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Abstract
In this paper, we study the following Schrödinger–Poisson system inR

3

{
(–�)σu + A(y)u + B(y)φ(y)u = b(y)|u|p–1u, y ∈R

3,

(–�)σφ = B(y)u2, y ∈R
3,

with 3
4 < σ < 1, p ∈ (3, 3+2σ3–2σ ). Then, under some suitable assumptions on the

coefficients not requiring any symmetry property, we prove the existence of a bound
state solution of the above problem.

MSC: 35J10; 35J60

Keywords: Schrödinger–Poisson system; Bound state solutions; Variational methods

1 Introduction
This paper concerns the non-autonomous Schrödinger–Poisson system

⎧⎨
⎩(–�)σ u + A(y)u + B(y)φ(y)u = b(y)|u|p–1u, y ∈R

3,

(–�)σ φ = B(y)u2, y ∈R
3,

(1.1)

where 3
4 < σ < 1, p ∈ (3, 3+2σ

3–2σ
), A(y), B(y), and b(y) are positive functions. Here B(y) : R3 →

R denotes the nonnegative measurable function which represents a nonconstant charge
corrector to the density u2 and A(y) and b(y) are called the potentials of system (1.1).
Moreover, the fractional Laplacian (–�)σ in R

N is defined by

(–�)σ u = CN ,σ P.V .
∫
RN

u(x) – u(y)
|x – y|N+2σ

dy,

where P.V. stands for the Cauchy principal value, CN ,σ is a normalization constant.
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This kind of system also arises in many fields of physics. Indeed, one considers the fol-
lowing system:

⎧⎨
⎩i ∂ψ

∂t + (–�)σ ψ + (A(y) – h)ψ + B(y)φ(y)ψ = b(y)|ψ |p–1ψ , y ∈R
3, t ∈ R,

(–�)σφ = B(y)ψ2, y ∈R
3,

(1.2)

where i is the imaginary unit, (–�)σ is the fractional operator. From the physical as well
as the mathematical point of view, a central issue is the existence and dynamic of standing
waves of (1.2). By standing waves, we want to look for the form ψ = e–ihtu of the solu-
tion of (1.2), where y ∈ R

3, t > 0. It is clear that ψ solves (1.2) if and only if u solves (1.1).
The fractional Schrödinger equation in (1.2) is an important model in the study of frac-
tional quantum mechanics. In Refs. [12, 13], Laskin introduced this equation by expanding
the Feynman path integral from the Brownian-like to the Lévy-like quantum mechanical
paths.

Many researches have been devoted to the study of (1.1) when σ = 1, i.e.,

⎧⎨
⎩–�u + A(y)u + B(y)φ(y)u = b(y)|u|p–1u, y ∈R

3,

–�φ = B(y)u2, y ∈R
3,

(1.3)

which mainly concerns either the autonomous or the non-autonomous case. But it is well
known that, dealing with system (1.3), one has to face different kinds of difficulties, which
are related to potentials and the unboundedness of the space R

3. So many studies were
devoted to the autonomous or the non-autonomous case in which the coefficients are
supposed to be radial. In [19], the existence of multiple solutions of (1.3) have been found
in a radial setting under some suitable assumptions on A(y), B(y), b(y). In [16], the author
considered the case that B = 1, A(y), b(y) are radial and satisfy some decay conditions and
proved the existence of nontrivial positive classical mountain-pass solution of (1.3). More-
over, some more general case, replacing b(y)|u|p–1u by f (x, u), was considered in [25, 29].
More recently, many contributions to (1.3) have also been given in which no symmetry as-
sumptions are given on the coefficients appearing in (1.3). Cerami and Molle [6] obtained
the existence of bound state, finite energy solution of (1.3) under suitable assumptions
on the decay rate of the coefficients A, B, b. In [17], Mercuri and Tyler proved the exis-
tence of mountain-pass solutions and least energy solutions to the nonlinear Schrödinger–
Poisson system (1.3) with A(y) = b(y) = 1 and p ∈ (2, 5) under different assumptions on
B : R3 → R+ at infinity. Furthermore, they also studied the singularly perturbed problem
and found necessary conditions for concentration at points to occur for solutions to the
singularly perturbed problem in various functional settings. For more results on the ex-
istence of positive or sign-changing solutions, ground and bound states, one can refer to
[1, 2, 5, 9, 18, 20, 24] and the references therein.

Since fractional Schrödinger equation is coupled with a fractional Poisson term φ(y)u,
the existence of multiple nonlocal terms causes some mathematical difficulties and makes
the study of system (1.1) very interesting. In recent years, several scholars paid their atten-
tion to the existence of positive, ground state, semiclassical, and other solutions to frac-
tional Schrödinger–Poisson system or similar problems. For the information, one can refer
to [21–23, 27–29] and the references therein. However, it is worth to point out that in most
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of the papers mentioned above, the study involves positive ground state solutions to (1.1).
In the present paper we consider a situation that has to be studied in a different way. We
will find the positive solution that differs from positive ground state solution. Here a solu-
tion u of (1.1) is nontrivial if u �= 0. A solution of (1.1) is a nontrivial bound state solution
if u is a nontrivial solution. A solution u with u > 0 is called a positive solution. A solution
is called a nontrivial ground state solution if its energy (see (2.3)) is minimal among all the
nontrivial solutions of (1.1).

In order to state our main result, we give the conditions imposed on A(y), B(y), and b(y)
as follows:

(A1) A(y) = A∞ + W (y), where A∞ ∈R
+\{0} and W (y) ∈ L3/2σ (R3) is a nonnegative func-

tion such that

lim|y|→∞ |y|–3σ–3W (y) = 0.

(A2) 0 �≡ B(y) ∈ L2(R3) is a nonnegative function such that, for some ε > 2σ and ĉ, c, R̄ > 0,

B(y) ≤ ĉ
(1 + |y|)ε ≤ c

|y|ε , |y| > R̄.

(A3) b(y) = b∞ – β(y), where b∞ ∈ R
+\{0} and 0 ≤ β(y) < b∞ and

lim|y|→∞ |y|–3σ–3β(y) = 0.

Now we state our main result as follows.

Theorem 1.1 Suppose that conditions (A1), (A2), (A3) hold and p ∈ (3, 3+2σ
3–2σ

). Then (1.1)
admits a bound state solution (u,φ) ∈ Hσ (R3) × Dσ (R3), whose components are positive
functions.

Remark 1.2 It should be pointed out that in this paper, we just consider (1.1) with 3
4 < σ < 1.

But it would be interesting if one can find an analogous result to Theorem 1.1 to (1.1) for
all 0 < σ < 1. However, in the radial setting, Bellazzini et al. [4] studied (1.1) with A(y) = 0,
B(y) = b(y) = 1 by discussing the existence of the optimizers of the Gagliardo–Nirenberg
type inequalities.

To the best of our knowledge, this is the first result on the existence of bound state
solution of (1.1) with competing coefficients. It is worth mentioning that the conditions
imposed on our potentials decay algebraically at infinity, which is a contrast to the fact
that the potentials decay exponentially at infinity in [6].

Here we give the following notations which can be used in this paper.
(i) Hσ (R3) is the usual Sobolev space endowed with the standard scalar product and

norm

(u, v) =
∫
R3

[
(–�)

σ
2 u(–�)

σ
2 v + uv

]
, ‖u‖2

Hσ =
∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + u2).

(ii) Dσ (R3) is the completion of C∞
0 (R3) with the norm defined by

‖u‖2
Dσ =

∫
R3 |(–�) σ

2 u|2.
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(iii) ‖u‖q is the norm of the Lebesgue space Lq(R3).
(iv) Denote by C > 0 various positive constants which may vary from one line to

another and which are not important for the analysis of the problem.
This paper is organized as follows. In Sect. 2, we give some preliminary results which

contain some known results and some useful estimates. And then the proof of Theo-
rem 1.1 is given in Sect. 3.

2 Preliminaries
In this part we mainly give some basic knowledge which will be used later. We first show
that the second equation of (1.1) can be solved. For u ∈ Hσ (R3), the linear functional Ju is
defined in Dσ (R3) by

Ju(v) =
∫
R3

B(y)u2v.

Applying condition (A2) and Hölder’s inequality, we find that

∣∣Ju(v)
∣∣ ≤ C‖u‖2

12
3+2σ

‖v‖Dσ .

By the Lax–Milgram theorem, we know that there exists unique φu ∈ Dσ (R3) such that

∫
R3

(–�)
σ
2 φu(–�)

σ
2 v =

∫
R3

B(y)u2v, ∀v ∈ Dσ
(
R

3).

So, φu is a weak solution of (–�)σφ = B(y)u2, and there holds

φu(y) = Cσ

∫
R3

B(x)u2(x)
|y – x|3–2σ

dx, (2.1)

where Cσ = π– 3
2 2–2σ Γ ( 3–2σ

2 )
Γ (σ ) .

Thus, substituting φu into the first equation of (1.1), then (1.1) is reduced to

(–�)σ u + A(y)u + B(y)φu(y)u = b(y)|u|p–1u, y ∈R
3. (2.2)

Moreover, it is well known that solutions of (1.1) correspond to the critical points of the
energy functional

I(u) =
1
2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) +
1
4

∫
R3

B(y)φuu2 –
1

p + 1

∫
R3

b(y)|u|p+1. (2.3)

Without loss of generality, in what follows, we assume that A∞ = b∞ = 1, and let us now
define

Φ(u) = φu.

Then in the following, we summarize some properties of Φ , useful to studying our prob-
lem, and which can be verified by using the same argument as the case of Poisson equations
in D1,2(R3) (see [8, 19]).
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Lemma 2.1
(1) Φ is continuous;
(2) Φ maps bounded sets into bounded sets;
(3) Φ(tu) = t2Φ(u).

Lemma 2.2 Suppose that un ⇀ u in Hσ (R3), then
(1) Φ(un) → Φ(u) in Dσ (R3);
(2)

∫
R3 B(y)φun u2

n dy → ∫
R3 B(y)φuu2 dy;

(3)
∫
R3 B(y)φunϕ dy → ∫

R3 B(y)φuϕ dy, ∀ϕ ∈ Hσ (R3).

It is not difficult to show that the functional I is bounded neither from below, nor from
above. So it is convenient to consider I restricted to a natural constraint, the Nehari man-
ifold, which contains all the critical points of I .

Set

N =
{

u ∈ Hσ
(
R

3)\{0} :
〈
I ′(u), u

〉
= 0

}
.

So, for all u ∈N , we are led to

I|N (u) =
(

1
2

–
1

p + 1

)∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) +
(

1
4

–
1

p + 1

)∫
R3

B(y)φuu2

=
1
4

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) +
(

1
4

–
1

p + 1

)∫
R3

b(y)|u|p+1, (2.4)

which tells that I is bounded from below on N .
Then we have the following.

Lemma 2.3
(i) N is a C1 regular manifold diffeomorphic to sphere of Hσ (R3);

(ii) I is bounded from below on N by a positive constant;
(iii) u is a free critical point of I if and only if u is a critical point of I constrained on N .

Proof (i) Let u ∈ Hσ (R3)\{0} with ‖u‖Hσ = 1. Then we claim that there exists a unique
t ∈R

+\{0} such that tu ∈N . In fact, considering that t satisfies

0 =
〈
I ′(tu), tu

〉
= t2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) + t4
∫
R3

B(y)φuu2 – tp+1
∫
R3

b(y)|u|p+1, (2.5)

we have

t2
(

1 +
∫
R3

W (y)u2(y) + t2
∫
R3

B(y)φuu2 – tp–1
∫
R3

b(y)|u|p+1
)

=: t2(1 + d1 + t2d2 – tp–1d3
)

= 0 (2.6)

with d1, d2, d3 > 0. So, from p > 3, the equation 1 + d1 + t2d2 – tp–1d3 = 0 has a unique
solution t := tu > 0 and then tuu ∈N , which is called the projection of u on N , satisfies

I(tuu) = max
t>0

I(tu). (2.7)
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(ii) Now suppose that u ∈N . Then

0 =
∫
R3

(∣∣(–�)
σ
2 u

∣∣2 +
(
1 + W (y)

)
u2) +

∫
R3

B(y)φuu2 –
∫
R3

b(y)|u|p+1

≥ ‖u‖2
Hσ – C0‖u‖p+1

Hσ , (2.8)

which yields

‖u‖Hσ ≥ C1 > 0, ∀u ∈N . (2.9)

Thus, using (2.4) and (2.9), we find

I(u) =
(

1
2

–
1

p + 1

)∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) +
(

1
4

–
1

p + 1

)∫
R3

B(y)φuu2

≥
(

1
2

–
1

p + 1

)
‖u‖2

Hσ > C2 > 0. (2.10)

(iii) First, it is obvious that if u �= 0 is a critical point of I , I ′(u) = 0 and then u ∈ N . On
the other hand, writing G(u) = 〈I ′(u), u〉, then from (2.9), for u ∈N , we get

〈
G′(u), u

〉
= 2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) + 4
∫
R3

B(y)φuu2 – (p + 1)
∫
R3

b(y)|u|p+1

= (1 – p)
∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) + (3 – p)
∫
R3

B(y)φuu2

≤ (1 – p)‖u‖2
Hσ < 0. (2.11)

Letting u be a critical point of I constrained on N , then there is λ ∈ R such that

I ′(u) = λG′(u).

Hence

0 = G(u) =
〈
I ′(u), u

〉
= λ

〈
G′(u), u

〉
,

which, by (2.11), implies that λ = 0 and then I ′(u) = 0. �

Now, we introduce the following problem:

⎧⎨
⎩(–�)σ u + u = |u|p–1u, y ∈R

3,

u ∈ Hσ (R3).
(2.12)

Concerning problem (2.12), we have the following proposition.

Proposition 2.4 (see [10, 11]) (2.12) has a ground state, positive solution U ∈ Hσ (R3),
which is radially symmetric about the origin, unique up to translations, and satisfies

C1

1 + |y|3+2σ
≤ U(y) ≤ C2

1 + |y|3+2σ
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and

|∂yj U| ≤ C
1 + |y|3+2σ

, j = 1, 2, 3.

Moreover, the linearized operator L0 := (–�)σ +1–p|U|p–1 is non-degenerate, i.e., its kernel
is given by

ker L0 = span

{
∂U
∂y1

,
∂U
∂y2

,
∂U
∂y3

}
.

Throughout this paper, we write by I∞ : Hσ (R3) →R the functional of (2.12), that is,

I∞(u) =
1
2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + u2) –
1

p + 1

∫
R3

|u|p+1,

and by N∞ the corresponding Nehari manifold

N∞ =
{

u ∈ Hσ
(
R

3) \ {0} : ‖u‖2
Hσ = ‖u‖p+1

p+1
}

.

Furthermore, for any u ∈ Hσ (R3) \ {0}, there exists a unique hu > 0 such that huu ∈ N∞,
called the projection of u on N∞, and

I∞(huu) = max
h>0

I∞(hu). (2.13)

On the other hand, we find that ∀u ∈N∞,

I∞(u) =
(

1
2

–
1

p + 1

)
‖u‖2

Hσ =
(

1
2

–
1

p + 1

)
‖u‖p+1

p+1, (2.14)

and in what follows, we denote

m∞ := inf
u∈N∞

I∞(u) =
(

1
2

–
1

p + 1

)
‖U‖2

Hσ =
(

1
2

–
1

p + 1

)
‖U‖p+1

p+1.

Remark 2.5 It is worth noticing that any sign-changing solution u0 of (2.12) satisfies
I∞(u0) ≥ 2m∞. In fact, suppose that u0 = u+

0 – u–
0 and 〈I ′∞(u0), u0〉 = ‖u0‖2

Hσ – ‖u0‖p+1
p+1.

Then we have

0 =
∥∥u+

0
∥∥2

Hσ –
∥∥u+

0
∥∥p+1

p+1 =
〈
I ′
∞(u0), u+

0
〉

=
〈
I ′
∞

(
u+

0
)
, u+

0
〉
,

which implies u+
0 ∈ N∞ and so I∞(u+

0 ) ≥ m∞. Similarly, I∞(u–
0 ) ≥ m∞. Hence, I∞(u0) ≥

2m∞.

Next, we deal with the behavior of the Palais–Smale sequences of I . This study will be
important for our research of the critical point of I .

Lemma 2.6 Let u ∈ Hσ (R3), tuu, huu be the projections of it on N and N∞ respectively.
Then

hu ≤ tu.
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Proof Since tuu ∈N and huu ∈N∞, we have

t2
u‖u‖2

Hσ = –t2
u

∫
R3

W (y)u2 – t4
u

∫
R3

B(y)φuu2 + tp+1
u

∫
R3

b(y)|u|p+1

and

h2
u‖u‖2

Hσ = hp+1
u

∫
R3

|u|p+1.

So from (A3), we find

hp–1
u =

‖u‖2
Hσ

‖u‖p+1
p+1

=
tp–1
u

∫
R3 b(y)|u|p+1 – t2

u
∫
R3 B(y)φuu2 –

∫
R3 W (y)u2

‖u‖p+1
p+1

≤ tp–1
u ,

and then our result follows. �

Lemma 2.7 Let {un} be a (PS) sequence of I constrained on N , that is, un ∈N and (i) I(un)
is bounded, (ii) ∇I|N (un) → 0 in Hσ (R3). Then there exist a solution u∗ of (1.1), a number
k ∈ N ∪ {0}, k functions u1, . . . , uk of Hσ (R3), and sequences of points {yj

n}, 0 ≤ j ≤ k, such
that

(1) |yj
n| → +∞, |yi

n – yj
n| → +∞, if i �= j, n → +∞;

(2) un –
∑k

j=1 uj(· – yj
n) → u∗ in Hσ (R3);

(3) I(un) → I(u∗) +
∑k

j=1 I∞(uj);
(4) uj are nontrivial weak solutions of (2.12). Here, we must emphasize that in the case

k = 0, the above holds without uj.

Proof First, since I(un) is bounded, using (2.10), one has

I(un) ≥
(

1
2

–
1

p + 1

)
‖un‖2

Hσ ,

which tells that {un} is bounded in Hσ (R3). Now we claim that

∇I(un) → 0 in Hσ
(
R

3). (2.15)

In fact, from the assumption, we find

o(1) = ∇I|N (un) = ∇I(un) – λn∇G(un), (2.16)

where λn ∈R and G can be seen in (2.11). So, by (2.16), we get

o(1) =
〈∇I(un), un

〉
– λn

〈∇G(un), un
〉
. (2.17)

Being 〈∇I(un), un〉 = 0 and 〈∇G(un), un〉 < 0 from (2.11), it follows from (2.17) that λn → 0
as n → +∞. So, by the boundedness of ∇G(un), we have λn∇G(un) = o(1) and then the
claim holds by applying (2.16).
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On the other hand, since un is bounded in Hσ (R3), there is u∗ ∈ Hσ (R3) such that, up to
a subsequence, un ⇀ u∗ in Hσ (R3) and in Lp+1(R3), and un → u∗ a.e. in R

3. So, applying
Lemma 2.2 and (2.15), we get that u∗ is a weak solution of (1.1).

If un → u∗ in Hσ (R3), we are done. Otherwise, we assume z1
n(y) = un(y) – u∗(y) and pro-

ceed as done in [8], our desired results follow. �

3 Proof of the main result
To prove our main theorem, we first give some important results.

Proposition 3.1 We have infN I = m∞ and the infimum is not achieved.

Proof First we write m := infN I and by Lemma 2.3, m > 0. Now let us show that m ≥ m∞.
For all u ∈N∞, by the assumptions on B(y), W (y), β(y), and (2.7), we find

I∞(u) =
1
2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + u2) –
1

p + 1

∫
R3

|u|p+1

≤ 1
2

∫
R3

(∣∣(–�)
σ
2 u

∣∣2 + A(y)u2) +
1
4

∫
R3

B(y)φuu2 –
1

p + 1

∫
R3

b(y)|u|p+1

= I(u) ≤ I(tuu),

from which, considering that N∞ and N are diffeomorphic to sphere of Hσ (R3), we find

m∞ = inf
u∈N∞

I∞(u) ≤ inf
u∈N∞

I(tuu) = inf
v∈N

I(v) = m.

Next, we will prove the opposite side m ≤ m∞. To do this, take un = tnUn, where Un =
U(y – zn), tn = tUn , and {zn} is a sequence of points in R

3 such that |zn| → ∞ as n → ∞.
Now we claim that

lim
n→∞ I(un) = m∞. (3.1)

In fact, since Un is bounded and weakly converges to zero in Hσ (R3) and from Lemma 2.2,
we find

lim
n→∞

∫
R3

B(y)φUn U2
n = 0. (3.2)

Using condition (A1), we can get that

lim
n→∞

∫
R3

W (y)U2
n = 0. (3.3)

Thus, by (2.4), in order to prove (3.1), we just need to show that tn → 1 as n → ∞. To
this end, being tnUn ∈N , we obtain that

‖U‖2
Hσ = ‖Un‖2

Hσ = –
∫
R3

W (y)U2
n(y) – t2

n

∫
R3

B(y)φUn U2
n + tp–1

n

∫
R3

b(y)|Un|p+1. (3.4)

Noting that

lim
n→∞

∫
R3

b(y)|Un|p+1 = lim
n→∞

∫
R3

(
1 – β(y)

)|Un|p+1 =
∫
R3

|U|p+1,
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and

‖U‖2
Hσ = ‖U‖p+1

p+1.

Thus, from (3.2)–(3.4), we find that limn→∞ tn = 1 and then m ≤ limn→∞ I(un) = m∞.
Finally, to finish our proof, we assume by contradiction that there exists u∗ ∈ N such

that I(u∗) = m = m∞. Letting hu∗ > 0 such that hu∗u∗ ∈ N∞, then using Lemma 2.6, one
has

m∞ ≤ I∞(hu∗u∗)

=
(

1
2

–
1

p + 1

)
‖hu∗u∗‖2

Hσ

≤
(

1
2

–
1

p + 1

)
h2

u∗

∫
R3

(∣∣(–�)
σ
2 u∗

∣∣2 + A(y)u∗2)

+
(

1
4

–
1

p + 1

)
h4

u∗

∫
R3

B(y)φu∗ (y)u2
∗

≤
(

1
2

–
1

p + 1

)∫
R3

(∣∣(–�)
σ
2 u∗

∣∣2 + A(y)u∗2) +
(

1
4

–
1

p + 1

)∫
R3

B(y)φu∗ (y)u2
∗

= I(u∗) = m = m∞,

which implies hu∗ = 1 and
∫
R3

B(y)φu∗ (y)u2
∗ = 0. (3.5)

Thus, u∗ ∈ N∞ and I∞(u∗) = m∞. But it follows from Proposition 2.4 that up to trans-
lations, U is unique and m∞ = I∞(U). So, by the uniqueness of the family achieving m∞,
we infer that

u∗ = U(y – z0), ∀y ∈R
3

for some z0 ∈R
3. This contradicts (3.5) and our result has been proved. �

Proposition 3.2 The functional I constrained on N satisfies a (PS)d sequence for all d ∈
(m∞, 2m∞). Moreover, if {un} is a (PS)m∞ sequence, then, up to a subsequence, we have

un = U(y – zn) + o(1)

with zn ∈R
3, |zn| → +∞.

Proof Let {un} be a (PS)d sequence of I constrained on N . Then it follows from (3) of
Lemma 2.7 that

d = lim
n→∞ I(un) = I

(
u∗) +

k∑
j=1

I∞
(
uj), (3.6)

where un ⇀ u∗ and I∞(uj) ≥ m∞. Since m∞ < d < 2m∞, from (3.6), we can infer that k < 2.
Now if k = 1, there are the following two possibilities:
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(i) u∗ �= 0, being I(u∗) > m∞, we see

2m∞ > d = lim
n→∞ I(un) = I

(
u∗) + I∞

(
u1) > 2m∞,

this is a contradiction.
(ii) u∗ = 0, then I(u∗) = 0 and

d = lim
n→∞ I(un) = I∞

(
u1) ∈ (m∞, 2m∞),

this is impossible since either I∞(u1) = m∞ or I∞(u1) ≥ 2m∞ if u1 is changing sign.
Therefore, from the above, we can deduce k = 0. �

From Proposition 3.1, we know that (1.1) can not be solved by minimization. So we
will prove the existence of a higher level solution by the barycenter technique, which has
been successfully used in the case of scalar filed equation (see [3]). Let us now recall the
definition of barycenter of a function u ∈ Hσ (R3)\{0}, which was also introduced in [6, 7].
Set

αu(y) =
1

|B(0, 1)|
∫

B(y,1)

∣∣u(x)
∣∣dx,

and then α(u) is bounded and continuous. So the function

α̂(y) =
[
αu(y) –

1
2

max
y∈R3

αu(y)
]+

is well defined, continuous and has compact support. Thus, we can define γ : Hσ (R3) \
{0} →R

3 as

γ (u) =
1

‖α̂‖1

∫
R3

α̂(y)y dy.

Then γ (u) is well defined and the following properties hold:
1. γ is continuous in Hσ (R3) \ {0}.
2. If u is a radial function, γ (u) = 0.
3. For all t �= 0 and for all u ∈ Hσ (R3) \ {0}, γ (tu) = γ (u).
4. Given z ∈R

3 and taking uz(y) = u(y – z), then γ (uz) = γ (u) + z.
Now we define

a0 = inf
{

I(u) : u ∈N ,γ (u) = 0
}

. (3.7)

Then we are led to the following lemma.

Lemma 3.3

a0 > m∞.
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Proof First, it is obvious to see that a0 ≥ m∞. Next we argue by contradiction, suppose
that a0 = m∞. Then there exists {un} such that un ∈ N , γ (un) = 0 and I(un) → m∞ = m.
Moreover, by Ekeland’s variational principle (see [15] or [26]), there is another sequence
ũn ∈N such that I(ũn) → m∞, ∇I|N (ũn) → 0 and ‖ũn – un‖Hσ → 0. Thus, by the proper-
ties of γ (u), we have γ (ũn) = o(1).

On the other hand, by Proposition 3.2, ũn(y) = U(y – zn) + o(1), where {zn} ⊂ R
3 and

|zn| → +∞. So we get

o(1) = γ (ũn) = γ
(
U(y – zn)

)
+ o(1) = zn + o(1),

which implies a contradiction. �

Now we define a set

S =
{

x ∈ R
3 : |x – e1| = 2

}
, where e1 = (1, 0, 0)

and a function

ϕ̄ρ[x, τ ](y) = (1 – τ )U(y – ρe1) + τU(y – ρx), y ∈R
3,ρ > 0.

Furthermore, we denote by ϕρ[x, τ ] the projection of ϕ̄ρ[x, τ ] on N and by ϕ∞,ρ[x, τ ] the
projection of ϕ̄ρ[x, τ ] on N∞. Thus, from the definitions of ϕρ[x, τ ] and ϕ∞,ρ[x, τ ], there
exist positive numbers tρ,x,τ := tϕ̄ρ [x,τ ] and hρ,x,τ := hϕ̄ρ [x,τ ] such that

ϕρ[x, τ ] = tρ,x,τ ϕ̄ρ[x, τ ], ϕ∞,ρ[x, τ ] = hρ,x,τ ϕ̄ρ[x, τ ]. (3.8)

Then we have the following.

Proposition 3.4
(i) γ (ϕρ[x, 1]) = ρx for all ρ > 0 and x ∈ S .

(ii) For every ρ > 0, there exists (x̄, τ̄ ) ∈ S × (0, 1) such that γ (ϕρ[x̄, τ̄ ]) = 0.

Proof (i) Note that ϕ̄ρ[x, 1](y) = U(y – ρx). Then, by the properties of γ (u), we find

γ
(
ϕρ[x, 1]

)
= γ

(
ϕ̄ρ[x, 1]

)
= γ

(
U(y – ρx)

)
= γ

(
U(y)

)
+ ρx = ρx.

(ii) For all ρ > 0, define the map Fρ : S × [0, 1] → R
3 by Fρ(x, τ ) = (1 – τ )ρe1 + τρx.

Hence, using (i) and the invariance of topological degree by homotopy, we can deduce
that

0 �= d
(
Fρ ,S × [0, 1), 0

)
= d

(
γ ◦ ϕρ ,S × [0, 1), 0

)
and then γ ◦ ϕρ[x, τ ] = 0 has a solution (x̄, τ̄ ) ∈ S × [0, 1). �

Proposition 3.5 There exists ρa ∈R
+\{0} such that, for all ρ > ρa,

B := max
{

I
(
ϕρ[x, 1]

)
, x ∈ S

}
< a0.
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Proof Being ϕρ[x, 1](y) = tρ,x,1ϕ̄ρ[x, 1](y) and ϕ̄ρ[x, 1](y) = U(y – ρx), with the same argu-
ment as the proof of (3.1), we can prove our result. �

Now we introduce a lemma, which can be found in [14].

Lemma 3.6 For any constant 0 < κ < N – 2σ , there is a constant C > 0 such that

∫
RN

1
|x|N–2σ

1
(1 + |y – x|)2σ+κ

dx ≤ C
(1 + |y|)κ .

From the above lemma, we have the following.

Lemma 3.7 There exists C > 0 such that

∫
R3

B(y)φU(·–ρξ )(y)U2(y – ρξ ) dy ≤ Cρ–(12+8σ )

for all ξ ∈R
3 with |ξ | ≥ 1 and ρ > 0.

Proof Without loss of generality, we can assume |ξ | = 1 and fix ξ = e1. Letting q such that
(( 1

2 – q)ρ)ε = (( 1
2 + q)ρ)6+4σ and ρ > R̄

1
2 –q

, then using condition (A2), Proposition 2.4, and
Lemma 3.6, we have

φU(·–ρe1)(y) =
∫
R3

1
|y – x|3–2σ

B(x)U2(x – ρe1) dx

=
(∫

{x1<( 1
2 –q)ρ}

+
∫

{x1>( 1
2 –q)ρ}

)
1

|y – x|3–2σ
B(x)U2(x – ρe1) dx

≤ C
|( 1

2 + q)ρ|2(3+2σ )

∫
{x1<( 1

2 –q)ρ}
B(x)

|y – x|3–2σ

+
C

|( 1
2 – q)ρ|ε

∫
{x1>( 1

2 –q)ρ}
U2(x – ρe1)
|y – x|3–2σ

≤ C
|( 1

2 + q)ρ|2(3+2σ )

(∫
{x1<( 1

2 –q)ρ}
B(x)

|y – x|3–2σ
+

∫
{x1>( 1

2 –q)ρ}
U2(x – ρe1)
|y – x|3–2σ

)

≤ C
|( 1

2 + q)ρ|2(3+2σ )
,

where we used that

∫
{x1<( 1

2 –q)ρ}
B(x)

|y – x|3–2σ
≤

(∫
{|x|<R̄}

+
∫

{|x|>R̄}

)
B(x)

|y – x|3–2σ

≤ C
(∫

{|x–y|< R̄
2 }∩{|x|<R̄}

+
∫

{|x–y|≥ R̄
2 }∩{|x|<R̄}

)
1

|y – x|3–2σ

+ C
∫
R3

1
(1 + |x|)ε |x – y|3–2σ

≤ C +
C

(1 + |y|)ε–2σ
≤ C,
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and similarly,

∫
{x1>( 1

2 –q)ρ}
U2(x – ρe1)
|y – x|3–2σ

≤ C.

As a result,

∫
R3

B(y)φU(·–ρξ )(y)U2(y – ρξ ) dy ≤ C
|( 1

2 + q)ρ|2(3+2σ )

∫
R3

B(y)U2(y – ρξ ) dy

≤ C
|( 1

2 + q)ρ|2(3+2σ )

(∫
{y1<( 1

2 –q)ρ}
B(y)U2(y – ρξ ) dy

+
∫

{y1>( 1
2 –q)ρ}

B(y)U2(y – ρξ ) dy
)

≤ C
|( 1

2 + q)ρ|2(6+4σ )
=

C
(( 1

2 + q)ρ)12+8σ
. �

Lemma 3.8 Let tρ,x,τ and hρ,x,τ be given in (3.8). There exists a constant C > 0 such that

tρ,x,τ < C, ∀ρ > 0,∀(x, τ ) ∈ S × (0, 1). (3.9)

Furthermore, tρ,x,τ = hρ,x,τ + o(ρ–2σ ).

Proof First, it follows from (2.5) that

tp–1
ρ,x,τ =

‖ϕ̄ρ[x, τ ]‖2
Hσ

‖ϕ̄ρ[x, τ ]‖p+1
p+1 –

∫
R3 β|ϕ̄ρ[x, τ ]|p+1

+
t2
ρ,x,τ

∫
R3 B(y)φϕ̄ρ [x,τ ]ϕ̄

2
ρ[x, τ ] +

∫
R3 W (y)ϕ̄2

ρ[x, τ ]

‖ϕ̄ρ[x, τ ]‖p+1
p+1 –

∫
R3 β|ϕ̄ρ[x, τ ]|p+1

. (3.10)

Note that

∥∥ϕ̄ρ[x, τ ]
∥∥

Hσ ≤ ∥∥U(y – ρe1)
∥∥

Hσ +
∥∥U(y – ρx)

∥∥
Hσ = 2‖U‖Hσ (3.11)

and

∥∥ϕ̄ρ[x, τ ]
∥∥p+1

p+1 ≥ (
(1 – τ )p+1 + τ p+1)∫

R3
Up+1 >

1
2p

∫
R3

Up+1 > 0. (3.12)

So (3.9) comes directly from (3.10)–(3.12) and since tρ,x,τ < C, from Lemma 3.7, one has

t2
ρ,x,τ

∫
R3

B(y)φϕ̄ρ [x,τ ]ϕ̄
2
ρ[x, τ ] = o

(
ρ–2σ–3). (3.13)

On the other hand, by assumptions (A1), (A3) and the decay property of U , we are led to

∫
R3

W (y)ϕ̄2
ρ[x, τ ] ≤ C

∫
R3

W (y)
(
U2(y – ρe1) + U2(y – ρx)

)
= o

(
ρ–2σ–3), (3.14)
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where we used that

∫
R3

W (y)U2(y – ρe1) =
(∫

{y1< 1
2 ρ}

+
∫

{y1> 1
2 ρ}

)
W (y)U2(y – ρe1)

≤ C
∫

{y1< 1
2 ρ}

W (y)
|y – ρe1|2(3+2σ ) + C

∫
{y1> 1

2 ρ}
U2(y – ρe1)

|y|3+3σ

≤ C
ρ6+4σ

+
C

ρ3+3σ
= o

(
ρ–2σ–3),

and similarly,

∫
R3

W (y)U2(y – ρx) = o
(
ρ–2σ–3).

With the same argument as above, we can infer that

∫
R3

β
∣∣ϕ̄ρ[x, τ ]

∣∣p+1 = o
(
ρ–2σ–3). (3.15)

Combining (3.11) and (3.12), we have

0 < C1 ≤ ∥∥ϕ̄ρ[x, τ ]
∥∥

p+1 ≤ 2‖U‖p+1

and

0 <
1
4
‖U‖Hσ ≤ ∥∥ϕ̄ρ[x, τ ]

∥∥
Hσ ≤ 2‖U‖Hσ .

Therefore,

‖ϕ̄ρ[x, τ ]‖2
Hσ

‖ϕ̄ρ[x, τ ]‖p+1
p+1 –

∫
R3 β|ϕ̄ρ[x, τ ]|p+1

=
‖ϕ̄ρ[x, τ ]‖2

Hσ

‖ϕ̄ρ[x, τ ]‖p+1
p+1

+ o
(
ρ–2σ–3). (3.16)

Inserting (3.14), (3.15), and (3.16) into (3.10), we deduce

tp–1
ρ,x,τ =

‖ϕ̄ρ[x, τ ]‖2
Hσ

‖ϕ̄ρ[x, τ ]‖p+1
p+1

+ o
(
ρ–2σ–3) = hp–1

ρ,x,τ + o
(
ρ–2σ–3). �

Proposition 3.9 There is a constant ρ∞ > 0 such that, for all ρ > ρ∞,

A := max
{

I
(
ϕρ[x, τ ]

)
: (x, τ ) ∈ S × [0, 1]

}
< 2m∞.

Proof First, by using (2.4), we can obtain that

I
(
ϕρ[x, τ ]

)
=

(
1
2

–
1

p + 1

)∥∥tρ,x,τ ϕ̄ρ[x, τ ]
∥∥2

Hσ +
(

1
2

–
1

p + 1

)
t2
ρ,x,τ

∫
R3

W (y)ϕ̄2
ρ[x, τ ]

+
(

1
4

–
1

p + 1

)
t4
ρ,x,τ

∫
R3

B(y)φϕ̄ρ [x,τ ]ϕ̄
2
ρ[x, τ ].
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Then from Lemma 3.8, (3.13), and (3.14), for any (x, τ ) ∈ S × [0, 1], we get that

I
(
ϕρ[x, τ ]

)
=

(
1
2

–
1

p + 1

)∥∥tρ,x,τ ϕ̄ρ[x, τ ]
∥∥2

Hσ + o
(
ρ–2σ–3)

=
(

1
2

–
1

p + 1

)∥∥hρ,x,τ ϕ̄ρ[x, τ ]
∥∥2

Hσ

+
(

1
2

–
1

p + 1

)(
t2
ρ,x,τ – h2

ρ,x,τ
)∥∥ϕ̄ρ[x, τ ]

∥∥2
Hσ

+ o
(
ρ–2σ–3)

=
(

1
2

–
1

p + 1

)∥∥hρ,x,τ ϕ̄ρ[x, τ ]
∥∥2

Hσ + o
(
ρ–2σ–3)

= I∞
(
ϕ∞,ρ[x, τ ]

)
+ o

(
ρ–2σ–3).

Next, we will estimate I∞(ϕ∞,ρ[x, τ ]). Observe that

I∞
(
ϕ∞,ρ[x, τ ]

)
=

(
1
2

–
1

p + 1

)∥∥hρ,x,τ ϕ̄ρ[x, τ ]
∥∥2

Hσ

=
(

1
2

–
1

p + 1

)( ‖ϕ̄ρ[x, τ ]‖2
Hσ

‖ϕ̄ρ[x, τ ]‖2
p+1

) p+1
p–1

. (3.17)

By direct computation, we have

∥∥ϕ̄ρ[x, τ ]
∥∥2

Hσ =
∥∥(1 – τ )U(y – ρe1) + τU(y – ρx)

∥∥2
Hσ

=
[
τ 2 + (1 – τ )2]‖U‖2

Hσ + 2τ (1 – τ )
∫
R3

Up(y – ρe1)U(y – ρx), (3.18)

and there exists C1 > 0 such that

∫
R3

Up(y – ρe1)U(y – ρx)

=
(∫

{|y|< ρ|x–e1|
2 }

+
∫

{|y|≥ ρ|x–e1|
2 }

)
Up(y + ρx – ρe1)U(y)

≤ C
ρp(3+2σ ) +

C
ρ3+2σ

= C1ρ
–2σ–3 + o

(
ρ–2σ–3). (3.19)

So,

∥∥ϕ̄ρ[x, τ ]
∥∥2

Hσ =
[
τ 2 + (1 – τ )2]‖U‖2

Hσ + 2τ (1 – τ )C1ρ
–2σ–3 + o

(
ρ–2σ–3). (3.20)

On the other hand, since for all a, b ∈R
+ and p ≥ 1, one has

(a + b)p+1 ≥ ap+1 + bp+1 + p
(
apb + abp).
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Hence using (3.19), we find

∥∥ϕ̄ρ[x, τ ]
∥∥p+1

p+1 =
∫
R3

∣∣(1 – τ )U(y – ρe1) + τU(y – ρx)
∣∣p+1

≥ [
τ p+1 + (1 – τ )p+1]‖U‖p+1

p+1 + p
[
τ (1 – τ )p + (1 – τ )τ p]C1ρ

–2σ–3

+ o
(
ρ–2σ–3), (3.21)

which and (3.20) imply that, for all τ ∈ [0, 1] and x ∈ S ,

‖ϕ̄ρ[x, τ ]‖2
Hσ

‖ϕ̄ρ[x, τ ]‖2
p+1

≤ [τ 2 + (1 – τ )2]‖U‖2
Hσ + 2τ (1 – τ )C1ρ

–2σ–3 + o(ρ–2σ–3)

{[τ p+1 + (1 – τ )p+1]‖U‖p+1
p+1 + p[τ (1 – τ )p + (1 – τ )τ p]C1ρ–2σ–3 + o(ρ–2σ–3)} 2

p+1

=
[τ 2 + (1 – τ )2]‖U‖2

Hσ

[τ p+1 + (1 – τ )p+1]
2

p+1 ‖U‖2
p+1

+ κ(τ )ρ–2σ–3 + o
(
ρ–2σ–3),

where

κ(τ ) =
2τ (1 – τ )C1

[τ p+1 + (1 – τ )p+1]
2

p+1 ‖U‖2
p+1

{
1 –

p
p + 1

τ 2 + (1 – τ )2

τ p+1 + (1 – τ )p+1

[
τ p–1 + (1 – τ )p–1]}.

Noting that κ( 1
2 ) < 0, from (3.17), we can infer that, for all x ∈ S and τ ∈ δ( 1

2 ),

I∞
(
ϕ∞,ρ[x, τ ]

) ≤
(

1
2

–
1

p + 1

)[
2

p–1
p+1

‖U‖2
Hσ

‖U‖p+1
p+1

] p+1
p–1

– C̄ρ–2σ–3 + o
(
ρ–2σ–3)

= 2
(

1
2

–
1

p + 1

)
‖U‖p+1

p+1 – C̄ρ–2σ–3 + o
(
ρ–2σ–3)

= 2m∞ – C̄ρ–2σ–3 + o
(
ρ–2σ–3), (3.22)

where δ( 1
2 ) is a neighborhood of 1

2 .
Furthermore, applying the same argument, we can prove that

lim
ρ→+∞ max

{
I∞

(
ϕ∞,ρ[x, τ ]

)
: x ∈ S , τ ∈ [0, 1] \ δ

(
1
2

)}

= max

{(
1
2

–
1

p + 1

)[
τ 2 + (1 – τ )2

τ p+1 + (1 – τ )p+1

] p+1
p–1

m∞, τ ∈ [0, 1] \ δ

(
1
2

)}
< 2m∞.

This, combining with (3.22), completes our result. �

Now, we will prove the existence of a bound state solution of (1.1).

Proof of Theorem 1.1 Fix ρ > max{ρa,ρ∞}, where ρa, ρ∞ are given in Propositions 3.5
and 3.9 respectively. It follows from Proposition 3.1 that m = m∞ and m is not achieved.
Thus we can not get our result by using minimization. However, we can prove that (2.2)
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has a bound state solution, whose energy can be higher than m∞. For any c ∈ R, we let
Ic := {u ∈N : I(u) ≤ c}. By Propositions 3.1, 3.5, 3.9, and Lemma 3.3, we have

m∞ < B < a0 < A < 2m∞.

We end the proof by showing that there exists a number c∗ ∈ [a0,A] which is a critical
level of I|N . We use the contradiction argument. Assume that this is not the case. Then
the Palais–Smale condition holds in (m∞, 2m∞) by Lemma 3.2. We can apply usual defor-
mation arguments(see [26]) and assert the existence of a number ϑ > 0 and a continuous
function η : IA → Ia0–ϑ such that a0 – ϑ > B and η(u) = u for all u ∈ Ia0–ϑ . Thus we see

0 /∈ (γ ◦ η ◦ ϕρ)
(
S × [0, 1]

)
. (3.23)

On the other hand, since ϕρ(S × {1}) ⊆ IB, applying the invariance of topological degree
by homotopy as in Proposition 3.4,

0 �= d
(
Fρ ,S × [0, 1), 0

)
= d

(
γ ◦ η ◦ ϕρ ,S × [0, 1), 0

)
.

Therefore there exists (x̄, τ̄ ) ∈ S × [0, 1) such that

γ ◦ η ◦ ϕρ(x̄, τ̄ ) = 0,

which contradicts (3.23).
Finally, to complete the proof, we only show that the solution of (2.2) corresponding

to the critical level existing in the interval (m∞, 2m∞) is a constant sign solution. To this
end, applying the same argument as Remark 2.5, if u is a solution of (2.2) with u+ �= 0 and
u– �= 0, then I(u) ≥ 2m∞. This concludes that it is positive. �

Acknowledgements
The author thanks the referees for thoughtful reading of the paper and nice suggestions to improve the results.

Funding
This work was partially supported by NSFC (No. 11601194).

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 May 2019 Accepted: 6 December 2019

References
1. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general

nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 779–791 (2010)
2. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal.

Appl. 345, 90–108 (2008)
3. Bahri, A., Li, Y.: On a min-max procedure for the existence of a positive solution for certain scalar field equations in R

N .
Rev. Mat. Iberoam. 6, 1–15 (1990)



Yang Boundary Value Problems        (2019) 2019:193 Page 19 of 19

4. Bellazzini, J., Ghimenti, M., Mercuri, C., Moroz, V., Van Schaftingen, J.: Sharp Gagliardo–Nirenberg inequalities in
fractional Coulomb–Sobolev spaces. Trans. Am. Math. Soc. 370, 8285–8310 (2018)

5. Bonheure, D., Mercuri, C.: Embedding theorems and existence results for nonlinear Schrödinger–Poisson systems
with unbounded and vanishing potentials. J. Differ. Equ. 251, 1056–1085 (2011)

6. Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity 29,
3103–3119 (2016)

7. Cerami, G., Passaseo, D.: The effect of concentrating potentials in some singularly perturbed problems. Calc. Var.
Partial Differ. Equ. 17, 257–281 (2003)

8. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248,
521–543 (2010)

9. D’Aprile, T., Wei, J.: Standing waves in the Maxwell Schrödinger equation and an optimal configuration problem. Calc.
Var. Partial Differ. Equ. 25, 105–137 (2006)

10. Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Math. 210,
261–318 (2013)

11. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl.
Math. 69, 1671–1726 (2016)

12. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 29–305 (2000)
13. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 31–35 (2002)
14. Long, W., Yang, J.: Positive or sign-changing solutions for a critical semilinear nonlocal equation. Z. Angew. Math.

Phys. 67, 45 (2016)
15. Ma, L.: Mountain pass on a closed convex set. J. Math. Anal. Appl. 205, 531–536 (1997)
16. Mercuri, C.: Positive solutions of nonlinear Schrödinger–Poisson systems with radial potentials vanishing at infinity.

Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 19, 211–227 (2008)
17. Mercuri, C., Tyler, T.M.: On a class of nonlinear Schrödinger–Poisson systems involving a nonradial charge density. Rev.

Mat. Iberoam. To appear
18. Noussair, E.S., Wei, J.: On the effect of the domain geometry on the existence and profile of nodal solution of some

singularly perturbed semilinear Dirichlet problem. Indiana Univ. Math. J. 46, 1255–1271 (1997)
19. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674

(2006)
20. Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration.

Mech. Anal. 198, 349–368 (2010)
21. Shen, L., Yao, X.: Least energy solutions for a class of fractional Schrödinger equation systems. J. Math. Phys. 59,

081501 (2018)
22. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ.

260, 2119–2149 (2016)
23. Wang, D.B., Ma, Y., Guan, W.: Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in

R
3 . Bound. Value Probl. (2019). https://doi.org/10.1186/s13661-019-1128-x

24. Wang, D.B., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger–Poisson system
with critical growth. J. Math. Anal. Appl. 479, 2284–2301 (2019)

25. Wang, Z., Zhou, H.S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in R
3 . Discrete Contin.

Dyn. Syst. 18, 809–816 (2007)
26. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser,

Boston (1996)
27. Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson

system. Calc. Var. Partial Differ. Equ. 56, 116 (2017)
28. Zhan, J., do Ó, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical

nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)
29. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346,

155–169 (2008)

https://doi.org/10.1186/s13661-019-1128-x

	Positive bound state solutions for the nonlinear Schrodinger-Poisson systems with potentials
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Proof of the main result
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


