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Abstract
Any spectral element discretization of the Darcy problem can be efficiently solved by
applying the penalty method. This method leads to a system of equations with
uncoupled unknowns. We prove a posteriori error estimates for a spectral element
discretization of the Darcy problem. The proposed algorithm permits the
optimization of the penalty parameter as a function of the error indicators.
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1 Introduction
The Darcy problem introduced in [1] is used to model the flow (water, petrol, . . . ) of an in-
compressible and isothermal fluid in homogeneous porous media. The unknowns are the
velocity and the pressure. Any discretization by the Galerkin method leads to a system of
equations where the velocity and the pressure are coupled. Many algorithms are proposed
in the literature to uncouple the velocity and the pressure such as the Uzawa method [2]
and the penalty method [2, 3]

The penalty method has been used extensively in finite element discretization to solve
different problems (Stokes, Darcy, Navier–Stokes, . . . ) [4–8]. However, in spectral element
discretization [9, 10], this method has been only considered for the Stokes problem [11].
In this work, We are interested in the application of the penalty method to solve the Darcy
problem using spectral element discretization for its high accuracy [3, 12].

The advantage of using the penalty method is twofold: first, it permits to decouple the
two unknowns (velocity and pressure), and second, it guarantees the stabilization of the
discrete problem [13]. Moreover, the optimization of the penalty parameter, using error
indicators, reduces considerably the computation cost for solving the discrete problem
[14].

In this paper, we perform a posteriori analysis of the penalized spectral element dis-
cretization of the Darcy equations. We propose an algorithm, based on the developed
error indicator, to optimize the value of the penalty parameter.

An outline of the paper is as follows:
• In Sect. 2 we present the penalized continuous problem and some regularity results.
• Section 3 is about the analysis of the penalized discrete problem.
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• The a posteriori error analysis of the penalized discrete problem and a penalty
adaptation algorithm are developed in Sect. 4.

2 The penalized continuous problem
Let Ω a connected domain of Rd (d = 2, 3), and ∂Ω its Lipschitz continuous boundary.
We consider the following Darcy problem:

u + μgrad p = f in Ω ,

div u = 0 in Ω ,

u.n = 0 on ∂Ω ,

(1)

where the unknowns are the velocity u and the pressure p, f represents the density of
forces, μ is a positive constant equal to the quotient of the fluid viscosity by the medium
permeability (μ–1 is called the porosity). We consider in the following μ = 1. We denote
by x = (x, y), respectively, x = (x, y, z), the generic point in R

2, respectively, in R
3.

Consider the Sobolev spaces Hs(Ω) and Hs
0(Ω), s ≥ 0 with associated norms ‖ · ‖Hs(Ω)

and ‖ · ‖Hs
0(Ω). Let L2

0(Ω) the space of functions in L2(Ω) where the integral vanishes on
Ω , D(Ω) is the space of indefinitely differentiable functions with compact support in Ω

and the domain H(div,Ω) of the divergence operator,

H(div,Ω) =
{
ϕ ∈ L2(Ω)d; divϕ ∈ L2(Ω)

}
,

associated with the norm

‖ϕ‖H(div,Ω) =
(‖ϕ‖2

L2(Ω)d + ‖divϕ‖2
L2(Ω)

)1/2.

The normal trace operator v → v.n is defined from H(div,Ω) into H–1/2(∂Ω) such that,
for a vector fields ϕ ∈ H(div,Ω) and a scalar function ψ ∈D(Ω) [2],

∫

Ω

divϕ(x)ψ(x) dx = –
∫

Ω

ϕ(x). gradψ(x) dx +
∫

∂Ω

(ϕ.n)(τ )ψ(τ ) dτ .

This leads us to introduce its kernel

H0(div,Ω) =
{
ϕ ∈ H(div,Ω);ϕ.n = 0 on ∂Ω

}
.

The problem (1) has the following variational formulation: For f ∈ (L2(Ω))d , find u ∈
H(div,Ω), p ∈ L2

0(Ω) such that ∀v ∈ H0(div,Ω) and ∀q ∈ L2
0(Ω)

a(u, v) + b(v, p) = (f , v),

b(u, q) = 0,
(2)

where (·, ·) is the L2(Ω) scalar product,

a(u, v) =
∫

Ω

u(x).v(x) dx and b(v, p) = –
∫

Ω

div v(x)p(x) dx.
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Let V be the kernel of the bilinear form b defined by

V =
{
ϕ ∈ H0(div,Ω);∀q ∈ L2

0(Ω),
∫

Ω

divϕ(x)q(x) dx = 0
}

=
{
ϕ ∈ H0(div,Ω); divϕ = 0 in Ω

}
.

The norms ‖ · ‖H(div,Ω) and ‖ · ‖L2(Ω) are equivalent on V [15]. This yields the ellipticity of
the bilinear form a(·, ·) on V: There exists a positive constant λ > 0; such that

∀ϕ ∈ V, a(ϕ,ϕ) ≥ λ‖ϕ‖H(div,Ω).

Moreover, the inf-sup condition on the bilinear form b(·, ·): There exists a positive constant
β > 0; such that

∀q ∈ L2
0(Ω), sup

w∈H(div,Ω)

b(w, q)
‖w‖H(div,Ω)

≥ β‖q‖L2(Ω), (3)

is obtained by taking w = gradϕ; where ϕ is solution of a Laplace equation of data q and
Neumann homogeneous boundary conditions ([2], Chap. 1, Corr 2.4).

Using the saddle-point theorem, we conclude that, for f ∈ L2(Ω)d , problem (2) has a
unique solution (u, p) ∈ H(div,Ω) × L2

0(Ω), verifying the following stability condition:

‖u‖L2(Ω)d + β‖p‖L2(Ω) ≤ 2‖f‖L2(Ω)d .

Let H(curl,Ω) the domain of the curl operator

H(curl,Ω) =
{
ϕ ∈ L2(Ω)d, curlϕ ∈ L2(Ω)

d(d–1)
2

}
.

We know (see [16]) that H0(div,Ω) ∩ H(curl,Ω) is continuously imbedded in H1/2(Ω)d in
general and in H1(Ω)d if Ω is convex. Further results are known (see [17, 18]); when Ω is
a polygonal domain, a function u ∈ H0(div,Ω) ∩ H(curl,Ω) can be written as

u = uR + grad S, (4)

where uR ∈ H1(Ω)d and S is a linear combination of singular functions. We recall that each
singularity in the neighborhood of a corner of the polygon with aperture ω has the form

rπ/ωϕ(θ ),

where r is the distance to the singular corner, θ is the polar angle and ϕ belongs to
C∞(]0, 2π [,R). Then, in general, any such function u, which has the further property

div u ∈ Hs(Ω) and curl u ∈ Hs(Ω)3,

admits the expansion (4) with uR ∈ Hs+1(Ω)d for 0 < s < 2π
ω

– 1.
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Let α ∈ ]0, 1] the penalty parameter. We consider the following penalized problem: Find
(uα , pα) ∈ H0(div,Ω) × L2

0(Ω) such that

∀ϕ ∈ H0(div,Ω), a
(
uα ,ϕ

)
+ b

(
ϕ, pα

)
= (f ,ϕ),

∀q ∈ L2
0(Ω), b(u, q) = α

∫

Ω

pα(x)q(x) dx.
(5)

By adapting the result proved on Stokes problem [2], we conclude the following result.

Proposition 1 For f ∈ (L2(Ω))d , problem (5) has a unique solution (uα , pα) ∈ H0(div,Ω)×
L2

0(Ω) such that if (u, p) is solution to problem (2), we have the following estimation:

∥∥u – uα
∥∥

L2(Ω)d +
∥∥p – pα

∥∥
L2(Ω) ≤ Cα‖f‖L2(Ω)d , (6)

where C is a constant independent of α.

3 The penalized discrete problem
We introduce a partition of the domain Ω without overlapping,

Ω =
I⋃

i=1

Ωi and Ωi ∩ Ωj = ∅, 1 ≤ i < j ≤ I,

where Ωi are rectangles if d = 2 and parallelepiped rectangles if d = 3.
We suppose that the decomposition is conform in the sense that the intersection of the

two sub-domains Ωi ∩ Ωj for i 
= j, if it is not empty, is an entire edge or an entire face of
the two sub-domains Ωi and Ωj. We choose without restriction that the edges or faces of
each sub-domain Ωi is parallel to the axis of the coordinate system.

Let Pnm(Ω) the space of the restriction on Ω of the polynomials of degree n in the x
directions and m in the y directions in dimension d = 2. Pnms(Ω) is the space of the re-
striction on Ω of the polynomials of degree n in the x directions, m in the y directions and
s in the z directions in dimension d = 3.

Let N ≥ 2 an integer. We introduce the space of discrete velocity,

DN (Ω) =
{
ϕN ∈ H0(div,Ω);ϕN /Ωi ∈ PN ,N–1(Ω) × PN–1,N (Ω)

}

if d = 2 or

DN (Ω) =
{
ϕN ∈ H0(div,Ω);ϕN /Ωi ∈ PN ,N–1,N–1(Ω)×PN–1,N ,N–1(Ω)×PN–1,N–1,N (Ω)

}

if d = 3 and the space of discrete pressure,

MN (Ω) = PN–1(Ω) ∩ L2
0(Ω).

For this choice, MN (Ω) does not contain a spurious mode and the inf-sup constant on
the bilinear form b(·, ·) does not depend on N [19].

To define the discrete problem, we remember the Gauss–Lobatto–Legendre quadrature
formula on the reference interval ]–1, 1[:
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Let ξ0 = –1 and ξN = 1, there exists a unique set of nodes ξk ; 1 ≤ k ≤ N – 1, and a unique
set of weights ρk ; 0 ≤ k ≤ N , such that

∀ϕ ∈ P2N–1
(
]–1, 1[

)
,

∫ 1

1
ϕ(x) dx =

N∑

k=0

ϕ(ξk)ρk . (7)

The weights ρk are positif and we have the following property:

∀ϕN ∈ PN
(
]–1, 1[

)
, ‖ϕN‖2

L2(]–1,1[) ≤
N∑

k=0

ϕ2
N (ξk)ρk ≤ 3‖ϕN‖2

L2(]–1,1[). (8)

Let (ξ i
k , ξ i

l ), respectively (ξ i
k , ξ i

l , ξ i
r), the nodes in the sub-domain Ωi deduced from (ξk , ξl),

respectively (ξk , ξl, ξr), by bijection in the reference domain ]–1, 1[2, respectively ]–1, 1[3.
The local discrete scalar product is defined by: For ϕ and ψ two continuous functions on
Ω i,

(ϕ,ψ)Ni =

⎧
⎨

⎩

|Ω|
4

∑N
k=0

∑N
l=0 ϕ(ξ i

k , ξ i
l )ψ(ξ i

k , ξ i
l )ρkρl if d = 2,

|Ω|
8

∑N
k=0

∑N
l=0

∑N
r=0 ϕ(ξ i

k , ξ i
l , ξ i

r)ψ(ξ i
k , ξ i

l , ξ i
r)ρkρlρr if d = 3.

Then the discrete scalar product on Ω is

(ϕ,ψ)N =
I∑

i=1

(ϕ,ψ)Ni .

The penalized discrete problem is written: Find (uα
N , pα

N ) ∈DN (Ω) ×MN (Ω) such that

∀vN ∈DN (Ω), aN
(
uα

N , vN
)

+ b
(
vN , pα

N
)

= (f , vN )N ,

∀qN ∈MN (Ω), bN
(
uα

N , qN
)

= α
(
pα

N , qN
)

N ,
(9)

where the two bilinear forms aN (·, ·) and bN (·, ·) are defined by

aN (uN , vN ) = (uN , vN )N and bN (vN , qN ) = –
(
div(vN ), qN

)
N .

According to the exactness of the quadrature formulas on the space P2N–1(Ω), the discrete
bilinear form bN (·, ·) coincides with the continuous bilinear form b(·, ·).

We consider ΠN the orthogonal projection operator from the space L2(Ω) into the space
MN , defined with respect the scalar product L2(Ω). We prove that the penalized problem
(9) is equivalent to the following uncoupled problem (see [2], Chap. 1, Sect. 4.3):

Find uα
N ∈DN (Ω) and pN ∈MN (Ω) such that, for all vN ∈DN (Ω),

aN
(
uα

N , vN
)

+
1
α

(
ΠN

(
div uα

N
)
,ΠN (div vN )

)
N = (f , vN )N , (10)

pα
N = –

1
α

ΠN
(
div uα

N
)
. (11)

Remark 1 The penalty method permits us to uncouple the problem (9). The only unknown
in equation (10) is the velocity and then we deduce the value of the pressure from equation
(11).
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Proposition 2 For a continuous function f on Ω̄ , problem (10)–(11) has a unique solution
(uα

N , pα
N ) ∈DN (Ω) ×MN (Ω).

Proof For (ϕN ,ψN ) ∈DN (Ω) ×DN (Ω), we consider

â(ϕN ,ψN ) = (ϕN ,ψN )N +
1
α

(
ΠN (divϕN ),ΠN (divψN )

)
N .

We deduce, by the triangular inequality, the continuity of the operator ΠN and the con-
tinuity of the operator div on the space DN (Ω), that the bilinear form â(·, ·) is continuous
on DN (Ω) ×DN (Ω).

Using that â(ϕN ,ϕN ) ≥ (ϕN ,ϕN )N and property (8), we deduce that the bilinear form
â(·, ·) is elliptic.

The Lax–Milgram theorem permits one to conclude that problem (10)–(11) has a
unique solution (uα

N , pα
N ) ∈DN (Ω) ×MN (Ω). �

We know that the discrete bilinear form bN (·, ·) verifies the following inf-sup condition:
For any qN ∈MN (Ω)

sup
vN ∈DN (Ω)

bN (vN , qN )
‖vN‖H(div,Ω)

≥ γ ‖qN‖L2(Ω), (12)

where γ is a positive constant independent of N and of the penalty parameter α (see [19,
20]). We obtain the following a priori error estimation.

Proposition 3 Suppose that the data function f belongs to the space Hμ(Ω)d , μ ≥ d
2 and

that the solutions (u, p) of problem (2) and (uα , pα) of problem (5) belongs to Hs(Ω)d ×
Hs(Ω), s ≥ 0, then the error between the solution (u, p) of problem (2) and (uα

N , pα
N ) solution

of problem (9) is

∥∥u – uα
N
∥∥

L2(ω)d + γ
∥∥p – pα

N
∥∥

L2(Ω)

≤ Cα
(
N–s(‖u‖Hs(Ω)d + ‖p‖Hs(Ω)

)
+ N–μ‖f‖Hμ(Ω)d

)
, (13)

where C is a positive constant independent of N and α.

Proof Using the triangular inequality we have

∥∥u – uα
N
∥∥

L2(Ω)d ≤ ∥∥u – uα
∥∥

L2(Ω)d +
∥∥uα – uα

N
∥∥

L2(Ω)d ,
∥∥p – pα

N
∥∥

L2(Ω) ≤ ∥∥p – pα
∥∥

L2(Ω) +
∥∥pα – pα

N
∥∥

L2(Ω).
(14)

Using problems (5) and (9), we conclude that

a
(
uα – uα

N , vN
)

+ b
(
pα – pα

N , vN
)

= 0 (15)

and

b
(
pα – pα

N , qN
)

= α

∫

Ω

pα
N (x)qN (x) dx. (16)
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Based on the inf-sub condition (3) and the continuity of the bilinear form a(·, ·), there exists
a positive constant C, independent of N and α such that

β
∥∥pα – pα

N
∥∥

L2(Ω) ≤ sup
vN ∈DN (Ω)

b(pα – pα
N , vN )

‖vN‖L2(Ω)d
≤ C

∥∥uα – uα
N
∥∥

L2(Ω)d .

Thus

∥∥pα – pα
N
∥∥

L2(Ω) ≤ Cβ–1∥∥uα – uα
N
∥∥

L2(Ω)d . (17)

If we choose vN = uα – uα
N and qN = pα – pα

N in (15) and (16), we have

a
(
uα – uα

N , uα – uα
N
) ≤ –α

∫

Ω

pα(x)
(
pα – pα

N
)
(x) dx.

Using (17), we conclude that

a
(
uα – uα

N , uα – uα
N
) ≤ ∥∥pα

∥∥
L2(Ω)

∥∥uα – uα
N
∥∥

L2(Ω)d . (18)

Then, by (16),

div
(
uα – uα

N
)

= αpα
N in L2

0(Ω). (19)

Using (18) and (19), we find that

∥∥uα – uα
N
∥∥

L2(Ω)d ≤ αC
∥∥pα

∥∥
L2(Ω). (20)

By combining the inequalities (14), (20), (17) and (6) we conclude (13), using the standard
results of spectral approximation [12]. �

4 A posteriori error analysis
We define an error indicator

iα = α
∥∥pα

N
∥∥

L2(Ω) (21)

which depends on the discrete pressure, so it is easily to calculate.

Theorem 1 The error between the solutions (u, p) of problem (2) and (uα , pα) of problem
(9) is

∥∥u – uα
N
∥∥

L2(Ω)d +
∥∥p – pα

N
∥∥

L2(Ω) ≤ C
(
iα + α

∥∥pα – pα
N
∥∥

L2(Ω)

)
. (22)

The estimation of the error indicator is

iα ≤ (∥∥u – uα
N
∥∥

H(div,Ω) + α
∥∥p – pα

N
∥∥

L2(Ω)

)
, (23)

C is a positive constant independent of N and α.
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Proof Making the difference between problems (2) and (9), we find, for all v ∈ H(div,Ω)
and for all q ∈ L2(Ω),

a
(
u – uα , v

)
+ b

(
v, p – pα

)
= 0,

b
(
u – uα , q

)
= –α

∫

Ω

pα(x)q(x) dx.
(24)

Using the arguments presented in ([2], Chap. 1, Theorem 4.3) combined with the ellipticity
of the bilinear form a(·, ·) and the inf-sub condition (3), we obtain

∥∥u – uα
N
∥∥

H(div,Ω) +
∥∥p – pα

N
∥∥

L2(Ω) ≤ Cα
∥∥pα

∥∥
L2(Ω). (25)

By the triangular inequality

∥∥pα
∥∥

L2(Ω) ≤ ∥∥pα – pα
N
∥∥

L2(Ω) +
∥∥pα

N
∥∥

L2(Ω), (26)

we conclude the estimation (22) with iα = α‖pα
N‖L2(Ω).

Taking q = pα in the second equation of (24) yields

α
∥∥pα

∥∥
L2(Ω) ≤ ∥∥u – uα

N
∥∥

H(div,Ω).

Combining this relation with (26), we find the result (23). �

Let �i, 1 ≤ i ≤ I , the family of error indicators which are related to the spectral element
discretization

�i = N–1∥∥IN (f) + νu + grad pα
N
∥∥

L2(Ωi)d –
L(l)∑

l=1

N– 1
2
∥∥[

pα
N .n

]
il

∥∥
L2(Γil)

+
∥∥div

(
uα

N
)∥∥

L2(Ωi)
.

(27)

For each 1 ≤ i ≤ I , Γil , 1 ≤ l ≤ L(l), are the edges in dimension d = 2 or the faces in dimen-
sion d = 3 of the sub-domain Ωi that are not included on the boundary ∂Ω and [pα

N .n]il

represents the jump through each Γil . We denote by IN the Lagrange interpolating opera-
tor on the Gauss–Lobatto nodes.

Theorem 2 The a posteriori error estimate between the solutions (uα , pα) of problem (5)
and (uα

N , pα
N ) of the problem (9) is

∥∥u – uα
N
∥∥

H(div,Ω) +
∥∥p – pα

N
∥∥

L2(Ω) ≤ C

(

iα + μ

( I∑

1

�i

)

+
∥∥f – IN (f)

∥∥d
L2(Ω)

)

, (28)

where C is a positive constant independent of N and α, μ is equal to
• 1 if d = 2 or Ω is convex,
• N 1

2 if d = 3 and Ω not convex.



Abdelwahed and Chorfi Boundary Value Problems        (2019) 2019:188 Page 9 of 12

Proof To find (28), we proceed as in ([21], Sect. 4), ([14], Sect. 3.3) and ([11], Sect. 3).
Let U = (u, p) and V = (v, q). We define the bilinear form

Aα(U, V) = a(u, v) + b(v, p) – α

∫

Ω

p(x)q(x) dx. (29)

The bilinear form Aα(·, ·) is continuous on the space K(Ω) ×K(Ω) where

K(Ω) = L2(Ω)d × L2
0(Ω).

This space is equipped with the norm

∥∥(u, p)
∥∥
K(Ω) =

(‖u‖2
L2(Ω)d + ‖p‖2

L2(Ω)
) 1

2 .

Thanks to ([14], Lemma 3.5), the coercivity of the bilinear form a(·, ·) and the inf-sup con-
dition of the bilinear form b(·, ·), we prove an inf-sup condition on the bilinear formAα(·, ·)
such that there exists a constant δ∗ positive independent of α:

sup
V∈K(Ω)

Aα(U, V)
‖V‖K(Ω)

≥ δ∗‖U‖K(Ω). (30)

We need to evaluate the residual term Aα(Uα – Uα
N , V), where Uα = (uα , pα) and Uα

N =
(uα

N , pα
N ).

According to the exactness of the quadrature formula (7) applied in the problem (9), we
obtain, for VN–1 = (vN–1, 0), vN–1 ∈DN–1,

Aα

(
Uα

N , VN–1
)

=
∫

Ω

IN (f)(x).vN–1(x) dx. (31)

Using problems (5) and (31), we have

Aα

(
Uα – Uα

N , V
)

= Aα

(
Uα – Uα

N , V – VN–1
)

+
∫

Ω

(
f – IN (f)

)
(x).vN–1(x) dx,

and so

Aα

(
Uα – Uα

N , V
)

=
∫

Ω

IN (f)(x).(v – vN–1)(x) dx – Aα

(
Uα

N , V – VN–1
)

+
∫

Ω

(
f – IN (f)

)
(x).v(x) dx. (32)

Applying an integration by part on each sub-domain Ωi, we conclude that
∫

Ω

IN (f)(x).(v – vN–1)(x) dx – Aα

(
Uα

N , V – VN–1
)

=
I∑

i=1

(∫

Ωi

(
IN (f) + νuα

n – grad pα
N
)
(x).(v – vN–1)(x) dx

+
∫

∂Ωi

pα
N (ζ ).(v – vN–1)(ζ ) dζ

+
∫

Ωi

divuα
N q(x) dx + α

∫

Ωi

pα
N (x)q(x) dx

)
. (33)
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We define PN to be the orthogonal projection operator from the space H0(div,Ω) into
the space DN associated to the scalar product of the space H0(div,Ω). So for any v ∈
H0(div,Ω), we have

∥∥v – PN (v)
∥∥

L2(Ω) = sup
κ∈L2(Ω)

∫
Ω

(v – PN (v))(x)κ(x) dx
‖κ‖L2(Ω)

.

For κ ∈ L2(Ω), the problem

–�ψ = κ in Ω ,

ψ = 0 on ∂Ω ,

has a unique solution ψ ∈ H1
0 (Ω) ⊂ H0(div,Ω), then

∫

Ω

(
v – PN (v)

)
(x)κ(x) dx =

∫

Ω

∇(
v – PN (v)

)
(x)∇κ(x) dx

=
∫

Ω

∇(v)(x)∇(
κ(x) – PN (κ)

)
dx.

Thus, we conclude that
∫

Ω

(
v – PN (v)

)
(x)κ(x) dx ≤ ‖v‖H(div,Ω)

∥∥κ(x) – PN (κ)
∥∥

H(div,Ω).

We deduce the following inequality from the standard interpolation results [22]:

∥∥κ(x) – PN (κ)
∥∥

H(div,Ω) ≤ CN–s‖κ‖Hs(Ω). (34)

We consider the following estimation (see [23]):
For any φ ∈ H1

0 (Ω) ⊂ H0(div,Ω) and any sub-domain Ωi, 1 ≤ i ≤ I ,

∥∥φ(x) – PN (φ)
∥∥

L2(∂Ωi)
≤ CN– 1

2 ‖φ‖H(div,Ωi). (35)

We conclude the a posteriori error estimation (28) applying (30), (32), (33), the Cauchy–
Schwarz inequality and (34) combined with (35). �

Remark 2 We remark that in dimension d = 2 and if Ω is convex, the a posteriori error
estimation (28) is fully optimal and leads to an explicit upper bound for the error. However,
the inverse estimation (the estimation of the error indicator in function of the error) is not
optimal (see [23], Theorem 2.9) and we will not present it because we are not interested
to the adaptability with respect N .

4.1 Penalty adaptation algorithm
We describe in this section the used strategy for the penalty adaptation in order to op-
timize the penalty parameter. We suppose that the data function f is regular. Let γ a be
fixed real number and α0 is an initial value of α:

• For m = 1, . . .
• For a value αm of α
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– Compute the solution (uαm
N , pαm

N ) of problem (10)–(11)
– Compute the associated error indicator iαm given in (21)
– Compute

�N =

( I∑

i=1

� 2
i

) 1
2

,

where �i is defined by (27)
– If γ iαm ≤ �N , we obtain the optimal value αm

– Otherwise, we choose

αm+1 =
αm�N

iαm ,

and we reiterate.

5 Conclusion
This work concerns the use of the penalty technique to solve Darcy’s equations discretized
by the spectral elements method. This technique permits to uncouple the two unknowns,
the velocity and the pressure. The construction of the error indicators, using an a posteri-
ori error analysis is presented. This made it possible to find an optimal penalty parameter
which will reduce the computational cost. The numerical validation of this result will be
the subject of a forthcoming work.
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