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Abstract
In this paper, we consider convergence rates to solutions for the damped system of
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1 Introduction
We investigate the following initial boundary problem for damped hyperbolic conserva-
tion laws:

⎧
⎪⎪⎨

⎪⎪⎩

vt – ux = 0, (x, t) ∈ R+ × R+,

ut + p(v, s)x = –u,

st = 0,

(1.1)

which describes the motion of the compressible adiabatic flow through porous media.
Here u denotes the velocity, v is the specific volume, s stands for the entropy, p is the
pressure with pv(v, s) < 0 for v > 0. For simplicity, we take p(v, s) = (γ – 1)v–γ es with γ > 1,
which is the case for the polytropic gas.

We consider the initial value condition

(v, u, s)(x, 0) = (v0, u0, s0)(x) → (v+, u+, s+), v+ > 0, as x → +∞, (1.2)

and the boundary condition

v(0, t) = v0(0) = v– > 0, (1.3)
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or

u(0, t) = 0. (1.4)

It is known that the damping will create the diffusive phenomena of a hyperbolic wave,
that is to say, the hyperbolic wave behaves like diffusive wave when t tends to infinity. Pan
[1] has proved that the solutions of these two problems (1.1)–(1.4) are captured by their
related diffusive problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽt – ũx = 0, (x, t) ∈ R+ × R+,

p(ṽ, s)x = –ũ,

st = 0,

(ṽ, s)(x, 0) = (ṽ0, s0)(x) → (v+, s+), v+ > 0, as x → +∞,

ṽ(0, t) = ṽ0(0) = v–;

(1.5)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽt – ũx = 0, (x, t) ∈ R+ × R+,

p(ṽ, s)x = –ũ,

st = 0,

(ṽ, s)(x, 0) = (ṽ0, s0)(x) → (v+, s+), v+ > 0, as x → +∞,

p(ṽ, s)x(0, t) = 0.

(1.6)

Zheng [2] proved the existence of global smooth solutions to the Cauchy problem (1.1)
for small initial value. The asymptotic behavior of these solutions is considered for some
specific initial value; see [3–5] and [6]. By choosing some particular initial value ṽ0(x),
Geng and Wang [7] proved that the best asymptotic profile of Eqs. (1.1) is a specific solu-
tion to the corresponding parabolic equation. Furthermore, the case for the general ini-
tial data has been investigated by Pan in [8] and the decay rates have been proved. By
the characteristic analysis and the energy estimates, Hsiao and Pan [9] considered the
initial boundary value problem for system (1.1). For the case of isentropic case where
s ≡ constant, Hsiao and Liu [10] first proved that the global smooth solution of the Cauchy
problem (1.1) asymptotically converges to that of the corresponding parabolic equation
and derived the convergence rate ‖(v – ṽ, u – ũ)(t)‖L∞ = O(t–1/2, t–1/2). The better conver-
gence rates were obtained in [11–13]. For the other related interesting results of isentropic
Euler equations, we refer to [14–22] and the references therein.

The main purpose of this paper is to use the technical time-weighted estimate and obtain
the better convergence rates, which do not have (1 + log(1 + t))β1 and (1 + log(1 + t))β2 with
β1 > 1

3 , β2 > 1
2 , in comparison with the results obtained by Pan in [1].

As in [1], in order to construct the asymptotic profiles for (1.1)–(1.3), we introduce the
variables

a(x) = (γ – 1)– 1
γ e– 1

γ s(x), and ω ≡ a(x)ṽ = p(ṽ, s)– 1
γ , (1.7)
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then (1.5) is equivalent to the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωt + a(x)(ω–γ )xx = 0, (x, t) ∈ R+ × R+,

ω(x, 0) = ω0(x) = a(x)ṽ0(x),

ω(0, t) = ω–,

ω(+∞, t) = ω+ > 0.

(1.8)

The first equation of (1.8) is not invariant in the diffusive rescaling. As in [1], we can still
hope that the large-time profiles are invariant in the diffusive rescaling for w(x, t). Thus, it
is expected that the asymptotic profile of (1.8) can be described by

⎧
⎨

⎩

ω̄t + a1(ω̄–γ )xx = 0, (x, t) ∈ R+ × R+,

ω̄(0, t) = ω–, ω(+∞, t) = ω+,
(1.9)

where a1 = (γ – 1)e– 1
γ s+ . This problem has self-similar solutions w̄. Let v̄ = a–1w̄ and ū =

–(w̄–γ )x, using the L1 estimates and energy method, Pan [1] proved the global existence
and the asymptotic behavior of solutions for (1.5) by comparing w with w̄. Our first main
theorem is as follows.

Theorem 1.1 Let ω0(x) and s0(x) be C2 functions such that x(s0(x) – s+) ∈ L1(R+) and
w0(x) – w̄(x, 0) ∈ (H2 ∩ L1)(R+). There exists a number δ0 > 0 such that, if 0 < δ ≤ δ0 and the
initial perturbation |ω+ –ω–|+‖ω0(x) – ω̄(x, 0)‖H2 ≤ δ, then the global solution (ṽ, ũ, s)(x, t)
of problem (1.5) exists and satisfies

ω(x, t) – ω̄ ∈ C
(
[0, t]; H2), for t > 0.

Moreover, the following convergence rates are true:

∥
∥(ṽ – v̄)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2 ,

∥
∥(ũ – ū)(·, t)

∥
∥

L∞ ≤ C(1 + t)–1. (1.10)

Remark 1.1 The existence of the global smooth solution for the problem (1.5) has been
established by Pan in [1]. Our main contribution is the new convergence rates in (1.10)
obtained. These rates are better than that obtained by Pan in [1].

Now, we introduce the auxiliary functions (û, v̂)(x, t) as in [1],

⎧
⎨

⎩

û(x, t) = [(u0(0) – u+)
∫ +∞

x m0(ξ ) dξ + u+]e–t ,

v̂(x, t) = (u0(0) – u+)m0(x)e–t ,
(1.11)

where m0(x) is a smooth and compact supported function such that

∫ +∞

0
m0(x) dx = 1. (1.12)
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Then the function (û, v̂)(x, t) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̂t – ûx = 0, (x, t) ∈ R+ × R+,

ût = –û,

(v̂, û)(+∞, t) = (0, u+e–t),

(û, v̂, ûx)(0, t) = (u0(0)e–t , 0, 0).

(1.13)

Hence, from (1.1), (1.5) and (1.13), we have

⎧
⎨

⎩

(v – ṽ – v̂)t – (u – ũ – û)x = 0,

(u – ũ – û)t + (p(v, s) – p(ṽ, s))x = p(ṽ, s)xt – (u – ũ – û).
(1.14)

Define

y = –
∫ +∞

x

[
v(ξ , t) – ṽ(ξ , t) – v̂(ξ , t)

]
dξ , (1.15)

which satisfies the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ytt + [p(yx + ṽ + v̂, s) – p(ṽ, s)]x + yt = p(ṽ, s)xt , (x, t) ∈ R+ × R+,

y(x, 0) = y0(x) = –
∫ +∞

x [v0(ξ ) – ṽ(ξ , 0) – v̂(ξ , 0)] dξ ,

yt(x, 0) = y1(x) = u0(x) – ũ(x, 0) – û(x, 0),

yx(0, t) = 0.

(1.16)

The main result of this paper is as follows.

Theorem 1.2 Let (y0, y1) ∈ H3(R+) × H2(R+). There exists a number δ0 > 0 such that, if
0 < δ < δ0 and |v+ – v–| + ‖y0‖H3 + ‖y1‖H2 ≤ δ, then the global smooth solution y for the
problem (1.16) uniquely exists and satisfies

∥
∥y(·, t)

∥
∥2

H3 +
∥
∥yt(·, t)

∥
∥2

H2 +
∫ t

0

∥
∥(yx, yt)(·, τ )

∥
∥2

H2 dτ ≤ Cδ2

and

∥
∥yx(·, t)

∥
∥

L∞ ≤ C(1 + t)– 3
4 ,

∥
∥yt(·, t)

∥
∥

L∞ ≤ C(1 + t)– 5
4 . (1.17)

Furthermore, (v, u, s)(x, t) = (ṽ + v̂ + yx, ũ + û + yt , s) is the global smooth solution of the prob-
lem (1.1)–(1.3) which satisfies

∥
∥(v – ṽ)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 3
4 ,

∥
∥(u – ũ)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 5
4 , (1.18)

and

∥
∥(v – v̄)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2 ,

∥
∥(u – ū)(·, t)

∥
∥

L∞ ≤ C(1 + t)–1. (1.19)
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Remark 1.2 In [1], the convergence rates are

∥
∥(v – ṽ)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2
(
1 + log(1 + t)

)β1 ,
∥
∥(u – ũ)(·, t)

∥
∥

L∞ ≤ C(1 + t)–1(1 + log(1 + t)
)β2 ,

where β1 > 1
3 , β2 > 1

2 , but, in Theorem 1.2, we obtain the better convergence results (1.19)
which do not have (1 + log(1 + t))β1 and (1 + log(1 + t))β2 .

This paper is organized as follows. In Sect. 2, by applying the technical time-weighted
energy method, we will prove the new decay rates of the solutions for the hyperbolic prob-
lem (1.1)–(1.3). In Sect. 3, we will employ the same methods used in Sect. 2 to the problem
(1.1), (1.2) and (1.4).

Notations. Hereafter, the symbol C or O(1) will always be used to represent several
generic constants which are independent of x and t. Lp = Lp(R+) (1 ≤ p ≤ ∞) denotes
Lebesgue space with its norm

‖f ‖Lp =
(∫ +∞

0

∣
∣f (x)

∣
∣p dx

) 1
p

, 1 ≤ p < ∞, and ‖f ‖L∞ = sup
R+

∣
∣f (x)

∣
∣.

Denote Hm (m ≥ 0) by the Sobolev space with the norm

‖f ‖Hm =

( m∑

i=0

∥
∥∂ i

xf
∥
∥2

) 1
2

, ‖ · ‖ = ‖ · ‖0 = ‖ · ‖L2 .

2 Convergence to diffusive problem (1.5)
In this section, we will be concerned with obtaining the better decay rates of the diffu-
sive problem (1.5). Let ω̄(η) (with η = x√

t+1 ) be the similarity solution of (1.9). From the
argument in [1], we see that ω̄ has the following properties.

Lemma 2.1 ([1]) For i ≥ 0, j ≥ 0 and i + j ≥ 1, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ω̄(η) – ω+| + |ω̄′(η)| + |ω̄′′(η)| ≤ C|ω+ – ω–|e–C2η2 ,

ω̄t = – 1
2 (1 + t)–1ηω̄′(η), ω̄x = (1 + t)– 1

2 ω̄′(η),

‖∂ i
t∂

j
xω̄(·, t)‖ ≤ C|ω+ – ω–|(1 + t)–(i+j/2)+1/4,

‖∂ i
t∂

j
xω̄(·, t)‖L∞ ≤ C|ω+ – ω–|(1 + t)–(i+j/2).

(2.1)

Let φ = ω – ω̄, then, from (1.5) and (1.8), we get the equations for φ as follows:

⎧
⎪⎪⎨

⎪⎪⎩

φt + a(x)(ψ(ω̄)φ)xx + (a – a1)(ω̄–γ )xx + a(x)(g(φ,ω)φ2)xx = 0,

φ(x, 0) = φ0(x) = ω0 – ω̄(x, 0),

φ(0, t) = 0,

(2.2)

where we have set

ψ(ω̄) = –γ ω̄–(γ +1), and g(φ,ω)φ2 = (φ + ω̄)–γ – ω̄–γ – ψ(ω̄)φ.
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Let F = –ψ(ω̄)φ, then we have the problem for F as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ft + a(x)ψ(ω̄)Fxx – ψ(ω̄)(a – a1)(ω̄–γ )xx

– ψ1(ω̄)Fω̄t – aψ(ω̄)(fF2)xx = 0, (x, t) ∈ R+ × R+,

F(x, 0) = F0(x) = –ψ(ω̄(x, 0))φ0(x),

F(0, t) = 0,

(2.3)

where

–ψ1(ω̄)F = ψ ′(ω̄)φ and fF2 = gφ2.

The main theorem of this section is as follows.

Theorem 2.1 Let F0(x) and s(x) = s0(x) to be smooth functions such that x(s(x) – s+) ∈
L1(R+), and F0 ∈ H2(R+) ∩ L1(R+). Then there exist a number ε1 > 0 and δ > 0 such that, if
|ω+ – ω–| ≤ δ and ‖F0‖H2 ≤ ε1, then, for any fixed 0 < ε0 < 1

2 , the global smooth solution F
of the problem (2.3) uniquely exists and satisfies

2∑

k=0

(1 + t)k+ 1
2
∥
∥∂k

x F(·, t)
∥
∥2 ≤ C (2.4)

and

3∑

k=1

∫ t

0
(1 + τ )ε0+k+ 1

2
∥
∥∂k

x F(·, τ )
∥
∥2 dτ ≤ C(1 + t)ε0 . (2.5)

Remark 2.1 In Theorem 2.1, we obtain the better convergence rates (2.4) which do not
have (1 + log(1 + t))k , k > 1, in comparison with that obtained by Pan in [1].

The existence of the global solution for the problem (2.3) has been obtained by Pan in
[1]. Our interests are to get the better decay rates which will be completed by the following
of lemmas.

Pan [1] has obtained the following L1-estimate which will be used in the proof of Theo-
rem 2.1.

Lemma 2.2 ([1]) Under the assumptions of Theorem 2.1, the solutions φ of the problem
(2.2) satisfies

∥
∥φ(·, t)

∥
∥

L1 ≤ C2
(‖φ0‖L1 + δ

)
. (2.6)

By virtue of the counterintuitive method by Nishikawa in [23], and using Lemma 2.2, we
can obtain the following convergence estimates on F .

Lemma 2.3 For any fixed 0 < ε0 < 1
2 , the solution F of the problem (2.3) in Theorem 2.1

satisfies

(1 + t)
1
2
∥
∥F(·, t)

∥
∥2 + (1 + t)

3
2
∥
∥Fx(·, t)

∥
∥2 ≤ C, (2.7)
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2∑

i=1

∫ t

0
(1 + τ )

1
2 +i+ε0

∥
∥∂ i

xF(·, τ )
∥
∥2 dτ ≤ C(1 + t)ε0 . (2.8)

Proof We multiply Eq. (2.3)1 by a–1F , then we have

1
2

d
dt

(
a–1Fφ

)
+ F2

x = –
1
2

a–1ψ2(ω̄)ω̄tF2 – a–1(a – a1)
(
ω̄–γ

)

xxF

–
(
fF2)

xFx + {· · ·}x, (2.9)

with ψ2(ω̄)F2 = φ2ψ ′(ω̄) and {· · ·}x is the term which will vanish after integration with
respect to x. Integrating (1 + t)ε0+ 1

2 × (2.9) over (0, +∞) × [0, t], we then have

1
2

(1 + t)ε0+ 1
2

∫ +∞

0
a–1Fφ dx +

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2 F2
x dx dτ

≤ 1
2

∫ +∞

0
a–1F0φ0 dx +

∣
∣
∣
∣
1
2

(

ε0 +
1
2

)∫ t

0

∫ +∞

0
(1 + τ )ε0– 1

2 a–1Fφ dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣
1
2

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2 a–1ψ2(ω̄)ω̄tF2 dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2 a–1(a – a1)
(
ω̄–γ

)

xxF dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2
(
fF2)

xFx dx dτ

∣
∣
∣
∣

≡ 1
2

∫ +∞

0
a–1F0φ0 dx +

4∑

i=1

Ii. (2.10)

We estimate I1–I4 as follows:

I1 + I2 + I3

≤ C
∫ t

0

∫ +∞

0

[
(1 + τ )ε0– 1

2 F2 + (1 + τ )ε0+ 1
2
(|ω̄t|F2 +

∣
∣(a – a1)ω̄tF

∣
∣
)]

dx dτ

≤ C
∫ t

0
(1 + τ )ε0– 1

2
(‖F‖L∞‖F‖L1 + δ

∥
∥x(s – s1)

∥
∥

L1‖F‖L∞
)

dτ

≤ C(1 + δ)
∫ t

0
(1 + τ )ε0– 1

2 ‖Fx‖ 2
3 dτ

≤
(

1
4

+ Cδ

)∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ + C
∫ t

0
(1 + τ )ε0–1 dτ

≤
(

1
4

+ Cδ

)∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ + C(1 + t)ε0 , (2.11)

where in the third inequality, we have used

‖F‖L∞ ≤ C‖Fx‖ 2
3 , (2.12)

since

‖F‖L∞ ≤ C‖F‖ 1
2 ‖Fx‖ 1

2 ≤ C‖F‖ 1
4
L∞‖F‖ 1

4
L1‖Fx‖ 1

2 .
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I4 =
∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2
(
2fFFx + fF F2Fx + fω̄ω̄xF2)Fx dx dτ

∣
∣
∣
∣

≤ Cε1

∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ + Cε1

∫ t

0
(1 + τ )ε0+ 1

2 ‖F‖L1‖F‖3
L∞ dτ

≤ Cε1

∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ . (2.13)

By using the smallness of δ and ε1, we have from (2.10)–(2.13)

(1 + t)ε0+ 1
2
∥
∥F(·, t)

∥
∥2 +

∫ t

0
(1 + τ )ε0+ 1

2
∥
∥Fx(·, τ )

∥
∥2dτ ≤ C(1 + t)ε0 . (2.14)

For second-order energy estimates, let us multiply (2.3) by –Fxx, it follows that

1
2

d
dt

F2
x – a(x)ψ(ω̄)F2

xx = –ψ(ω̄)(a – a1)
(
ω̄–γ

)

xxFxx – ψ1(ω̄)ω̄tFFxx

– a(x)ψ(ω̄)
(
fF2)

xxFxx + {· · ·}x.
(2.15)

Integrating (1 + t)ε0+ 3
2 × (2.15) over [0, t] × (0, +∞), we have

(1 + t)ε0+ 3
2

∫ +∞

0
F2

x dx +
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 F2
xx dx dτ

≤ C + C
(∫ t

0

∫ +∞

0
(1 + τ )ε0+ 1

2 F2
x dx dτ +

∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 Fω̄tFxx dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 (a – a1)ω̄tFxx dx dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
(
fF2)

xxFxx dx dτ

∣
∣
∣
∣

)

. (2.16)

Using Lemma 2.1 and the Cauchy–Schwartz inequality, we have

(1 + t)ε0+ 3
2

∫ +∞

0
F2

x dx +
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 F2
xx dx dτ

≤ C + C
(∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 |Fω̄t|2 dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
∣
∣(a – a1)ω̄t

∣
∣2 dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
∣
∣
(
fF2)

xx

∣
∣2 dx dτ

)

. (2.17)

Since
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 |Fω̄t|2 dx dτ

≤ C
∫ t

0
(1 + τ )ε0+ 3

2 ‖F‖L∞‖F‖L1‖ω̄t‖2
L∞ dτ

≤ C
∫ t

0
(1 + τ )ε0– 1

2 ‖F‖L∞ dτ ≤ C
∫ t

0
(1 + τ )ε0– 1

2 ‖Fx‖ 3
2 dτ
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≤ C
∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ + C
∫ t

0
(1 + τ )ε0–1 dτ

≤ C(1 + t)ε0 , (2.18)
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
∣
∣(a – a1)ω̄t

∣
∣2 dx dτ

≤ C
∫ t

0
(1 + τ )ε0+ 3

2 –3∥∥x(a – a1)
∥
∥2

L1 dτ ≤ C
∫ t

0
(1 + τ )ε0– 3

2 dτ ≤ C, (2.19)

and

(
fF2)

xx =
(
2fFFx + fF F2Fx + fω̄ω̄xF2)

x

=
(
2fF + fF F2)Fxx +

(
2f + 4fF F + fFF F2)F2

x

+
(
4fω̄ + 2fFω̄F2)Fxω̄x +

(
fω̄ω̄xx + fω̄ω̄ω̄2)F2,

it follows that
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
∣
∣
(
fF2)

xx

∣
∣2 dx dτ

≤ C
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
[(

F2 + F4)(F2
xx + ω̄2

xF2
x
)

+ F4
x +

(
ω̄2

xx + ω̄4
x
)
F4]dx dτ

≤ Cε1

∫ t

0
(1 + τ )ε0+ 3

2 ‖Fxx‖2 dτ +
∫ t

0
(1 + τ )ε0+ 1

2 ‖Fx‖2 dτ

+
∫ t

0
(1 + τ )ε0+ 1

2 ‖F‖3
L∞‖F‖L1 dτ +

∫ t

0
(1 + τ )ε0+ 3

2 ‖Fx‖4
L4 dτ

≤ C + Cε1

∫ t

0
(1 + τ )ε0+ 3

2 ‖Fxx‖2 dτ +
∫ t

0
(1 + τ )ε0+ 3

2 ‖Fxx‖‖Fx‖3 dτ

≤ C + C(ε1 + ε)
∫ t

0
(1 + τ )ε0+ 3

2 ‖Fxx‖2 dτ

+ C(ε)
∫ t

0
(1 + τ )ε0+ 3

2 ‖Fx‖2‖Fx‖2 dτ . (2.20)

By using the smallness of ε and ε1, we have from (2.16)–(2.20)

(1 + t)ε0+ 3
2
∥
∥Fx(·, t)

∥
∥2 +

∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Fxx(·, τ )

∥
∥2 dτ

≤ C
[

(1 + t)ε0 +
∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Fx(·, τ )

∥
∥2∥∥Fx(·, τ )

∥
∥2 dτ

]

.

Therefore, using Gronwall’s inequality, we have

(1 + t)ε0+ 3
2
∥
∥Fx(·, t)

∥
∥2 +

∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Fxx(·, τ )

∥
∥2 dτ ≤ C(1 + t)ε0 . (2.21)

Hence, (2.14) and (2.21) finish the proof of this lemma. �

From Lemma 2.3, we know that Theorem 2.1 has been proved. Now we show the con-
vergence rates for Ft and Fxx.
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Lemma 2.4 The solution F of the problem (2.3) in Theorem 2.1 satisfies

(1 + t)ε0+ 5
2
∥
∥Ft(·, t)

∥
∥2 +

∫ t

0
(1 + τ )ε0+ 5

2
∥
∥Fxt(·, τ )

∥
∥2 dτ ≤ C(1 + t)ε0 . (2.22)

Proof Let us differentiate on (2.3) in t and multiply the result equation by a–1Ft , then, it
follows that

1
2

d
dt

(
a–1F2

t
)

– ψ(ω̄)F2
xt + ψ(ω̄)xxF2

t + ψ ′(ω̄)ω̄tFxxFt

– a–1(ψ(ω̄)(a – a1)
(
ω̄–γ

)

xx

)

tFt – a–1(ψ1(ω̄)Fω̄t
)

tFt

–
(
ψ(ω̄)

(
fF2)

xx

)

tFt + {· · ·}x = 0.

(2.23)

Integrating (1 + t)ε0+ 5
2 × (2.23) over [0, t] × (–∞, +∞), we have

1
2

(1 + t)ε0+ 5
2

∫ +∞

0
a–1F2

t dx –
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2 ψ(ω̄)F2
xt dx dτ

=
1
2

∫ +∞

0
a–1F2

1 dx +
1
2

(

ε0 +
5
2

)∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 a–1F2
t dx dτ

–
1
2

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2 ψ(ω̄)xxF2
t dx dτ

–
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2 ψ ′(ω̄)ω̄tFxxFt dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2 a–1(ψ(ω̄)(a – a1)
(
ω̄–γ

)

xx

)

tFt dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2 a–1(ψ1(ω̄)Fω̄t
)

tFt dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 5

2
(
ψ(ω̄)

(
fF2)

xx

)

tFt dx dτ . (2.24)

From the derivation of Lemma 2.3 and (2.3)1, we have

∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Ft(·, τ )

∥
∥2 dτ

≤ C
(∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Fxx(·, τ )

∥
∥2 dτ +

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 (a – a1)2ω̄2
t dx dτ

+
∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2 F2ω̄2
t dx dτ +

∫ t

0

∫ +∞

0
(1 + τ )ε0+ 3

2
(
fF2)2

xx dx dτ

)

≤ C. (2.25)

Moreover one has

a–1(ψ1(ω̄)Fω̄t
)

tFt = O(1)
[
ω̄tF2

t +
(
ω̄2

t + ω̄tt
)
FFt

]
,

a–1(ψ(ω̄)(a – a1)
(
ω̄–γ

)

xx

)

tFt = O(1)(a – a1)
(
ω̄2

t + ω̄tt
)
Ft ,

(
ψ(ω̄)

(
fF2)

xx

)

tFt = O(1)ω̄t
(
fF2)

xxFt – ψ(ω̄)
(
fF2)

xxtFt .
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Now, we can employ the similar argument as used in deducing (2.14) to conclude

(1 + t)ε0+ 5
2
∥
∥Ft(·, t)

∥
∥2 +

∫ t

0
(1 + τ )ε0+ 3

2
∥
∥Fxt(·, τ )

∥
∥2 dτ ≤ C(1 + t)ε0 , (2.26)

which finishes the proof. �

Corollary 2.1 The solution F of the problem (2.3) satisfies

(1 + t)
5
2
∥
∥Fxx(·, t)

∥
∥2 ≤ C,

∥
∥Fx(·, t)

∥
∥

L∞ ≤ C(1 + t)–1. (2.27)

Proof From (2.3), we have

Fxx = O(1)
[
Ft + (a – a1)ω̄t + F2

x + Ftω̄t + FFxω̄x +
(
ω̄xx + ω̄2

x
)
F2]. (2.28)

By taking L2 norm in (2.28), one has

(1 + t)
5
2 ‖Fxx‖2 ≤ C(1 + t)

5
2
(‖Ft‖2 +

∥
∥F2

x
∥
∥2 +

∥
∥(a – a1)ω̄t

∥
∥2 + ‖Fω̄t‖2

+ ‖FFxω̄x‖2 +
∥
∥
(
ω̄xx + ω̄2

x
)
F2∥∥2)

≤ C + C(1 + t)
5
2
∥
∥F2

x
∥
∥2

≤ C + C(1 + t)
5
2 ‖Fx‖2(‖Fx‖2 + ‖Fxx‖2)

≤ C + C(1 + t)
5
2 ‖Fx‖2‖Fxx‖2, (2.29)

which implies

(1 + t)
5
2 ‖Fxx‖2 ≤ C.

Then

‖Fx‖L∞ ≤ C‖Fx‖ 1
2 ‖Fxx‖ 1

2 (1 + t)–1.

This ends the proof of Corollary 2.1. �

Setting ṽ = a–1(x)ω, ũ = –(ω–γ )x, by using (2.12) and the interpolation inequality, we
have the convergence estimate (1.10). Theorem 1.1 then follows from Theorem 2.1.

3 Convergence rates to the stationary solution
In this section, we will employ the same technique as that used in Sect. 2 to treat the
problem (1.1), (1.2) and (1.4).

Similar to (1.8) in Sect. 2, by using the variables ω and a(x), the problem (1.6) can be
reformulated as

⎧
⎪⎪⎨

⎪⎪⎩

ωt + a(x)(ω–γ )xx = 0, (x, t) ∈ R+ × R+,

ω(x, 0) = ω0(x) → ω+, as x → +∞,

ωx(0, t) = 0.

(3.1)
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Setting φ = ω – ω+, we get

⎧
⎪⎪⎨

⎪⎪⎩

φt + a(x)φxx + a(x)(f1(φ)φ2)xx = 0, (x, t) ∈ R+ × R+,

φ(x, 0) = φ0(x) = ω0(x) – ω+,

φx(0, t) = 0,

(3.2)

where f1(φ)φ2 = (ω+ + φ)–γ – ω
–γ
+ – bφ and b = γω

–γ –1
+ . Note that if φ0(x) ∈ L1, then by

using the same arguments as that in Lemma 2.2, we have

∥
∥φ(·, t)

∥
∥

L1 ≤ C‖φ0‖L1 . (3.3)

By using the same method as that in Sect. 2, we can obtain the following result.

Theorem 3.1 Let φ0(x) and s0(x) to be smooth functions such that φ0 ∈ (H2 ∩ L1)(R+).
There exists a number δ0 > 0 such that, if 0 < δ ≤ δ0 and ‖φ0‖H2 ≤ δ, then the global smooth
solution φ(x, t) of (3.2) uniquely exists and satisfies

2∑

i=0

(1 + t)i+ 1
2
∥
∥∂ i

xφ(·, τ )
∥
∥2 +

3∑

i=1

∫ t

0
(1 + τ )i– 1

2
∥
∥∂ i

xφ(·, τ )
∥
∥2 dτ ≤ C.

By defining v1 = a–1ω(x, t) = a–1(ω+ + φ(x, t)), u1(x, t) = –p(v1, s)x, and v∗ = a–1ω+, then,
(v1, u1, s) is the global solution for problem (1.6) which satisfies

∥
∥(v1 – v∗)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2 ,

∥
∥u1(·, t)

∥
∥

L∞ ≤ C(1 + t)–1. (3.4)

Remark 3.1 The new convergence rates in (3.4) obtained are better than that obtained
in [1].

Defining the following auxiliary functions (û1, v̂1):

(û1, v̂1)(x, t) =
(

u+e–t
∫ x

0
m0(ξ ) dξ , u+m0(x)e–t

)

, (3.5)

where the smooth function m0(x) is the same as in (1.12). Setting ỹ = –
∫ +∞

x (v – v1 –
v̂1)(ξ , t) dξ , we then have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ỹtt + [p(ỹx + v1 + v̂1, s) – p(v1, s)]x + ỹt = p(v1, s)xt , (x, t) ∈ R+ × R+,

ỹ(x, 0) = ỹ0(x) = –
∫ +∞

x [v0(ξ ) – v1(ξ , 0) – v̂1(ξ , 0)] dξ ,

ỹt(x, 0) = ỹ1(x) = u0(x) – u1(x, 0) – û1(x, 0),

ỹ(0, t) = 0.

(3.6)

Thus, we can also obtain the following result.

Theorem 3.2 There exists a number δ0 > 0 such that, if 0 < δ ≤ δ0 and ‖ỹ0‖H3 + ‖ỹ1‖H2 ≤
δ2, then the global smooth solution (v, u, s)(x, t) of the problem (1.1), (1.2) and (1.4) uniquely
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exists and satisfies

∥
∥(v – v1)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 3
4 ,

∥
∥(u – u1)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 5
4 , (3.7)

and

∥
∥(v – v̄)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2 ,

∥
∥u(·, t)

∥
∥

L∞ ≤ C(1 + t)–1. (3.8)

Remark 3.2 In [1], the convergence rates are

∥
∥(v – v1)(·, t)

∥
∥

L∞ ≤ C(1 + t)– 1
2
(
1 + log(1 + t)

)β1 ,
∥
∥u(·, t)

∥
∥

L∞ ≤ C(1 + t)–1(1 + log(1 + t)
)β2 ,

where β1 > 1
3 , β2 > 1

2 , but, in Theorem 3.2, we obtain the better result (3.8) which does not
have (1 + log(1 + t))β1 and (1 + log(1 + t))β2 .
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