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Abstract
In this paper, we are dedicated to researching the boundary value problems (BVPs) for
equation Dαx(t) = f (t, x(t),Dα–1x(t)), with the boundary value conditions to be either:
x(0) = A, Dα–1x(1) = B or Dα–1x(0) = A, x(1) = B. Let the nonlinear term f satisfy some
sign conditions, then by making use of the Leray–Schauder nonlinear alternative,
some existence results are obtained. In the end, an example is given to verify the main
results.
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1 Introduction
In the last several years, because the fractional calculus theory has been extensively used in
non-Newtonian fluid mechanics, diffusion and transportation theory, engineering, biol-
ogy, image processing, and other fields [9, 12, 15–19, 21, 24, 25, 35, 36, 38, 41–47], the frac-
tional differential equations (FDEs) have been researched with different methods by many
scholars. Many interesting results have been obtained [1–8, 10, 11, 13, 14, 17, 23, 26, 30–
32, 35, 36, 40, 48–51].

In 1994, Kelevedjiev [27] investigated the nonlinear second order two-point BVP as fol-
lows by the use of the barrier strips argument and the topological transversality theorem
[22]:

x′′(t) = f
(
t, x(t), x′(t)

)
, t ∈ [0, 1], (1)

x(0) = A, x′(1) = B, (2)

and got the existence results of solutions.
After that, the barrier strips technique was used by many researchers to study integer-

order BVPs and IVPs (initial value problems). For instance, by making use of the barrier
strips technique, the existence results for integer p-Laplacian BVP and first order IVP have
been obtained by Kelevedjiev and Tersian, see [29] and [28]. Gao and Ma et al. generalized
the idea to research the solvability for other integer BVPs such as second order three-point
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BVP [33], two-point BVP on time scales [34], difference equations BVP with p-Laplacian
[20]. But as far as we know, the idea was hardly used to solve fractional BVPs at that time.

Recently, Khalil et al. [30] gave the definitions of conformable fractional derivative,
which have many of the basic properties of integer derivatives. These good properties
are conducive for scholars to study the BVPs with conformable fractional derivative. Mo-
tivated and inspired by the above papers. In 2017, He et al. [23] generalized the idea to
research the fractional BVP as follows:

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, (3)

with the boundary value conditions to be either

x(0) = A, Dα–1x(1) = B, (4)

or

Dα–1x(0) = A, x(1) = B, (5)

where Dα is the standard conformable fractional derivative, α ∈ (1, 2] is a real number, and
f ∈ C([0, 1] ×R

2,R).
Almost at the same time, Song et al. [39] considered the BVP for fractional equation (3)

with inhomogeneous Dirichlet boundary conditions. By making use of the barrier strips
technique and the fixed-point index theory, they acquired the existence results for the
fractional Dirichlet BVP.

In this paper, we are dedicated to researching BVPs (3), (4) and (3), (5). Let the nonlinear
term f satisfy certain sign conditions at the origin. Then, by making use of the Leray–
Schauder nonlinear alternative [34] together with the barrier strips technique, not only can
we get the existence results for BVPs (3), (4) and (3), (5), but also weaken the restrictions
imposed on the nonlinear term f in Theorem 11 and Theorem 12 of [23].

The paper is laid out as follows. In Section 2, we present some necessary notions and
preliminaries, which play an essential role in our proofs. In Section 3, by applying the
technique of barrier strips and the Leray–Schauder nonlinear alternative, our main results
are given and proved. Finally, an example is given to verify the main results obtained.

2 Preliminaries and lemmas
We recall some notions and lemmas in this section.

Definition 2.1 ([26]) Let u be n-order differentiable at t > 0. The fractional derivative of
order α ∈ (n, n + 1] of a function u : [0,∞) →R is defined as

Dαu(t) = lim
ε→0

u(n)(t + εtn+1–α) – u(n)(t)
ε

,

provided the limits of the right-hand side exist.

Lemma 2.1 ([26]) Let t > 0. Function u(t) is α-order differentiable if and only if u is (n + 1)-
order differentiable. Furthermore, the following relation holds:

Dαu(t) = tn+1–αu(n+1)(t).
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Lemma 2.2 ([30]) Suppose that a ≥ 0 and f : [a, b] →R satisfies the following conditions:
(i) f is continuous on [a, b],

(ii) f is α-order differentiable on (a, b).
Then there exists e ∈ (a, b) such that the following relation holds:

f (b) – f (a) = Dαf (e)
bα – aα

α
.

Let

Cα[0, 1] =
{

u | u(t) = Jα
0+x(t) + Cntn + · · · + C1t + C0,

Ci ∈R, i = 0, 1, . . . , n, x ∈ C[0, 1]
}

,

‖u‖α =
∥
∥Dαu

∥
∥

0 +
∥
∥Dα–1u

∥
∥

0 + · · · +
∥
∥Dα–nu

∥
∥

0 + ‖u‖0,

where ‖u‖0 = maxt∈[0,1] |u(t)|.

Lemma 2.3 ([23]) (Cα[0, 1],‖ · ‖α) is a Banach space.

The next theorem is Leray–Schauder nonlinear alternative, which is crucial in our
proofs.

Theorem 2.1 ([37]) Suppose that U is a relatively open subset of a convex set K in Banach
space E. Assume that N : U → K is a compact map and p ∈ U . Then either

(i) N has a fixed point in U ; or
(ii) there are λ ∈ (0, 1) and u ∈ ∂U such that u = λNu + (1 – λ)p.

Let Cα
B0

[0, 1] be the subspace of Cα[0, 1] such that boundary condition (4) is satisfied.
Consider the BVPs:

Dαx(t) = λf
(
t, x(t), Dα–1x(t)

)
, t ∈ (0, 1), (6)

x(0) = A, Dα–1x(1) = B, (7)

where λ ∈ (0, 1) is a real number. Define L : Cα
B0

[0, 1] → C[0, 1] by Lx = Dαx. Obviously, L is
one-one mapping. So, the following theorem can be easily obtained by using the nonlinear
alternative theorem.

Theorem 2.2 Suppose that U is an open and bounded neighborhood of 0 ∈ Cα–1[0, 1] and
problem (6), (7) has no solutions in ∂U for 0 < λ < 1. Then the problem

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, t ∈ (0, 1), (8)

x(0) = A, Dα–1x(1) = B (9)

has at least one solution in U .

Therefore, our analysis is simplified to constructing a set U that is open and bounded
such that BVP (6), (7) has no solutions in ∂U .
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3 Existence results
Theorem 3.1 Suppose that f : [0, 1] ×R

2 →R is continuous. Let G1, G2 be two constants
such that G2 < B < G1 and the following conditions are fulfilled:

(H1) f (t, x, G1) ≥ 0 for (t, x) ∈ [0, 1] × [–G, G];
(H2) f (t, x, G2) ≤ 0 for (t, x) ∈ [0, 1] × [–G, G],

where G > |A| + | 1
α–1 | · max {|G2|, |G1|}. Then BVP (3), (4) has at least one solution.

Proof According to the Tietze–Urysohn lemma, we can find a continuous function �:
R2 → [–1, 1] such that

� (x, G1) = 1, x ∈ [–G, G], (10)

and

� (x, G2) = –1, x ∈ [–G, G]. (11)

For n ≥ 1, set fn(t, x, y) = f (t, x, y) + (1/n)� (x, y), then

fn(t, x, G1) > 0, x ∈ [–G, G], (12)

fn(t, x, G2) < 0, x ∈ [–G, G]. (13)

Consider the BVPs

Dαx(t) = fn
(
t, x(t), Dα–1x(t)

)
, (14)

x(0) = A, Dα–1x(1) = B. (15)

If we can prove that (14), (15) has a solution xn such that

–G ≤ xn ≤ G and G2 ≤ Dα–1xn ≤ G1 (16)

hold for all n ∈ N , then by combining (14), (15), (16) and Arzela–Ascoli theorem, the se-
quence {xn} has a subsequence which converges in Cα[0, 1]-topology to a solution x0 for
BVP (3), (4).

The set U is defined by

U =
{

v ∈ Cα–1[0, 1] | –G < v < G, G2 < Dα–1v < G1
}

. (17)

In order to prove that (14), (15) has a solution xn such that (16) holds, we only need to
demonstrate, according to Theorem 2.1, that if x ∈ Cα–1

B0
[0, 1] satisfies

–G ≤ x ≤ G and G2 ≤ Dα–1x ≤ G1, (18)

and

Dαx(t) = λfn
(
t, x(t), Dα–1x(t)

)
, (19)
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for some λ ∈ (0, 1), then x ∈ U , i.e.,

–G < x < G and G2 < Dα–1x < G1. (20)

Let x ∈ Cα–1
B0

[0, 1] satisfy (18), (19) for some λ ∈ [0, 1]. By Lemma 2.1, there exists d ∈
(0, t) such that the following relation holds:

x(t) – x(0) = Dα–1x(d) · tα–1

α – 1
, d ∈ (0, t). (21)

Then, by the inequality G2 ≤ Dα–1x ≤ G1, there holds

∣∣x(t)
∣∣ ≤

∣∣∣
∣

tα–1

α – 1

∣∣∣
∣ · ∣∣Dα–1x(d)

∣∣ + |A|

≤
∣∣
∣∣

tα–1

α – 1

∣∣
∣∣ · max

{|G2|, |G1|
}

+ |A|

≤
∣∣
∣∣

1
α – 1

∣∣
∣∣ · max

{|G2|, |G1|
}

+ |A|

< G. (22)

Relation (22) together with (12) and (13) implies that

fn
(
t, x(t), G1

)
> 0, t ∈ [0, 1]; (23)

fn
(
t, x(t), G2

)
< 0, t ∈ [0, 1]. (24)

Suppose that Dα–1(t0) = G1 for some t0 ∈ [0, 1]. We have t0 < 1 since Dα–1x(1) = B. Hence
Dαx(t0) ≤ 0 because Dα–1x(t) attains its maximum at t0. However, by (23) and (19), there
is

Dαx(t0) = λfn
(
t0, x(t0), Dα–1x(t0)

)

= λfn
(
t0, x(t0), G1

)

> 0. (25)

This contradiction shows that Dα–1x(t) < G1. Analogously Dα–1x(t) > G2. Thus

G2 < Dα–1x < G1, t ∈ [0, 1]. (26)

The theorem is proven. �

Remark 3.1 Theorem 3.1 is a generalization of Theorem 11 in literature [22]. In [22], the
conditions imposed on f (t, x, p) are local to the variables t and p and global on x; however,
in our Theorem 3.1, the variable x is also localized.

The following theorem can be obtained in a similar way.
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Theorem 3.2 Suppose that f : [0, 1] ×R
2 →R is continuous. Let G3, G4 be two constants

such that G4 < A < G3 and the following conditions are fulfilled:
(H3) f (t, x, G3) ≤ 0 for (t, x) ∈ [0, 1] × [–G, G];
(H4) f (t, x, G4) ≥ 0 for (t, x) ∈ [0, 1] × [–G, G],

where G > |B| + | 1
α–1 | · max {|G4|, |G3|}. Then BVP (3), (5) has at least one solution.

Remark 3.2 By comparison with the above Theorem 3.1 and Theorem 12 of [22], we can
know that Theorem 3.2 is not only the “dual” of Theorem 3.1. At the same time, Theo-
rem 3.2 is also a generalization of Theorem 12 of [22].

4 Example
Example 4.1 Consider the fractional BVP

D
3
2 x(t) = x(t) + D

1
2 x(t) +

1
2
[
D

1
2 x(t)

]2
+

[
D

1
2 x(t)

]3
– 1, (27)

x(0) = –1, D
1
2 x(1) = 0. (28)

Choose G = 6, G1 = 2, G2 = –2, then

f (t, x, G1) ≥ 0, for (t, x) ∈ [0, 1] × [–6, 6];

f (t, x, G2) ≤ 0, for (t, x) ∈ [0, 1] × [–6, 6].

By the use of Theorem 3.1, fractional BVP (27), (28) has at least one solution in C 3
2 [0, 1].
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