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Abstract
This study establishes some new maximum principle which will help to investigate an
IBVP for multi-index Hadamard fractional diffusion equation. With the help of the new
maximum principle, this paper ensures that the focused multi-index Hadamard
fractional diffusion equation possesses at most one classical solution and that the
solution depends continuously on its initial boundary value conditions.
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1 Introduction
As is known, the maximum principle is one of the most effective tools to investigate or-
dinary (partial, evolution, fractional) differential equations. In the absence of any clear
information about the solution, some properties of the solution can be obtained using the
maximum principle. Recently, the maximum principle and its effective application in in-
vestigating fractional differential equations have received great attention from scholars. In
[1], the authors studied the IBVP for the single-term and the multi-term as well as the dis-
tributed order time-fractional diffusion equations with Riemann–Liouville and Caputo
type time-fractional derivatives. Meanwhile, they proved the weak maximum principle
and established the uniqueness of solutions to the IBVP with Dirichlet boundary condi-
tions. The maximum principles for classical solution and weak solution of a time-space
fractional diffusion equation with the fractional Laplacian operator were considered in [2].
In [3], Korbol and Luchko generalized the mathematical model of variable-order space-
time fractional diffusion equation to analyze some financial data and considered the op-
tion pricing as an application of this model. In [4], the authors established the maximum
principle for the multi-term time-space Riesz–Caputo fractional differential equation,
uniqueness and continuous dependence of the solution as well as presented a numeri-
cal method for the specified equation. In recent years, the study of maximum principle
has attracted a lot of attention, we refer the reader to papers [5–10] and the references
therein.

The importance of Hadamard fractional calculus has risen. For its recent study and de-
velopment, we refer to [11–20]. The maximum principle for IBVP with the Hadamard frac-
tional derivative has just been awakened. Only in [21], Kirane and Torebek obtained the
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extreme principles for the Hadamard fractional derivative and applied the extreme prin-
ciples to develop some Hadamard fractional maximum principles, by which the authors
show the uniqueness and continuous dependence of the solution of a class of Hadamard
time-fractional diffusion equations.

In this article, we study the following multi-index Hadamard fractional diffusion equa-
tion:

P
(HDt

)
v(x, t) = –Lv(x, t) + C(x, t)v(x, t) + �(x, t), (x, t) ∈ � × (1, T]. (1.1)

Here, Lv is a uniformly elliptic operator

Lv = –
n∑

i,j=1

φi,j(x, t)
∂2v

∂xi∂xj
+

n∑

i=1

ϕi(x, t)
∂v
∂xi

. (1.2)

Moreover, we suppose that the functions ϕi, φi,j (i, j = 1, 2, . . . , n) are continuous on �̄ ×
[1, T] and equipped with φi,j = φj,i on � × (1, T]. In addition, for a positive constant η,

n∑

i,j=1

φi,j(x, t)θiθj ≥ η‖θ‖2
2 ∀(x, t) ∈ � × (1, T] and θ ∈R

N . (1.3)

Clearly, the matrix A = (φi,j)n×n is positive definite and symmetric. P(H Dt) is a multi-term
Hadamard fractional derivative defined by

P
(HDt

)
= HDp

t +
m∑

i=1

ϑi
H Dpi

t , 0 < pm < · · · < p1 < p ≤ 1, 0 ≤ ϑi, i = 1, . . . , m, m ∈N
∗.

Besides this, we also suppose that C and ϑi are continuous on � × (1, T] equipped with
ϑi(x, t) ≥ 0 and C(x, t) ≤ 0.

The structure of the article is as follows: In Sect. 2 we give basic concepts and the defini-
tions of Hadamard fractional calculus, and also give some lemmas, which will be needed
in our subsequent proof. Further, the maximum principle of IBVP for the multi-index
Hadamard fractional differential equation is derived in Sect. 3. In Sect. 4, some applica-
tions are demonstrated, i.e., the uniqueness and continuous dependence of solution to the
multi-index linear (nonlinear) Hadamard fractional diffusion equations are discussed.

2 Preliminaries
Now, we list some basic definitions and lemmas needed in our subsequent proof.

From paper [22], Hadamard fractional integral and derivative of order p are defined as

(HIp
t g

)
(t) =

1

(p)

∫ t

1

(
log

t
y

)p–1 g(y)
y

dy

and

(HDp
t g

)
(t) =

1

(n – p)

(
t

d
dt

)n ∫ t

1

(
log

t
y

)n–p–1 g(y)
y

dy, n – 1 < p < n,

where n = [p] + 1 and log(·) = loge(·), respectively.
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Lemma 2.1 ([22]) If a, p, q > 0, then

(
H Ip

a

(
log

t
a

)q–1)
(y) =


(q)

(q + p)

(
log

y
a

)q+p–1

,

(
H Dp

a

(
log

t
a

)q–1)
(y) =


(q)

(q – p)

(
log

y
a

)q–p–1

.

Lemma 2.2 ([21]) For 0 < p < 1, if g ∈ C1([1, T]) attains its maximum at t0 ∈ [1, T], then

(HDp
t g

)
(t0) ≥ (log t0)–p


(1 – p)
g(t0)

holds. Further, if g(t0) ≥ 0, then

(HDp
t g

)
(t0) ≥ 0.

Lemma 2.3 ([10]) Suppose that a function g ∈ C2(�̄) attains its maximum at x0 ∈ �, then

( n∑

i,j=1

φi,j(x)
∂2g

∂xi∂xj

)∣
∣∣
∣∣
x=x0

≤ 0

and
( n∑

i=1

ϕi(x)
∂g
∂xi

)∣∣
∣∣
∣
x=x0

= 0

hold.

3 Maximum principle
In this subsection, we develop some maximum principle of IBVP for the multi-index
Hadamard fractional diffusion equation, by means of which we shall show the unique-
ness and continuous dependence of the solution of the multi-index Hadamard fractional
diffusion equation.

First, consider the multi-index Hadamard fractional diffusion equation (1.1) with the
initial-boundary conditions:

v(x, 1) = a(x), x ∈ �, (3.1)

v(x, t) = b(x, t), (x, t) ∈ ∂� × [1, T], (3.2)

where � ∈R
N is an open domain with a smooth boundary ∂�. Denote

W∗ =
{

v(x, t)
∣∣∣

∂2v
∂xi∂xj

∈ C(�̄) and
∂v
∂t

∈ C
(
[1, T]

)}
. (3.3)

Theorem 3.1 Let �(x, t), C(x, t) be nonpositive on �× (1, T] and v(x, t) ∈ W∗ be a solution
of IBVP (1.1) and (3.1)–(3.2). It follows that

max v(x, t) ≤ max
{

max
x∈�

a(x), max
(x,t)∈∂�×[1,T]

b(x, t), 0
}

.
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Proof First of all, suppose that the statement is violated, then there exists (x0, t0) ∈ � ×
(1, T] such that v(x, t) attains the maximum value v(x0, t0) and satisfies

v(x0, t0) ≥ max
{

max
x∈�

a(x), max
(x,t)∈∂�×[1,T]

b(x, t), 0
}

= N > 0.

Let δ = v(x0, t0) – N > 0. For ∀(x, t) ∈ �̄ × [1, T], let us introduce the auxiliary function

ζ (x, t) = v(x, t) +
δ

2

(
1 –

log t
log T

)
.

From the definition of ζ , we get

ζ (x, t) ≤ v(x, t) +
δ

2
, (x, t) ∈ �̄ × [1, T],

and

ζ (x0, t0) > v(x0, t0) = δ + N > δ + v(x, t) > ζ (x, t) +
δ

2
, (x, t) ∈ � × {1} ∪ ∂� × [1, T].

The last inequality means that ζ (x, t) cannot get the maximum on � × {1} ∪ ∂� × [1, T].
Without loss of generality, put (x∗, t∗) to be a maximum point of ζ (x, t) on �̄× [1, T], then
we have

ζ
(
x∗, t∗) > ζ (x0, t0) > δ + N > 0, x∗ ∈ �, 1 < t∗ ≤ T .

It follows from Lemma 2.3 that

Lζ (x, t)
∣
∣
(x,t)=(x∗ ,t∗)

=

(

–
n∑

i,j=1

φi,j
(
x, t∗)∂2(v(x, t∗) + δ

2 (1 – log t∗
log T ))

∂xi∂xj

+
n∑

i=1

ϕi
(
x, t∗)∂(v(x, t∗) + δ

2 (1 – log t∗
log T ))

∂xi

)∣
∣∣
∣∣
x=x∗

= –

( n∑

i,j=1

φi,j
(
x, t∗)∂2v(x, t∗)

∂xi∂xj

)∣∣
∣∣
∣
x=x∗

+

( n∑

i=1

ϕi
(
x, t∗)∂v(x, t∗)

∂xi

)∣∣
∣∣
∣
x=x∗

≥ 0.

According to Lemma 2.2 and ϑi(x, t) ≥ 0, we know

P
(HDt

)
ζ
(
x∗, t∗) = HDp

t ζ
(
x∗, t∗) +

m∑

i=1

ϑi
(
x∗, t∗)HDpi

t ζ
(
x∗, t∗)

≥ (log t∗)–p


(1 – p)
ζ
(
x∗, t∗) +

m∑

i=1

ϑi
(
x∗, t∗) (log t∗)–p


(1 – p)
ζ
(
x∗, t∗)

> 0.
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By the definition of ζ (x, t) and Lemma 2.1, we obtain

(
P
(HDt

)
v(x, t) + Lv(x, t) – C(x, t)v(x, t)

)∣∣
(x∗ ,t∗)

= P
(HDt

)
ζ
(
x∗, t∗) +

δ

2 log T

(
1


(2 – p)
(
log t∗)1–p +

m∑

i=1

ϑi
1


(2 – pi)
(
log t∗)1–pi

)

+ Lζ
(
x∗, t∗) – C

(
x∗, t∗)

(
ζ
(
x∗, t∗) –

δ

2

(
1 –

log t∗

log T

))

≥ δ

2 log T

(
1


(2 – p)
(
log t∗)1–p +

m∑

i=1

ϑi
1


(2 – pi)
(
log t∗)1–pi

)

– C
(
x∗, t∗) δ

2
log t∗

log T

> 0,

which is not in accordance with �(x∗, t∗) ≤ 0. �

In the same way, we can prove the following.

Theorem 3.2 Let functions � , C be nonnegative on � × (1, T] and v(x, t) ∈ W∗ be a solu-
tion of IBVP (1.1) and (3.1)–(3.2), it follows that

v(x, t) ≥ min
{

min
x∈�

a(x), min
(x,t)∈∂�×[1,T]

b(x, t), 0
}

.

4 Application of the maximum principle
Theorem 4.1 Let C(x, t) be nonpositive on �× (1, T] and v(x, t) ∈ W∗ be a solution of IBVP
(1.1) and (3.1)–(3.2). Then

‖v‖C(�̄×[1,T]) ≤ max{N0, N1} + 2
(log T)p


(1 + p)
N (4.1)

holds, where

N0 = ‖a‖C2(�̄), N1 = ‖b‖C1(∂�×(1,T]), N = ‖�‖C(�̄×[1,T]).

Proof For ∀(x, t) ∈ �̄ × [1, T], set the auxiliary function

ψ(x, t) = v(x, t) –
N


(1 + p)
(log t)p,

then ψ(x, t) is a solution of (1.1) with the function

�1(x, t) = �(x, t) – N –
m∑

i=1

ϑi(x, t)
N


(pi + 1 – p)
(log t)pi–p + C(x, t)

N

(1 + p)

(log t)p,

b1(x, t) = b(x, t) –
N


(1 + p)
(log t)p

instead of �(x, t) and b(x, t), respectively. Since �1(x, t) ≤ 0, we apply the maximum prin-
ciple (Theorem 3.1) to ψ(x, t), we can get

ψ(x, t) ≤ max

{
N0, N1 +

N

(1 + p)

(log T)p
}

.
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Therefore,

v(x, t) ≤ max{N0, N1} + 2
N


(1 + p)
(log T)p, (x, t) ∈ �̄ × [1, T]. (4.2)

Again, set another auxiliary function

� (x, t) = v(x, t) +
N


(1 + p)
(log t)p,

and applying the minimum principle (Theorem 3.2), we obtain

v(x, t) ≥ – max{N0, N1} – 2
N


(1 + p)
(log T)p, (x, t) ∈ �̄ × [1, T]. (4.3)

Inequalities (4.2) and (4.3) together complete the proof of the theorem. �

Theorem 4.2 The solution of problem (1.1) and (3.1)–(3.2) depends continuously on the
data given. That is, if

‖� – �̄‖C(�̄×[1,T]) ≤ ε, ‖a – ā‖C2(�̄) ≤ ε0, ‖b – b̄‖C1(∂�×[1,T]) ≤ ε1,

then the estimate

‖v – v̄‖C(�̄×[1,T]) ≤ max{ε0, ε1} + 2
(log T)p


(1 + p)
ε (4.4)

for the corresponding classical solution v(x, t) and v̄(x, t) holds true.

The last inequality (4.4) is a simple consequence of norm estimate (4.1). Applying The-
orem 4.1 and replacing � , a, and b by � – �̄ , a – ā, and b – b̄ in problem (1.1), (3.1), and
(3.2), respectively, one can easily prove Theorem 4.2.

Theorem 4.3 Assume that �(x, t) ≤ 0, C(x, t) ≤ 0, ∀(x, t) ∈ �̄× [1, T], and v(x, t) ∈ W∗ is a
solution of IBVP (1.1) and (3.1)–(3.2). If a(x) ≤ 0, x ∈ �, and b(x, t) ≤ 0, (x, t) ∈ ∂�× [1, T],
then

v(x, t) ≤ 0, (x, t) ∈ �̄ × [1, T].

Theorem 4.4 If the inequality is reversed in Theorem 4.3, then the inequality of the con-
clusion is also reversed.

From Theorems 4.3 and 4.4, the following remark holds.

Remark 4.1 If functions � , C, a, b are zero in Theorem 4.3 (or 4.4), then v(x, t) is also zero
on �̄ × [1, T].

Now, let us consider the uniqueness of solution for the multi-index nonlinear Hadamard
fractional diffusion equation

P
(HDt

)
v(x, t) = –Lv(x, t) + C(x, t)v(x, t) + �(x, t, v), (x, t) ∈ � × (1, T] (4.5)

with initial boundary value conditions (3.1)–(3.2).
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Theorem 4.5 If the smooth function �(x, t, v) of diffusion equation (4.5) is nonincreas-
ing with respect to the third variable and C(x, t) ≤ 0, then the multi-index nonlinear
Hadamard fractional diffusion problem (4.5) and (3.1)–(3.2) has at most one solution
v(x, t) ∈ W∗.

Proof Let v1, v2 ∈ W∗ be two solutions of Eq. (4.5) with initial boundary value conditions
(3.1)–(3.2). Define an auxiliary function on �̄ × [1, T]

P(x, t) = v1(x, t) – v2(x, t).

Then P satisfies the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P(HDt)P(x, t) + LP(x, t) – C(x, t)P(x, t)

= �(x, t, v1) – �(x, t, v2), (x, t) ∈ � × (1, T],

P(x, 1) = 0, x ∈ �,

P(x, t) = 0, (x, t) ∈ ∂� × [1, T].

(4.6)

It follows from the assumptions on � that

�(·, v1) – �(·, v2) =
∂�

∂v
(ṽ)(v1 – v2) =

∂�

∂v
(ṽ)P(x, t) ≤ 0, (4.7)

where ṽ = λv1 + (1 – λ)v2 for some 0 ≤ λ ≤ 1.
Since � is nonincreasing with respect to the third variable, i.e., ∂�

∂v ≤ 0, it follows from
Theorem 4.3 that, for the multi-index nonlinear Hadamard fractional diffusion problem
(4.6),

P(x, t) ≤ 0, (x, t) ∈ �̄ × [1, T]. (4.8)

In the same way, applying Theorem 4.3 to function –P(x, t), for (x, t) ∈ �̄ × [1, T], the
inequality

–P(x, t) ≤ 0 (4.9)

holds. Thus, (4.8) and (4.9) imply P(x, t) = 0. This completes the proof. �

It is obvious to observe from the proof process of Theorem 4.5.

Remark 4.2 If ∂�
∂v (ṽ) + C ≤ 0, then the conclusion of Theorem 4.5 holds.

Corollary 4.1 If the function C is nonpositive on �̄× [1, T], then IBVP (1.1) and (3.1)–(3.2)
has at most one solution on W∗.
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