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Abstract
In this paper we investigate the existence of infinitely many solutions for nonlocal
Schrödinger equation involving a magnetic potential

(–�)sAu + V(x)u = f (x, |u|)u, in R
N ,

where s ∈ (0, 1) is fixed, N > 2s, V :RN → R
+ is an electric potential, the magnetic

potential A :RN → R
N is a continuous function, and (–�)sA is the fractional magnetic

operator. Under suitable assumptions for the potential function V and nonlinearity f ,
we obtain the existence of infinitely many nontrivial high energy solutions by using
the variant fountain theorem.
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1 Introduction
The aim of the present paper is to investigate the multiplicity of solutions for the following
fractional Schrödinger equation with magnetic field:

(–�)s
Au + V (x)u = f

(
x, |u|)u, in R

N , (1.1)

where 0 < s < 1, N > 2s, V : RN → R
+ is an electric potential, and A : RN → R

N is a
magnetic potential. The fractional magnetic operator (–�)s

A is defined along all functions
u ∈ C∞

0 (RN ,C) as

(–�)s
Au(x) = 2 lim

ε→0+

∫

RN \Bε(x)

u(x) – ei(x–y)·A( x+y
2 )u(y)

|x – y|N+2s dy, x ∈R
N ,

for more details about this operator see [1]. Meanwhile, in [1], based on concentration
compactness arguments, ground state solutions are obtained for problem (1.1) in three-
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dimensional space. In [2], the authors set up a bridge between the classical magnetic op-
erator and the fractional one. Reference [3] considers the problem (1.1) with Kirchhoff
function and obtains the existence of least energy solutions and infinitely many solutions
under suitable conditions. In [4], the authors obtain the existence and the multiplicity of
solutions for a nonlinear fractional magnetic Schrödinger equation by using variational
methods and Ljusternick–Schnirelmann theory. In [5], the authors obtain the existence
and the multiplicity of solutions for a nonlinear fractional magnetic Schrödinger equation
with exponential critical growth. And in [6], the author obtains the existence of nontrivial
solutions for a class of fractional magnetic Schrödinger equations via penalization tech-
niques.

In previous years, the nonlinear magnetic Schrödinger equations

–(� – iA)2u + V (x)u = f
(
x, |u|)u, x ∈R

N ,

have been extensively studied, we refer the interested reader to [7–13] and the references
therein. –(� – iA)2 is a magnetic Schrödinger operator, in a suitable sense, (–�)s

Au con-
verges to –(� – iA)2u in the limit s ↑ 1. In this sense, nonlocal case can be regarded as an
approximation of local case.

When potential function A ≡ 0, the operator (–�)s
A is consistence with the usual notion

of fractional Laplacian (–�)s, and Eq. (1.1) becomes the fractional Schrödinger equation

(–�)su + V (x)u = f
(
x, |u|)u, x ∈R

N ,

a great deal of research work has been done for this type of equations in recent years; for
further details see for instance [14–24] and the references therein.

Inspired by the above work, we consider the existence of infinitely many solutions of
problem (1.1). Firstly, we assume that the magnetic potential A : RN → R

N is a continuous
function and the potential function V : RN →R

+ satisfies:
(V1) V ∈ C(RN ) with infx∈Rn V (x) ≥ V0, where V0 > 0 is a constant;
(V2) For any c > 0, there exists h > 0 such that

lim|y|→∞ meas
({

x ∈R
N : |x – y| ≤ h, V (x) ≤ c

})
= 0,

where meas denotes the Lebesgue measure.
The nonlinearity f : RN ×R

+ →R is a Carathéodory function; we require:
(f1) There exist C > 0 and p ∈ (2, 2∗

s ) such that |f (x, t)| ≤ C(1 + |t|p–2) for any x ∈R
N and

t ∈R
+, where 2∗

s = 2N
N–2s is the fractional Sobolev exponent;

(f2) limt→0+
f (x,t)

t = 0 uniformly for x ∈ R
N ;

(f3) there exists μ > 2 such that

0 < μF(x, t) = μ

∫ t

0
f (x, τ )τ dτ ≤ f (x, t)t2,

for every (x, t) ∈R
N ×R

+;
(f4) lim|t|→∞ F(x,t)

|t|2 = ∞ uniformly for x ∈R
N .

Now we state our main result as follows. The fractional solution space Hs
A,V (RN ,C) and

the energy functional J(u) are introduced in Sect. 2.
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Theorem 1.1 Let (V1)–(V2) and (f1)–(f4) hold. Then problem (1.1) possesses infinitely
many high energy solutions uk ∈ Hs

A,V (RN ,C) for any k ≥ k0 (k0 ∈ N), in the sense that
J(uk) → ∞ as k → ∞.

Remark 1 To the best of our knowledge, Theorem 1.1 is the first result for the existence
of infinitely many high energy solutions of the fractional Schrödinger equations with an
external magnetic field by using the variant fountain theorem.

This paper is organized as follows. In Sect. 2 we introduce some preliminary knowledge
and set up the functional. In Sect. 3, we prove Theorem 1.1 by using the variant fountain
theorem.

2 Functional setting
In this section, we state some notations and preliminary knowledge which will be used in
the next section.

Let Hs
V (RN ) is a fractional Sobolev space, defined by

Hs
V
(
R

N)
=

{
u ∈ L2

V
(
R

N)
: [u]s < ∞}

,

where

[u]s =
(∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

is the Gagliardo semi-norm and L2
V (RN ) is the real valued Lebesgue space, with V (x)|u|2

in L1(RN ), and Hs
V (RN ) is equipped with the norm

‖u‖Hs
V

=
(
[u]2

s + ‖u‖2
2,V

) 1
2 , ‖u‖2

2,V =
∫

RN
V (x)|u|2 dx.

Lemma 2.1 (Theorem 2.1 of [25]) Let (V1) and (V2) hold. Then, the embedding Hs
V (RN ) ↪→

Lq(RN ) is continuous for any q ∈ [2, 2∗
s ], and the embedding Hs

V (RN ) ↪→↪→ Lq(RN ) is com-
pact for any q ∈ [2, 2∗

s ).

Let L2(RN ,C) denotes the Lebesgue space of complex functions u : RN → C with
V (x)|u|2 ∈ L1(RN ), the real scalar product of L2(RN ,C) is endowed with

〈u, v〉L2 = R

∫

RN
V (x)uv̄ dx,

for all u, v ∈ L2(RN ,C), where v̄ denotes complex conjugation of v ∈ C.
Define Hs

A,V (RN ,C) as the closure of C∞
c (RN ,C) with the norm

‖u‖Hs
A,V

=
(‖u‖2

L2 + [u]2
s,A

) 1
2 , (2.1)

where [u]s,A is the magnetic Gagliardo semi-norm

[u]s,A =
(∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy
) 1

2
.
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According to [1], we know that the space Hs
A,V (RN ,C) is a real Hilbert space with the

scalar product

〈u, v〉Hs
A,V

= 〈u, v〉L2

+ R

∫

R2N

[u(x) – ei(x–y)·A( x+y
2 )u(y)] · [v(x) – ei(x–y)·A( x+y

2 )v(y)]
|x – y|N+2s dx dy. (2.2)

Lemma 2.2 For each u ∈ Hs
A,V (RN ,C), then |u| ∈ Hs

V (RN ).

Proof According to the definition of the space Hs
A,V (RN ,C) and Hs

V (RN ), the result clearly
holds. So we will not repeat it. �

Lemma 2.3 For all p ∈ [2, 2∗
s ], the embedding

Hs
A,V

(
R

N ,C
)
↪→ Lp(

R
N ,C

)

is continuous.

Proof By using the pointwise diamagnetic inequality

∣∣∣∣u(x)
∣∣ –

∣∣u(y)
∣∣∣∣ ≤ ∣∣u(x) – ei(x–y)A( x+y

2 )u(y)∣∣ for a.e. x, y ∈R
N ,

and Lemma 2.1 the continuous injection Hs
V (RN ) ↪→ L2∗

s (RN ), we find

‖u‖L2∗s (RN ) ≤ C
∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy

for all u ∈ Hs
A,V (RN ,C), where C > 0 is a real constant. Hence, by interpolation the asser-

tion holds. �

Combining Lemma 2.1 with Lemma 2.2, we also obtain the following results.

Lemma 2.4 Let (V1) and (V2) hold. Then, for any bounded sequence (un)n in Hs
A,V (RN ,C),

the sequence (|un|)n has a subsequence converging strongly to some u in Lp(RN ) for every
p ∈ [2, 2∗

s ).

Definition 2.5 We say that u ∈ Hs
A,V (RN ,C) is a weak solution of problem (1.1), if for all

φ ∈ Hs
A,V (RN ,C), one has

R

[∫

R2N

[u(x) – ei(x–y)·A( x+y
2 )u(y)] · [φ(x) – ei(x–y)·A( x+y

2 )φ(y)]
|x – y|N+2s dx dy

]

+ R

∫

RN
V (x)uφ̄ dx = R

∫

RN
f
(
x, |u|)uφ̄ dx. (2.3)

For any u ∈ Hs
A,V (RN ,C), we define the energy functional J : Hs

A,V (RN ,C) →R associated
with the problem (1.1) as

J(u) =
1
2

(∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy +
∫

RN
V (x)|u|2 dx

)
–

∫

RN
F
(
x, |u|)dx
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=
1
2
(
[u]2

s,A + ‖u‖2
L2

)
–

∫

RN
F
(
x, |u|)dx

=
1
2
‖u‖2

Hs
A,V

–
∫

RN
F
(
x, |u|)dx. (2.4)

By direct computation, we find that J is of C1(Hs
A,V (RN ,C),R) and

〈
J ′(u), v

〉
= R

[∫

R2N

[u(x) – ei(x–y)·A( x+y
2 )u(y)] · [v(x) – ei(x–y)·A( x+y

2 )v(y)]
|x – y|N+2s dx dy

]

+ R

∫

RN
V (x)uv̄ dx – R

∫

RN
f
(
x, |u|)uv̄ dx,

for all u, v ∈ Hs
A,V (RN ,C).

Since Hs
A,V (RN ,C) is a Hilbert space, we let {Xj} be a sequence of subspace of Hs

A,V (RN ,C)
with dim Xj < ∞ for each j ∈ N. Furthermore, Hs

A,V (RN ,C) =
⊕

j∈N Xj, the closure of the
direct sum of all Xj.

Set

Wk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k

Xj

and

Bk =
{

u ∈ Wk : ‖u‖Hs
A,V

≤ τk
}

, Sk =
{

u ∈ Zk : ‖u‖Hs
A,V

= δk
}

for τk > δk > 0. Consider the C1 functional Jλ : Hs
A,V (RN ,C) →R defined by

Jλ(u) = A(u) – λB(u), λ ∈ [1, 2],

where

A(u) =
1
2

(∫

R2N

|u(x) – ei(x–y)·A( x+y
2 )u(y)|2

|x – y|N+2s dx dy +
∫

RN
V (x)|u|2 dx

)
,

B(u) =
∫

RN
F
(
x, |u|)dx.

Hence

Jλ(u) = A(u) – λB(u) =
1
2
‖u‖2

Hs
A,V

– λ

∫

RN
F
(
x, |u|)dx,

for all u ∈ Hs
A,V (RN ,C) and λ ∈ [1, 2].

The following variant fountain theorem was established in [26].

Theorem 2.6 (Variant fountain theorem) Assume that Jλ ∈ (Hs
A,V (RN ,C),R) defined

above satisfies:
(A1) Jλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Jλ(–u) = Jλ(u)

for all (λ, u) ∈ [1, 2] × Hs
A,V (RN ,C);
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(A2) B(u) ≥ 0 for any u ∈ Hs
A,V (RN ,C), A(u) → ∞ or B(u) → ∞ as ‖u‖Hs

A,V
→ ∞;

(A3) there exist τk > δk > 0 such that

bk(λ) = inf
u∈Sk

Jλ(u) > ak(λ) = max
u∈Wk ,‖u‖Hs

A,V
=τk

Jλ(u), for all λ ∈ [1, 2].

Then

bk(λ) ≤ ck(λ) = inf
γ∈Γk

max
u∈Bk

Jλ
(
γ (u)

)
, for all λ ∈ [1, 2],

where Γk = {γ ∈ C(Bk , Hs
A,V (RN ,C)) : γ is odd, γ |∂Bk

= id} (k ≥ 2), moreover, for
almost every λ ∈ [1, 2], there exists a sequence uk

n(λ) such that

sup
n

∥
∥uk

n(λ)
∥
∥

Hs
A,V

< ∞, J ′
λ

(
uk

n(λ)
) → 0 and

Jλ
(
uk

n(λ)
) → ck(λ) as n → ∞.

3 Proofs of the main result
In order to prove Theorem 1.1, we need the following results.

Lemma 3.1 Let 2 ≤ p < 2∗
s . For any k ∈ N , define

ζk := sup
{‖u‖Lp(RN ) : u ∈ Zk ,‖u‖Hs

A,V
= 1

}
.

Then ζk → 0 as k → ∞.

Proof Since Zk+1 ⊂ Zk , we have 0 < ζk+1 ≤ ζk for any k ∈N. Suppose ζk → ζ as k → ∞ for
ζ ≥ 0. By the definition of ζk , there exists uk ∈ Zk such that ‖uk‖Lp(Rn) < 1

2ζk for any k ∈N.
We know that Hs

A,V (RN ,C) is a real Hilbert space, so a reflexive Banach space, there
exist v ∈ Hs

A,V (RN ,C) and a subsequence of uk , without loss of generality still denoted by
uk , such that uk ⇀ v in Hs

A,V (RN , C). That is,

〈uk ,φ〉Hs
A,V

→ 〈v,φ〉Hs
A,V

as k → ∞,

for all φ ∈ Hs
A,V (RN ,C). Since each Zk is convex and closed, it is closed for the weak topol-

ogy. Consequently, v ∈ ⋂∞
k=1 Zk = 0.

Hence, |uk| → 0 in Lp(RN ) as k → ∞. We know that ζ is nonnegative, we get ζk → 0 as
k → ∞. The proof is completed. �

Lemma 3.2 Let (f1)–(f2) hold. Then there exist two sequences τk > δk > 0 such that

bk(λ) = inf
u∈Sk

Jλ(u) > ak(λ) = max
u∈Wk ,‖u‖Hs

A,V
=τk

Jλ(u).

Proof According to assumptions (f1) and (f2), for any ε > 0, there exists Cε > 0 such that

∣∣f (x, t)t
∣∣ ≤ ε|t| + Cε|t|p–1,

for all (x, t) ∈R
N ×R

+.
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Therefore, for u ∈ Zk , and ε small enough, by Lemma 2.3 and Lemma 3.1, we have

Jλ(u) =
1
2
‖u‖2

Hs
A,V

– λ

∫

RN
F
(
x, |u|)dx

≥ 1
2
‖u‖2

Hs
A,V

–
λε

2
‖u‖2

L2(RN ) –
λCε

p
‖u‖p

Lp(RN )

≥ 1
4
‖u‖2

Hs
A,V

– C1ζ
p
k ‖u‖p

s,A

=
(

1
4

– C1ζ
p
k ‖u‖p–2

Hs
A,V

)
‖u‖2

Hs
A,V

.

If we choose δk = (8C1ζ
p
k )

1
2–p , we get

Jλ(u) ≥ 1
8
‖u‖2

Hs
A,V

=
1
8
(
8C1ζ

p
k
) 2

2–p > 0.

Then, for any u ∈ Zk , with ‖u‖Hs
A,V

= δk , we have

bk(λ) = inf
u∈Sk

Jλ(u) ≥ 1
8
(
8C1ζ

p
k
) 2

2–p > 0, for all λ ∈ [1, 2]. (3.1)

Next, we prove Jλ(u) → –∞ as ‖u‖Hs
A,V

→ ∞ for all u ∈ Wk . Suppose that this is not the
case, then there exist a positive constant M and {un} ⊂ Hs

A,V (RN ,C) such that Jλ(un) ≥ –M
as ‖un‖Hs

A,V
→ ∞ (while n → ∞).

Let vn = un
‖un‖Hs

A,V
, then up to a subsequence, we get vn → v in Wk .

We have

1
2

–
Jλ(un)

‖un‖2
Hs

A,V

= λ

∫

RN

F(x, |un|)
‖un‖2

Hs
A,V

dx = λ

∫

vn(x) �=0

F(x, |un|)
|un|2 |vn|2 dx.

By (f4) and Fatou’s lemma, we deduce the contradiction that

1
2

= lim inf
n→∞λ

∫

vn(x) �=0

F(x, |un|)
|un|2 |vn|2 dx → ∞.

Thus, Jλ(u) → –∞ as ‖u‖Hs
A,V

→ ∞ for all u ∈ Wk . Choose τk > δk > 0 large enough and
let ‖u‖Hs

A,V
= τk , we obtain

ak(λ) = max
u∈Wk ,‖u‖Hs

A,V
=τk

Jλ(u) < 0. (3.2)

The proof is completed. �

Lemma 3.3 Let (V1)–(V2) and (f1) hold. Then any bounded sequence {un}n ⊂ Hs
A,V (RN ,C)

such that J ′
λ(un) → 0 as n → ∞ has a strongly convergent subsequence in Hs

A,V (RN ,C).

Proof Assume that {un}n is bounded in Hs
A,V (RN ,C). Going if necessary to a subsequence,

by Lemma 2.4, we have

un ⇀ u in Hs
A,V

(
R

N ,C
)
,
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|un| → u in Lp(
R

N)
, (3.3)

un → u a.e. in R
N .

In order to prove that {un}n converges strongly to u in Hs
A,V (RN ,C), we first give a sim-

ple notation. Let ω ∈ Hs
A,V (RN ,C) be fixed and denote by Ψ (ω) the linear functional on

Hs
A,V (RN ,C) defined by

〈
Ψ (ω),ϕ

〉
= R

∫

R2N

(ω(x) – ei(x–y)·A( x+y
2 )ω(y))

|x – y|N+2s

(
ϕ(x) – ei(x–y)·A( x+y

2 )ϕ(y)
)

dx dy (3.4)

for any ϕ ∈ Hs
A,V (RN ,C).

By (f1), for all x ∈R
N and t ∈R

+,

∣
∣f (x, t)t

∣
∣ ≤ C

(|t| + |t|p–1).

Using the Hölder inequality, we obtain

∫

RN

∣
∣(f

(
x, |un|

)
un – f

(
x, |u|)u

)
(un – u)

∣
∣dx

≤
∫

RN
C

[|un| + |u| + |un|p–1 + |u|p–1]|un – u|dx

≤ C
(‖un‖L2(RN ) + ‖u‖L2(RN )

)‖un – u‖L2(RN )

+ C
(‖un‖p–1

Lp(RN ) + ‖u‖p–1
Lp(RN )

)‖un – u‖Lp(RN )

≤ C2
(‖un – u‖L2(RN ) + ‖un – u‖Lp(RN )

)
. (3.5)

By Lemma 2.4, we have |un| → |u| in Lp(RN ) and |un| → |u| in L2(RN ). Hence, un → u in
Lp(RN ,C) and L2(RN ,C). According to the Brézis–Lieb lemma [27], we get

lim
n→∞

∫

RN

(
f
(
x, |un|

)
un – f

(
x, |u|)u

)
(un – u) dx = 0. (3.6)

Obviously, 〈J ′
λ(un) – J ′

λ(u), un – u〉 → 0 as n → ∞, since un ⇀ u in Hs
A,V (RN ,C) and

J ′
λ(un) → 0 in the dual space of Hs

A,V (RN ,C). Thus

o(1) =
〈
J ′
λ(un) – J ′

λ(u), un – u
〉

=
〈
Ψ (un) – Ψ (u), un – u

〉
+ ‖un – u‖2

L2

– R

∫

RN

(
f
(
x, |un|

)
un – f

(
x, |u|)u

)
(un – u) dx. (3.7)

Combining with (3.6) and (3.7), we get

lim
n→∞

(〈
Ψ (un) – Ψ (u), un – u

〉
+ ‖un – u‖2

L2
)

= 0, (3.8)

which yields un → u in Hs
A,V (RN ,C). �
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Proof of Theorem 1.1 By (f3) and (2.4), we know that B(u) ≥ 0 for all u ∈ Hs
A,V (RN ,C)

and A(u) → ∞ as ‖u‖Hs
A,V

→ ∞. Moreover, Jλ(–u) = Jλ(u) for all u ∈ Hs
A,V (RN ,C) and

λ ∈ [1, 2]. It follows from the conditions (f3)–(f4) and Lemma 2.4 that Jλ maps bounded
sets into bounded sets uniformly for λ ∈ [1, 2]. Together with Lemma 2.2, the conditions
(A1)–(A3) of Theorem 2.6 are verified. Thus, by Theorem 2.6, for a.e. λ ∈ [1, 2], there exists
a sequence {uk

n(λ)}∞n=1 such that

sup
n

∥∥uk
n(λ)

∥∥
Hs

A,V
< ∞, J ′

λ

(
uk

n(λ)
) → 0 and

Jλ
(
uk

n(λ)
) → ck(λ) as n → ∞.

(3.9)

We have

ck(λ) = inf
γ∈Γk

max
u∈Bk

Jλ
(
γ (u)

) ≤ max
u∈Bk

J1(u) = c̄k . (3.10)

Combining with (3.1), we have

ck(λ) ≥ bk(λ) ≥ 1
8
(
8C1ζ

p
k
) 2

2–p = b̄k → ∞ as n → ∞. (3.11)

Hence

b̄k ≤ ck(λ) ≤ c̄k for k ≥ k0. (3.12)

By (3.9), we know that if we choose a sequence λm → 1, then the sequence {uk
n(λm)}

is bounded. Combining with Lemma 3.3, we see that {uk
n(λm)} has a strong convergent

subsequence as n → ∞. We may assume that uk
n(λm) → uk(λm) as n → ∞ for every m ∈N

and k ≥ k0. By (3.9) and (3.12), we get

J ′
λm

(
uk(λm)

)
= 0 and Jλm

(
uk(λm)

) ∈ [b̄k , c̄k] for k ≥ k0. (3.13)

Next, we show that {uk(λm)}∞m=1 is bounded in Hs
A,V (RN ,C). If not, we consider vm :=

uk (λm)
‖uk (λm)‖Hs

A,V
. Then, up to a sequence, we get vm ⇀ v in Hs

A,V (RN ,C), |vm| → |v| in Lp(RN )

for 2 ≤ p < 2∗
s and vm(x) → v(x) a.e. x ∈R

N .
Case 1: If v(x) �= 0 in Hs

A,V (RN ,C), we have

1
2

–
Jλm (uk(λm))

‖uk(λm)‖2
Hs

A,V

= λm

∫

RN

F(x, |uk(λm)|)
‖uk(λm)‖2

Hs
A,V

dx

= λm

∫

{vm(x) �=0}
F(x, |uk(λm)|)

|uk(λm)|2 |vm|2 dx. (3.14)

Thus,

lim
m→∞λm

∫

{vm(x) �=0}
F(x, |uk(λm)|)

|uk(λm)|2 |vm|2 dx =
1
2

. (3.15)
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On the other hand, by (f4)

lim inf
m→∞ λm

∫

{vm(x) �=0}
F(x, |uk(λm)|)

|uk(λm)|2 |vm|2 dx → ∞. (3.16)

That is a contradiction.
Case 2: If v(x) = 0 in Hs

A,V (RN ,C), we have

μJλm

(
uk(λm)

)
–

〈
J ′
λm

(
uk(λm)

)
, uk(λm)

〉

=
(

μ

2
– 1

)∥
∥uk(λm)

∥
∥2

Hs
A,V

– μλm

∫

RN
F
(
x,

∣
∣uk(λm)

∣
∣)dx

+ Rλm

∫

RN
f
(
x,

∣
∣uk(λm)

∣
∣)uk(λm)uk(λm) dx. (3.17)

We have

μ

2
– 1 =

μJλm (uk(λm)) – 〈J ′
λm (uk(λm)), uk(λm)〉

‖uk(λm)‖2
s,A

– λm

∫

RN

μF(x, |uk(λm)|) – f (x, |uk(λm)|)|uk(λm)|2
|uk(λm)|2 |vm|2 dx. (3.18)

By (3.13),

λm

∫

RN

μF(x, |uk(λm)|) – f (x, |uk(λm)|)|uk(λm)|2
|uk(λm)|2

∣∣vm(x)
∣∣2 dx → μ

2
– 1

as m → ∞. (3.19)

But by the assumption (f3),

lim sup
m→∞

λm

∫

RN

μF(x, |uk(λm)|) – f (x, |uk(λm)|)|uk(λm)|2
|uk(λm)|2

∣
∣vm(x)

∣
∣2 dx ≤ 0. (3.20)

Combining with (3.19) and (3.20), we get μ

2 – 1 ≤ 0, i.e. μ ≤ 2, which is in contradiction
with the assumption. Therefore {uk(λm)}∞m=1 is bounded in Hs

A,V (RN ,C). By Lemma 3.3,
we find that {uk(λm)}∞m=1 possesses a strong convergent subsequence with limit uk ∈
Hs

A,V (RN ,C) for all k ≥ k0. Hence, uk is a critical point of J = J1 with J(uk) ∈ [b̄k , c̄k]. Since
b̄k → ∞ as k → ∞, we have infinitely many nontrivial critical points of J . Namely, problem
(1.1) has infinitely many nontrivial solutions with high energy. The proof is completed. �
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