0 +
m∑

i=1

λiΘ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds

})

+
2M∗bμ–1

Γ (μ)

∫ t

0
α
({

f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

})
ds

≤ M∗bγ –1

Γ (γ )
α
({

vn(0)
})

+
2M∗bμ–1(L + 2bLK0 + C)

Γ (μ)

∫ t

0
α
(
B0(s)

)
ds

≤ 2M∗bμ–1(L + 2bLK0 + C)
Γ (μ)

∫ t

0
ϕ(s) ds.

Hence, by Lemma 2.12, ϕ(t) ≡ 0 in J . So, for any t ∈ J , {vn(t)} is precompact and {vn(t)} has
a convergent subsequence. And by the monotonicity of (3.3), we prove that {vn(t)} itself is
convergent, i.e., limn→∞ vn(t) = u(t), t ∈ J . Similarly, limn→∞ wn(t) = u(t), t ∈ J .

Evidently, {vn(t)} ∈ C1–γ (J , E), so u(t) is bounded integrable on J . For any t ∈ J ,

vn(t) = Q(vn–1)

= S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds. (3.5)

If n → ∞ in (3.5), by the Lebesgue dominated convergence theorem, we obtain

u(t) = Q
(
u(t)

)

= S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∫ t

0
K∗

μ(t – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds.

Thus, we have u(t) ∈ C1–γ (J , E) and u = Qu. In a similar way, we can prove that there ex-
ists u(t) ∈ C1–γ (J , E) such that u = Qu. Combining this with the monotonicity of (3.4), we
see that v0 ≤ u ≤ u ≤ w0, which implies that u and u are the minimal and maximal mild
solutions of problem (1.1) in [v0, w0]. �
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Remark 3.1 If we replace positive cone P is normal by positive cone P is regular, then the
conclusion in Theorem 3.1 is also valid. For more details, see [14].

As a supplement to Theorem 3.1, we further discuss the existence of mild solutions for
problem (1.1) in a weakly sequentially complete Banach space, we only need to verify that
conditions (F1) and (F2) are satisfied.

Corollary 3.1 Assume that E is an ordered and weakly sequentially complete Banach
space, its positive cone P is normal, and –A generates a positive C0-semigroup {T(t)}t≥0

on E, f ∈ C(J × E × E, E), and u0 ∈ E. If problem (1.1) has a lower solution v0 ∈ C1–γ (J , E)
and an upper solution w0 ∈ C1–γ (J , E) with v0 ≤ w0. Suppose also that conditions (F0)–
(F4) are satisfied. Then problem (1.1) has minimal and maximal mild solutions u and u
between v0 and w0, which can be obtained by a monotone iterative procedure starting from
v0 and w0, respectively.

Proof In view of Theorem 3.1, if E is weakly sequentially complete, then conditions (F3)
and (F4) hold automatically. And by Theorem 2.2 in [23], any monotonic and order
bounded sequence is precompact. By the monotonicity of (3.4), it is easy to see that vn(t)
and wn(t) are convergent on J . Thus, vn(0) and wn(0) are convergent, i.e., condition (F4)
holds. For t ∈ J , let {un} ⊂ [v0(t), w0(t)] and {vn} ⊂ [Gv0, Gw0(t)] be two increasing or
decreasing sequences. By (F2), {f (t, un, vn) + Cxn} is an ordered monotonic and ordered
bounded sequence in E. Then α({f (t, un, vn) + Cxn}) = 0, (F3) holds, and by Theorem 3.1
our conclusion is valid. �

Theorem 3.2 Assume that E is an ordered Banach space, its positive cone P is normal,
and –A generates a positive and equicontinuous C0-semigroup {T(t)}t≥0 on E, f ∈ C(J ×
E × E, E), and u0 ∈ E. If problem (1.1) has a lower solution v0 ∈ C1–γ (J , E) and an upper
solution w0 ∈ C1–γ (J , E) with v0 ≤ w0. Suppose also that conditions (F0)–(F3) are satisfied
and

(F5) There exists a nonnegative constant L1 with

2M∗bμ(L1 + 2bL1K0 + C)
Γ (μ)

[
(bγ –1 – Γ (γ ))M∗ ∑m

i=1 λi + Γ (γ )
Γ (γ )(1 – M∗ ∑m

i=1 λi)

]

< 1

such that

α
({

f (t, un, vn)
}) ≤ L1

(
α
({un}

)
+ α

({vn}
))

for ∀t ∈ J , and an equicontinuous countable set {un} ⊂ [v0(t), w0(t)],
{vn} ⊂ [Gv0(t), Gw0(t)].

Then problem (1.1) has a minimal mild solution u and maximal mild solution u in [v0, w0],
and

vn(t) → u(t), wn(t) → u(t), (n → +∞), t ∈ J ,

where vn(t) = Qvn–1(t), wn(t) = Qwn–1(t), which satisfy

v0(t) ≤ v1(t) ≤ · · · vn(t) ≤ · · ·u(t) ≤ u(t) ≤ · · · ≤ wn(t) ≤ · · ·w1(t) ≤ w0(t), ∀t ∈ J .
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Proof From the proof of Theorem 3.1, we know that Q : [v0, w0] → [v0, w0] is continu-
ous. First, we will prove that Q : [v0, w0] → C(J , E) is an equicontinuous operator. Since
T(t)(t ≥ 0) is an equicontinuous C0-semigroup, and S(t)(t ≥ 0) is also an equicontinuous
C0-semigroup, by the normality of the cone P, there exists M > 0 such that

∥
∥f

(
t, u(t), Gu(t)

)
+ Cu(t)

∥
∥ ≤ M, u ∈ [v0, w0].

For any u ∈ C1–γ (J , E), let y(t) = t1–γ u(t), for t1 = 0, 0 < t2 ≤ b, we get

∥
∥y(t2) – y(0)

∥
∥

≤ ∥
∥t1–γ

2 S∗
ν,μ(t2)

∥
∥(Θu0) +

m∑

i=1

λiΘ
∥
∥t1–γ

2 S∗
ν,μ(t2)

∥
∥

∫ τi

0
K∗

μ(τi – s)

× [
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+ t1–γ
2

∥
∥
∥
∥

∫ t2

0
K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

≤ ∥
∥t1–γ

2 S∗
ν,μ(t2)

∥
∥(Θu0) + M

m∑

i=1

λiΘ
∥
∥t1–γ

2 S∗
ν,μ(t2)

∥
∥

∫ τi

0
K∗

μ(τi – s) ds

+ M
∥
∥
∥
∥

∫ t2

0
t1–γ
2 K∗

μ(t2 – s) ds
∥
∥
∥
∥

→ 0, as t2 → t1 = 0.

For 0 < t1 < t2 ≤ b, by (3.2), we get that

∥
∥y(t2) – y(t1)

∥
∥

≤ ∥
∥t1–γ

2 (Qu)(t2) – t1–γ
1 (Qu)(t1)

∥
∥

≤ ∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

1 S∗
ν,μ(t1)

∥
∥(Θu0) +

∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

1 S∗
ν,μ(t1)

∥
∥

×
m∑

i=1

λiΘ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∫ t2

0
t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t1 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

≤ (∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

2 S∗
ν,μ(t1)

∥
∥

+
∥
∥t1–γ

2 S∗
ν,μ(t1) – t1–γ

1 Sν,μ(t1)
∥
∥
)
(Θu0) +

∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

1 S∗
ν,μ(t1)

∥
∥

×
m∑

i=1

λiΘ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

+
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0
t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds
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–
∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t1 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

= J1 + J2 + J3 + J4 + J5 + J6,

where

J1 =
(∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

2 S∗
ν,μ(t1)

∥
∥
)
(Θu0),

J2 =
(∥
∥t1–γ

2 S∗
ν,μ(t1) – t1–γ

1 S∗
ν,μ(t1)

∥
∥
)
(Θu0),

J3 =
∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

1 S∗
ν,μ(t1)

∥
∥

m∑

i=1

λiΘ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds,

J4 =
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥,

J5 =
∥
∥
∥
∥

∫ t1

0
t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥,

J6 =
∥
∥
∥
∥

∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t1 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥.

Here we calculate

∥
∥t1–γ

2 (Qu)(t2) – t1–γ
1 (Qu)(t1)

∥
∥ ≤

6∑

i=1

‖Ji‖.

Therefore, it is not difficult to see that ‖Ji‖ tends to 0, when t2 – t1 → 0, i = 1, 2, . . . , 6.
For J1, by Lemma 2.10, we get

J1 =
(∥
∥t1–γ

2 S∗
ν,μ(t2) – t1–γ

2 S∗
ν,μ(t1)

∥
∥
)
(Θu0)

≤ ∥
∥t1–γ

2
(
S∗

ν,μ(t2) – Sν,μ(t1)
)∥
∥(Θu0) → 0, as t2 → t1.

For J2, by Lemma 2.10, we get

J2 =
(∥
∥t1–γ

2 S∗
ν,μ(t1) – t1–γ

1 S∗
ν,μ(t1)

∥
∥
)
(Θu0)

≤ M∗bγ –1

Γ (γ )
∥
∥t1–γ

2 – t1–γ
1

∥
∥‖Θu0‖

≤ M∗bγ –1

Γ (γ )
∥
∥(t2 – t1)1–γ

∥
∥‖Θu0‖ → 0, as t2 → t1.
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For J3, by Lemma 2.10, we have

J3 =
m∑

i=1

λiΘ
∥
∥t1–γ

2 S∗
ν,μ(t1) – t1–γ

1 S∗
ν,μ(t1)

∥
∥

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

≤ M
∑m

i=1 |λi|
1 – M∗ ∑m

i=1 |λi|
∥
∥t1–γ

2 S∗
ν,μ(t1) – t1–γ

1 S∗
ν,μ(t1)

∥
∥

∫ τi

0
K∗

μ(τi – s) ds

→ 0, as t2 → t1.

For J4, by Lemma 2.10, we have

J4 =
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

≤ M
∫ t2

t1

t1–γ
2 K∗

μ(t2 – s) ds

→ 0, as t2 → t1.

For J5, by Lemma 2.10, we have

J5 =
∥
∥
∥
∥

∫ t1

0
t1–γ
2 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

∥
∥
∥
∥

≤ 2M∗

Γ (μ)

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1][f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds.

Noting that

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1][f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

≤
∫ t1

0
t1–γ
2 (t2 – s)μ–1[f

(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

and

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1][f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

exists, and by the Lebesgue dominated convergence theorem, we have

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1][f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

→ 0, as t2 → t1.

It is easy to see that limt2→t1 J5 = 0.
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For J6, by Lemma 2.10, we have

J6 =
∥
∥
∥
∥

∫ t1

0
t1–γ
1 K∗

μ(t2 – s)
[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

–
∫ t1

0
t1–γ
1 K∗

μ(t1 – s)f
(
s, u(s)

)
ds

∥
∥
∥
∥

≤ ∥
∥K∗

μ(t2 – s) – K∗
μ(t1 – s)

∥
∥

∫ t1

0
t1–γ
1

[
f
(
s, u(s), Gu(s)

)
+ Cu(s)

]
ds

→ 0, as t2 → t1.

In conclusion,

∥
∥y(t2) – y(t1)

∥
∥ ≤ ∥

∥t1–γ
2 (Qu)(t2) – t1–γ

1 (Qu)(t1)
∥
∥ → 0,

as t2 → t1, i.e.,

∥
∥(Qu)(t2) – (Qu)(t1)

∥
∥

γ
→ 0, as t2 → t1,

which means that Q : [v0, w0] → [v0, w0] is equicontinuous.
So, for any D ⊂ [v0, w0], Q(D) ⊂ [v0, w0] is bounded and equicontinuous. Therefore, by

Lemma 2.2, there exists a countable set D0 = {un} ⊂ D such that

α
(
Q(D)

) ≤ 2α
(
Q(D0)

)
. (3.6)

For t ∈ J , by the definition of the operator Q, we have

α
(
Q

(
D0(t)

))

= α

({

S∗
ν,μ(t)Θu0 +

m∑

i=1

λiS∗
ν,μ(t)Θ

∫ τi

0
K∗

μ(τi – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)

+ Cvn–1(s)
]

ds +
∫ t

0
K∗

μ(t – s)
[
f
(
s, vn–1(s), Gvn–1(s)

)
+ Cvn–1(s)

]
ds

})

≤ 2(M∗)2 ∑m
i=1 λibμ+γ –2(L1 + 2bL1K0 + C)

Γ (γ )Γ (μ)(1 – M∗ ∑m
i=1)

∫ τi

0
α
(
D0(s)

)
ds

+
2M∗bμ–1(L1 + 2bL1K0 + C)

Γ (μ)

∫ t

0
α
(
D0(s)

)
ds

≤ 2(M∗)2 ∑m
i=1 λibμ+γ –1(L1 + 2bL1K0 + C)

Γ (γ )Γ (μ)(1 –
∑m

i=1 λi)
α(D) +

2M∗bμ(L1 + 2bL1K0 + C)
Γ (μ)

α(D)

≤ 2M∗bμ(L1 + 2bL1K0 + C)
Γ (μ)

[
bγ –1M∗ ∑m

i=1 λi

Γ (γ )(1 –
∑m

i=1 λi)
+ 1

]

α(D)

=
2M∗bμ(L1 + 2bL1K0 + C)

Γ (μ)

[
(bγ –1 – Γ (γ ))M∗ ∑m

i=1 λi + Γ (γ )
Γ (γ )(1 – M∗ ∑m

i=1 λi)

]

α(D).

Since Q(D0) is bounded and equicontinuous, we know from Lemma 2.3 that

α
(
Q(D0)

)
= max

t∈I
α
(
Q(D0)(t)

)
.
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And by (3.6), we have

α
(
Q(D)

) ≤ ηα(D),

where

η =
2M∗bμ(L1 + 2bL1K0 + C)

Γ (μ)

[
(bγ –1 – Γ (γ ))M∗ ∑m

i=1 λi + Γ (γ )
Γ (γ )(1 – M∗ ∑m

i=1 λi)

]

< 1.

Thus, Q : [v0, w0] → [v0, w0] is a condensing operator. By Lemma 2.11, our conclusion is
valid. �

4 Applications
In this section, we present an example that illustrates the applicability of our main results.

Example 4.1 We consider the following fractional partial differential equation:

⎧
⎨

⎩

Dν,μ
0+ u(t, x) =

∑
|α|≤2m aαDα

x u(t, x) + f (t, x, u(t, x), Gu(t, x)), (t, x) ∈ J × Ω ,

I(1–ν)(1–μ)
0+ u(0, x) = u0 +

∑m
i=1 λiu(τi, x),

(4.1)

where Dν,μ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < μ < 1, t ∈ J = [0, b], λi �= 0,

i = 1, 2, . . . , m, integer N ≥ 1, Ω ⊂ R
N is a bounded domain with a sufficiently smooth

boundary ∂Ω , f : J × E × E → E is continuous and

Dα
x =

(
∂

∂x1

)α1( ∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

,

α = (α1,α2, . . . ,αn) is an n-dimensional multi-index, |α| = α1 + α2 + · · · + αn, coefficient
function aα(x) ∈ C2m(Ω).

Let E = Lp(Ω) with 1 < p < ∞, P = {u ∈ Lp(Ω)} : u(x) ≥ 0, q.e. x ∈ Ω}, and define the
operator A : D(A) ⊂ E → E as follows:

D(A) = W 2m,p ∩ W m,p
0 (Ω), Au =

∑

|α|≤2m

aαDα
x u.

Then E is a Banach space, P is a normal cone of E, and –A generates a positive C0-
semigroup T(t)(t ≥ 0) in E (see [21]). Let f (t, u(t), Gu(t)) = f (t, x, u(t, x), Gu(t, x)), u0 =
u0(·), then problem (4.1) can be written as abstract (1.1).

Theorem 4.1 If the following conditions are satisfied:
(H1) Let u0(x) ≥ 0, x ∈ Ω , and there exists a function w = w(t, x) ∈ C1–γ (J ×Ω) such that

⎧
⎨

⎩

Dν,μ
0+ u(t, x) ≥ ∑

|α|≤2m aαDα
x u(t, x) + f (t, x, u(t, x), Gu(t, x)),

I(1–ν)(1–μ)
0+ u(0, x) = u0 +

∑m
i=1 λiu(τi, x).

(4.2)
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(H2) There exists a constant M > 0 such that

f (t, x, u2, v2) – f (t, x, u1, v1) ≥ –M(u2 – u1)

for any t ∈ J , and 0 ≤ u1 ≤ u2 ≤ w(t, x), 0 ≤ v1 ≤ v2 ≤ Gw(t, x).
(H3) λi > 0 (i = 1, 2, . . . , m) and

∑m
i=1 λi < Γ (γ )

M∗bγ –1 .
(H4) There exists a constant L > 0 such that

α
({

f (t, un, vn)
}) ≤ L

(
α
({un}

)
+ α

({vn}
))

for ∀t ∈ J , and increasing or decreasing monotonic sequences {un} ⊂ [v0(t), w0(t)]
and {vn} ⊂ [Gv0(t), Gw0(t)].

Then problem (4.1) has minimal and maximal mild solutions between 0 and w(x, t), which
can be obtained by a monotone iterative procedure starting from 0 and w(t), respectively.

Proof Assumption (H1) implies that v0 ≡ 0 and w0 ≡ w(x, t) are lower and upper solu-
tions of problem (4.1), respectively, and from (H2), it is easy to verify that all conditions
(F1)–(F3) are satisfied under the constant M = 1. So our conclusion follows from Theo-
rem 3.1. �

5 Conclusions
The purpose of this paper was to obtain existence results of mild solutions for a class
of evolution equations with Hilfer fractional derivative. The method is inspired by using
the fixed point theorem combined with the method of lower and upper solutions, some
existence result of mild solutions for Hilfer fractional evolution equations with nonlo-
cal conditions has been obtained. Here, we do not require that C0-semigroup {T(t)}t≥0 is
compact.
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