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Abstract
In this paper, we consider the sharp thresholds of blow-up and global existence for
the nonlinear Schrödinger–Choquard equation

iψt +�ψ = λ1|ψ |p1ψ + λ2(Iα ∗ |ψ |p2)|ψ |p2–2ψ .

We derive some finite time blow-up results. Due to the failure of this equation to be
scale invariant, we obtain some sharp thresholds of blow-up and global existence by
constructing some new estimates. In particular, we prove the global existence for this
equation with critical mass in the L2-critical case. Our obtained results extend and
improve some recent results.
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1 Introduction
In this paper, we study the sharp threshold of blow-up and global existence for the non-
linear Schrödinger–Choquard equation

{
iψt + �ψ = λ1|ψ |p1ψ + λ2(Iα ∗ |ψ |p2 )|ψ |p2–2ψ ,
ψ(0, x) = ψ0(x),

(1.1)

where ψ(t, x) : [0, T∗)×R
N →C and 0 < T∗ ≤ ∞, N ≥ 3, ψ0 ∈ H1, λ1,λ2 ∈R, 0 < p1 < 4

N–2 ,
1 + α

N < p2 < 1 + 2+α
N–2 , Iα : RN → R is the Riesz potential defined by

Iα(x) =
Γ ( N–α

2 )
Γ ( α

2 )πN/22α|x|N–α
,

where Γ is the Gamma function and max{0, N – 4} < α < N .
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When λ2 = 0, Eq. (1.1) is the classical Schrödinger equation which appears in various
areas of physics, such as nonlinear plasmas and nonlinear optics; see [2, 18]. This class of
equations received a great deal of attention from mathematicians see [2, 18]. Particularly,
from scaling invariance of (1.1) with λ2 = 0, Weinstein [19] and Zhang [21] obtained the
sharp threshold of blow-up and global existence for the L2-critical nonlinearity and L2-
supercritical nonlinearity, respectively.

When λ1 = 0, 0 < α < N and 1 + α
N < p2 < N+α

N–2 , under the assumption that the local well-
posedness holds for (1.1), Chen and Guo [3] derived the existence of blow-up solutions
and the instability of standing waves. When 0 < α < N and 1+ α

N < p2 < 1+ 2+α
N , Squassina et

al. in [1] studied the soliton dynamics of (1.1) under the assumption that the solution ψ of
(1.1) is in C([0,∞), H2) ∩ C1((0,∞), L2). The dynamical properties of blow-up solutions
have been investigated in [11]. In [8], Feng and Yuan systematically studied the Cauchy
problem (1.1) for general max{0, N – 4} < α < N and 2 ≤ p2 < N+α

N–2 . More precisely, they
studied the local well-posedness, global existence, the existence of blow-up solutions and
the dynamics of blow-up solutions. The sharp threshold of global existence and blow-up,
the instability of standing wave of (1.1) with λ1 = 0 and a harmonic potential have been
investigated in [5].

From the local well-posedness of (1.1) with λ1 = 0 or λ2 = 0, for small initial data ψ0, the
solution ψ(t) to (1.1) exists globally, and the solution ψ(t) may blow up for some large ini-
tial data. Hence, whether there are some sharp thresholds of global existence and blow-up
for (1.1) is a very interesting problem. In particular, the sharp thresholds of global existence
and blow-up for nonlinear Schrödinger equations are pursued strongly in [2, 4, 6, 7, 9, 12–
24]. However, in these papers, the scale invariance plays an important role in the study of
the sharp threshold of blow-up and global existence. When λ1 	= 0 and λ2 	= 0, there is no
any scaling invariance for Eq. (1.1). Therefore, the study of the sharp threshold of blow-up
and global existence for (1.1) with λ1 	= 0 and λ2 	= 0 is of particular interest.

To study this problem, we mainly use the idea of Zhang and Zhu [22], where they studied
sharp criteria for the Davey–Stewartson system

iψt + �ψ = λ1|ψ |pψ + λ2E
(|ψ |2)ψ . (1.2)

Due to the failure of (1.1) to be scale invariant, motivated by the idea in [22], we must
construct some new estimates to establish some sharp thresholds of blow-up and global
existence for (1.1). We will derive sharp thresholds of blow-up and global existence for
(1.1) in the following three cases: (i) λ1 < 0 and λ2 < 0; (ii) λ1 > 0 and λ2 < 0; (iii) λ1 < 0
and λ2 > 0. However, the authors in [22] only studied sharp criteria for (1.2) with λ1 <
0 and λ2 < 0. Therefore, we extend and improve these sharp thresholds for the Davey–
Stewartson system to the Schrödinger–Choquard equation. In particular, we can prove
the global existence for this equation with critical mass in the L2-critical case.

This paper is organized as follows: in Sect. 2, we recall some preliminaries. In Sect. 3,
we will derive some sufficient conditions on existence of blow-up solutions. In Sect. 4, we
will derive some sharp thresholds of blow-up and global existence for (1.1) by constructing
some new estimates. Section 5 is a concluding section.

2 Preliminaries
In order to study the sharp threshold of blow-up and global existence for (1.1), we first
make the following assumption about the local well-posedness of (1.1).
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Assumption 1 Let ψ0 ∈ H1, 0 < p1 < 4
N–2 and 1 + α

N < p2 < 1 + 2+α
N–2 with N ≥ 3. Then, there

exist T∗ > 0 and a unique maximal solution u ∈ C([0, T∗), H1). In addition, if T∗ < ∞, then
‖ψ(t)‖H1 → ∞ as t ↑ T∗. Moreover, the solution ψ(t) satisfies

∥∥ψ(t)
∥∥

L2 = ‖ψ0‖L2 , (2.1)

E
(
ψ(t)

)
= E(ψ0), (2.2)

for all 0 ≤ t < T∗, where E(ψ(t)) is defined by

E
(
ψ(t)

)
:=

1
2

∫
RN

∣∣∇ψ(t, x)
∣∣2 dx +

λ1

p1 + 2

∫
RN

∣∣ψ(t, x)
∣∣p1+2 dx

+
λ2

2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx. (2.3)

Remark When 0 < p1 < 4
N–2 and 2 ≤ p2 < 1 + 2+α

N–2 , this assumption can be easily proved by
Strichartz’s estimates and a fixed point argument; see [2, 8]. When 1 + α

N < p2 < 2, we de-
duce from the Hardy–Littlewood–Sobolev inequality that

∫
RN (Iα ∗ |ψ |p2 )|ψ |p2 dx is well-

defined for ψ ∈ H1. Thus, we assume that the local well-posedness of (1.1) holds for N+α
N <

p2 < 2. However, we cannot prove this result since the nonlinearity (Iα ∗ |ψ |p2 )|ψ |p2–2ψ is
singular when N+α

N < p2 < 2. Consequently, the case of N+α
N < p2 < 2 will be the object of a

future investigation.

By the same argument as that in [2], we can easily derive the following lemma.

Lemma 2.1 Let ψ0 ∈ Σ := {u ∈ H1, xu ∈ L2}, and the solution ψ(t) to (1.1) exists on the
interval [0, T∗). Then, ψ(t) ∈ Σ for all t ∈ [0, T∗). Moreover, let F(t) =

∫
RN |xψ(t, x)|2 dx,

then

F ′(t) = –4 Im
∫
RN

ψ(t, x)x · ∇ψ̄(t, x) dx := –4h(t), (2.4)

and

F ′′(t) = –4h′(t)

= 8
∫
RN

∣∣∇ψ(t, x)
∣∣2 dx +

4Nλ1p1

p1 + 2

∫
RN

∣∣ψ(t, x)
∣∣p1+2 dx

+ λ2
4p2N – 4N – 4α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx. (2.5)

Finally, we recall two important Gagliardo–Nirenberg type inequalities; see [8, 19].

Lemma 2.2 ([19]) Let Q be the ground state solution of the following elliptic equation:

–�Q + Q – |Q|p+2Q = 0 in R
N . (2.6)

Then, the optimal constant in the Gagliardo–Nirenberg inequality,

‖ψ‖p+2
Lp+2 ≤ C∗‖ψ‖p+2– Np

2
L2 ‖∇ψ‖

Np
2

L2 , (2.7)
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is

C∗ =
2(p + 2)(2(p + 2) – Np)

Np–4
4

(Np)
Np
4 ‖Q‖p

L2

. (2.8)

In particular, in the L2-critical case, i.e., p = 4
N , C∗ = p+2

2‖Q‖p
L2

.

Lemma 2.3 ([8]) Let R be the ground state solution of the following elliptic equation:

–�R + R –
(
Iα ∗ |R|p)|R|p–2R = 0 in R

N . (2.9)

The best constant in the Gagliardo–Nirenberg type inequality

∫
RN

(
Iα ∗ |ψ |p)|ψ |p dx ≤ C∗‖∇ψ‖Np–N–α

L2 ‖ψ‖N+α–Np+2p
L2 (2.10)

is

C∗ =
2p

2p – Np + N + α

(
2p – Np + N + α

Np – N – α

) Np–N–α
2 ‖R‖2–2p

L2 . (2.11)

In particular, in the L2-critical case, i.e., p = 1 + 2+α
N , C∗ = p‖R‖2–2p

L2 .

This inequality has been extended to the fractional case; see [10].
Finally, we recall the following compactness lemma is vital in the proof of global exis-

tence; see [7].

Lemma 2.4 Let N ≥ 2, 0 < p < 4
N–2 . Let {un} be a bounded sequence in H1 such that

lim sup
n→∞

‖un‖Ḣ1 ≤ M, lim sup
n→∞

‖un‖Lp+2 ≥ m.

Then there exist a sequence (xn)n≥1 in R
N and U ∈ H1 \ {0} such that up to a subsequence,

un(· + xn) ⇀ U weakly in H1.

3 The existence of blow-up solutions
In this section, we will derive the sufficient conditions about existence of blow-up solu-
tions.

Theorem 3.1 Let ψ0 ∈ Σ , λ1 < 0, h0 := Im
∫
RN ψ̄0x∇ψ0 dx > 0 and 4

N < p1 < 4
N–2 with

N ≥ 3. Then, the solution ψ(t) of (1.1) blows up in each of the following three cases:
(1) λ2 > 0, 1 + α

N < p2 < 1 + Np1+2α

2N , and E(ψ0) < 0;
(2) λ2 < 0, 1 + 2+α

N < p2 < 1 + Np1+2α

2N , and E(ψ0) < 0;

(3) λ2 < 0, 1 + α
N < p2 ≤ 1 + 2+α

N , and E(ψ0) + C‖ψ0‖
2Np1+2p1α–4Np2+4N+4α

Np1–2Np2+2N+2α

L2 < 0 for some
constant C.
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More precisely, there is T∗ ∈ (0, C
‖xψ0‖2

L2
y0

] such that

lim
t→T∗

∥∥∇ψ(t)
∥∥

L2 = ∞.

Proof In the following, we will prove F ′(t) < 0 and F ′′(t) < 0 for all t ∈ [0, T∗). More pre-
cisely, we will prove that

h′(t) ≥ c
∥∥∇ψ(t)

∥∥2
L2 > 0 (3.1)

for some constant c > 0, where h(t) is defined by (2.4). Thus, it follows from (2.5) that
F ′′(t) < 0 for all t ∈ [0, T∗). This shows that F(t) is concave and the solution ψ(t) of (1.1)
blows up. Indeed, it follows from y(0) = y0 > 0 that h(t) > h(0) > 0 for all t > 0. On the other
hand, we deduce from Hölder’s inequality that

h(t) ≤ ∥∥xψ(t)
∥∥

L2

∥∥∇ψ(t)
∥∥

L2

for all t ∈ [0, T∗). This implies

∥∥∇ψ(t)
∥∥

L2 ≥ h(t)
‖xψ0‖L2

. (3.2)

We deduce from (3.1) and (3.2) that

⎧⎨
⎩

h′(t) ≥ c h2(t)
‖xψ0‖2

L2
,

h(0) = h0 > 0.
(3.3)

This shows that there is T∗ ∈ (0,
‖xψ0‖2

L2
cy0

] such that ‖∇ψ(t)‖L2 → ∞ as t → T∗.
Case (i): λ2 > 0, Np1 > 2Np2 – 2N – 2α, and E(ψ0) < 0. We deduce from (2.5), (2.2), and

our assumptions that

h′(t) = –2
∥∥∇ψ(t)

∥∥2
L2 –

Nλ1p1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

– λ2
p2N – N – α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t)

∣∣ψ(t)
∣∣p2 dx

= –2
∥∥∇ψ(t)

∥∥2
L2

+ Np1

(
1
2
∥∥∇ψ(t)

∥∥2
L2 +

λ2

2p2

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx – E(ψ0)

)

– λ2
p2N – N – α

p2

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx

=
Np1 – 4

2
∥∥∇ψ(t)

∥∥2
L2 – Np1E(ψ0)

+
λ2

2p2
(Np1 – 2Np2 + 2N + 2α)

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx

≥ Np1 – 4
2

∥∥∇ψ(t)
∥∥2

L2 .

This implies that (3.1) holds.
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Case (ii): λ2 < 0, Np1 + 2N + 2α > 2Np2, p2 > 1 + α+2
N and E(ψ0) < 0. We deduce from (2.5),

(2.2), and our assumptions that

h′(t) = –2
∥∥∇ψ(t)

∥∥2
L2 –

Nλ1p1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

– (p2N – N – α)
(

2E(ψ0) –
∥∥∇ψ(t)

∥∥2
L2 –

2λ1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

)

= (p2N – N – α – 2)
∥∥∇ψ(t)

∥∥2
L2 – 2(p2N – N – α)E(ψ0)

–
λ1

p1 + 2
(Np1 – 2Np2 + 2N + 2α)

∥∥ψ(t)
∥∥p1+2

Lp1+2

≥ (p2N – N – α – 2)
∥∥∇ψ(t)

∥∥2
L2 .

This implies that (3.1) holds.

Case (iii): λ2 < 0, 1 + α
N < p2 ≤ 1 + 2+α

N , and E(ψ0) + C‖ψ0‖
2Np1+2p1α–4Np2+4N+4α

Np1–2Np2+2N+2α

L2 < 0 for some
constant C.

We deduce from p1 > 4
N that there is a constant ε such that p1 > 2(2+ε)

N . Let θ := 2(2+ε)
p1N < 1.

Therefore, it follows from (2.2) and our assumptions that

h′(t) = –2
∥∥∇ψ(t)

∥∥2
L2 –

Nλ1p1θ

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2 –

Nλ1p1(1 – θ )
p1 + 2

∥∥ψ(t)
∥∥p1+2

Lp1+2

– λ2
p2N – N – α

p2

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx

≥ –2
∥∥∇ψ(t)

∥∥2
L2

+ Np1θ

(
1
2
∥∥∇ψ(t)

∥∥2
L2 – E(ψ0) +

λ2

2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t)

∣∣ψ(t)
∣∣p2 dx

)

–
Nλ1p1(1 – θ )

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2 – λ2θ

p2N – N – α

p2

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx

≥
(

–2 +
Np1θ

2

)∥∥∇ψ(t)
∥∥2

L2 – Np1θE(ψ0) –
Nλ1p1(1 – θ )

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

+
λ2θ (Np1 – 2p2N + 2N + 2α)

2p2

∫
RN

(
Iα ∗ ∣∣ψ(t)

∣∣p2)∣∣ψ(t)
∣∣p2 dx.

Applying Young’s inequality, we have

∫
RN

Iα ∗ ∣∣ψ(t)
∣∣p2 ∣∣ψ(t)

∣∣p2 dx ≤ ∥∥ψ(t)
∥∥2p2

L
2Np2
N+α

≤ ∥∥ψ(t)
∥∥2p2– 2(p1+2)(Np2–N–α)

Np1
L2

∥∥ψ(t)
∥∥ 2(p1+2)(Np2–N–α)

Np1
Lp1+2

≤ C(δ)
∥∥ψ(t)

∥∥ 2Np1+2p1α–4Np2+4N+4α
Np1–2Np2+2N+2α

L2 + δ
∥∥ψ(t)

∥∥p1+2
Lp1+2 .

Therefore, we can choose δ > 0 enough small such that

δ
|λ2|θ (Np1 – 2p2N + 2N + 2α)

2p2
<

N |λ1|p1(1 – θ )
p1 + 2

,
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which implies

y′(t) ≥ ε
∥∥∇ψ(t)

∥∥2
L2 – Np1θE

– C(δ)
|λ2|θ (Np1 – 2p2N + 2N + 2α)

2p2
‖ψ0‖

2Np1+2p1α–4Np2+4N+4α
Np1–2Np2+2N+2α

L2 .

Therefore, if Np1θE + C(δ) |λ2|θ (Np1–2p2N+2N+2α)
2p2

‖ψ0‖
2Np1+2p1α–4Np2+4N+4α

Np1–2Np2+2N+2α

L2 < 0, then

y′(t) ≥ ε
∥∥∇ψ(t)

∥∥2
L2 .

This implies that (3.1) holds. �

4 Sharp conditions of blow-up and global existence
From the local well-posedness of the nonlinear Schrödinger–Choquard equation, for
small initial data ψ0, the solution ψ(t) to (1.1) exists globally, and the solution ψ(t) may
blow up for some large initial data. Therefore, whether there are some sharp thresholds
of global existence and blow-up for (1.1) is a very interesting problem. For Eq. (1.1), there
are two nonlinearities and there is no scaling invariance, which are the main difficulties.
We obtain the following sharp conditions of blow-up and global existence for (1.1) by con-
structing some new estimates.

4.1 L2-Critical case
Theorem 4.1 Let ψ0 ∈ H1, λ1 = –1, λ2 = 1, p1 = 4

N and 1 + α
N < p2 < 1 + 2+α

N . Assume that
Q is the ground state solution of (2.6). Then, we have the following sharp threshold mass of
blow-up and global existence.

(i) If ‖ψ0‖L2 ≤ ‖Q‖L2 , then the solution of (1.1) exists globally.
(ii) If the initial data ψ0 = cρ N

2 Q(ρx) satisfies |x|ψ0 ∈ L2, where the complex number c
satisfying |c| > 1, and the real number ρ > 0, then the solution ψ of (1.1) with initial
data ψ0 blows up in finite time.

Proof (i) We firstly consider the case ‖ψ0‖L2 < ‖Q‖L2 . It follows from (2.3) and (2.7) that

E(ψ0) = E
(
ψ(t)

)
=

1
2

∫
RN

∣∣∇ψ(t, x)
∣∣2 dx –

1
p1 + 2

∫
RN

∣∣ψ(t, x)
∣∣p1+2 dx

+
1

2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

≥
(

1
2

–
‖ψ0‖p1

L2

2‖Q‖p1
L2

)∥∥∇ψ(t)
∥∥2

L2 .

Due to ‖ψ0‖L2 < ‖Q‖L2 , we find that ‖∇ψ(t)‖L2 is uniformly bounded for all time t. There-
fore, (i) follows from the conservation of mass and Proposition 2.1.

When ‖ψ0‖L2 = ‖Q‖L2 , if the solution ψ(t) of (1.1) blows up in finite time, then there
exists T∗ > 0 such that limt→T∗ ‖∇ψ(t)‖L2 = ∞. Set

ρ(t) = ‖∇Q‖L2 /
∥∥∇ψ(t)

∥∥
L2 and v(t, x) = ρ

N
2 (t)ψ

(
t,ρ(t)x

)
.
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Let {tn}∞n=1 be an any time sequence such that tn → T∗, ρn := ρ(tn) and vn(x) := v(tn, x).
Then, the sequence {vn} satisfies

‖vn‖L2 =
∥∥ψ(tn)

∥∥
L2 = ‖ψ0‖L2 = ‖Q‖L2 , ‖∇vn‖L2 = ρn

∥∥∇ψ(tn)
∥∥

L2 = ‖∇Q‖L2 . (4.1)

Observe that

H(vn) :=
1
2

∫
RN

∣∣∇vn(x)
∣∣2 dx –

1
p1 + 2

∫
RN

∣∣vn(x)
∣∣p1+2 dx

= ρ2
n

(
1
2

∫
RN

∣∣∇ψ(tn, x)
∣∣2 dx –

1
p1 + 2

∫
RN

∣∣ψ(tn, x)
∣∣p1+2 dx

)

= ρ2
n

(
E(ψ0) –

1
2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

)
. (4.2)

Thus, we deduce from the Gagliardo–Nirenberg inequality (2.10) and 1 + α
N < p2 < 1 + 2+α

N
that

ρ2
n

(
E(ψ0) –

1
2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

)
→ 0, as n → ∞.

This, together with (4.2) implies that
∫
RN |vn(x)|p1+2 dx → (2/N + 1)‖∇Q‖2

L2 . Thus, we de-
duce from (4.1) that there exist a subsequence, still denoted by {vn}, and u ∈ H1\{0} such
that

un := τxn vn ⇀ u 	= 0 weakly in H1,

for some {xn} ⊆R
N . This implies that there exists C0 > 0 such that

lim inf
n→∞

∫
RN

(
Iα ∗ |un|p2

)
(x)

∣∣un(x)
∣∣p2 dx

= lim inf
n→∞

∫
RN

(
Iα ∗ |vn|p2

)
(x)

∣∣vn(x)
∣∣p2 dx ≥ C0 > 0. (4.3)

On the other hand, we deduce from (2.7) and ‖ψ(t)‖L2 = ‖ψ0‖L2 = ‖Q‖L2 that

1
2

∫
RN

∣∣∇ψ(t, x)
∣∣2 dx –

1
p1 + 2

∫
RN

∣∣ψ(t, x)
∣∣p1+2 dx ≥ 0,

for all t ∈ [0, T∗). This implies that

1
2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx ≤ E(ψ0),

for all t ∈ [0, T∗). We consequently obtain

∫
RN

(
Iα ∗ |vn|p2

)
(x)

∣∣vn(x)
∣∣p2 dx = ρNp2–N–α

n

∫
RN

(
Iα ∗ |ψ |p2

)
(tn, x)

∣∣ψ(tn, x)
∣∣p2 dx

≤ ρNp2–N–α
n E(ψ0) → 0, as n → ∞,

which is a contradiction with (4.3). Thus, the solution ψ(t) of (1.1) exists globally.
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(ii) Since |x|ψ0 ∈ L2, J(t) =
∫
RN |xψ(t, x)|2 dx is well-defined, and it follows from Lem-

ma 2.1 that

J ′′(t) = 16E(ψ0) +
4Np2 – 4N – 4α – 8

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx. (4.4)

By the definition of initial data ψ0(x) = cρ N
2 Q(ρx) and the Pohoz̆aev identity for Eq. (2.6),

i.e., 1
2‖∇Q‖2

L2 = 1
p1+2‖Q‖p1+2

Lp1+2 , we deduce that

E(ψ0) =
|c|2ρ2

2

∫
RN

∣∣∇Q(x)
∣∣2 dx –

|c|p1+2ρ2

p1 + 2

∫
RN

∣∣Q(x)
∣∣p1+2 dx

+
|c|2p2ρNp2–N–α

2p2

∫
RN

(
Iα ∗ |Q|p2

)
(x)

∣∣Q(x)
∣∣p2 dx

= –
|c|2ρ2

2
(|c|p1 – 1

)‖∇Q‖2
L2

+
|c|2p2ρNp2–N–α

2p2

∫
RN

(
Iα ∗ |Q|p2

)
(x)

∣∣Q(x)
∣∣p2 dx. (4.5)

Thanks to Np2 – N – α < 2, we can take ρ large enough such that

E(ψ0) < 0.

It follows from (4.4) that F ′′(t) < 16E(ψ0) < 0. By the standard concave argument, the so-
lution ψ of (1.1) with the initial data ψ0 blows up in finite time. �

4.2 L2-Supercritical case
Theorem 4.2 Let λ1 = λ2 = –1, p1 > 4

N , and ψ ∈ C([0, T∗), H1) be a solution of (1.1). Then
we have the following sharp criteria of blow-up and global existence for (1.1).

(1) ‖ψ0‖L2 < ‖R‖L2 , p2 = 1 + 2+α
N , and E(ψ0) < Np1–4

2Np1
(1 –

‖ψ0‖2p2–2
L2

‖R‖2p2–2
L2

)y2
0. If ‖∇ψ0‖L2 < y0,

then the solution ψ(t) of (1.1) exists globally; If ‖∇u0‖L2 > y0, then the solution ψ(t)
of (1.1) blows up, where R is the ground state solution of (2.9) with p = 1 + 2+α

N , y0 is
defined by (4.8).

(2) 1 + α+2
N < p2 < 1 + Np1+2α

2N and E(ψ0) < Np2–N–α–2
2(Np2–N–α) y2

1. If ‖∇ψ0‖L2 < y1, then the solution
ψ(t) of (1.1) exists globally; If ‖∇ψ0‖L2 > y1, then the solution ψ(t) of (1.1) blows up,
where y1 is the unique positive solution of the equation f (y) = 0 and f (y) is defined in
(4.13) with 1 + α+2

N < p2 < 1 + Np1+2α

2N .
(3) 1 + Np1+2α

2N < p2 < 1 + 2+α
N–2 and E(ψ0) < Np1–4

2Np1
y2

2. If ‖∇ψ0‖L2 < y2, then the solution
ψ(t) of (1.1) exists globally; If ‖∇ψ0‖L2 > y2, then the solution ψ(t) of (1.1) blows up,
where y2 is the unique positive solution of the equation f (y) = 0 and f (y) is defined in
(4.13) with 1 + Np1+2α

2N < p2 < 1 + 2+α
N–2 .

Proof Case (1): p2 = 1 + 2+α
N . First, we deduce from (2.7) and (2.10) that

E
(
ψ(t)

) ≥ 1
2
∥∥∇u(t)

∥∥2
L2 –

C∗
p1 + 2

∥∥∇ψ(t)
∥∥ Np1

2
L2

∥∥ψ(t)
∥∥p1+2– Np1

2
L2

–
C∗

2p2

∥∥∇ψ(t)
∥∥2

L2

∥∥ψ(t)
∥∥2p2–2

L2

≥ h
(∥∥∇ψ(t)

∥∥
L2

)
, (4.6)
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where C∗ and C∗ are defined by (2.8) and (2.11), respectively, h(y) is defined by

h(y) =
1
2

y2 –
C∗

p1 + 2
‖ψ0‖p1+2– Np1

2
L2 y

Np1
2 –

C∗

2p2
‖ψ0‖2p2–2

L2 y2, y ∈ [0,∞).

By a simple computation, we find that h(y) is continuous on [0,∞) and

h′(y) =
(

1 –
C∗

p2
‖ψ0‖2p2–2

L2

)
y –

C∗
p1 + 2

Np1

2
‖ψ0‖p1+2– Np1

2
L2 y

Np1
2 –1. (4.7)

By the assumption ‖ψ0‖L2 < ‖R‖L2 , 1 – C∗
p2

‖ψ0‖2p2–2
L2 > 0. Thus, the equation h′(y) = 0 has a

unique positive root:

y0 =
( 1 – C∗

p2
‖ψ0‖2p2–2

L2

C∗
p1+2

Np1
2 ‖ψ0‖p1+2– Np1

2
L2

) 2
Np1–4

. (4.8)

This implies that h(y) is increasing on the interval [0, y0), decreasing on the interval [y0,∞)
and

hmax = h(y0) =
Np1 – 4

2Np1

(
1 –

‖ψ0‖2p2–2
L2

‖R‖2p2–2
L2

)
y2

0. (4.9)

By (2.2) and E(ψ0) < h(y0), we have

h
(∥∥∇ψ(t)

∥∥
L2

) ≤ E
(
ψ(t)

)
= E(ψ0) < h(y0), for all t ∈ [

0, T∗). (4.10)

Now, we claim that if ‖∇ψ0‖L2 < y0, then ‖∇ψ(t)‖L2 < y0, for all t ∈ [0, T∗). This implies
the solution ψ(t) of (1.1) exists globally. Let us prove this result by contradiction. If not,
by the continuity of ‖∇ψ(t)‖L2 , there exists t0 ∈ [0, T∗) such that ‖∇ψ(t0)‖L2 = y0. Thus,
h(‖∇ψ(t0)‖L2 ) = h(y0) = hmax. Moreover, taking t = t0 in (4.10), it follows that

h
(∥∥∇ψ(t0)

∥∥
L2

)
= h(y0) = hmax ≤ E

(
ψ(t)

)
= E(ψ0) < hmax,

which is a contradiction. Thus, the solution ψ(t) of (1.1) exists globally.
On the other hand, if ‖∇ψ0‖L2 > y0, by the same argument, it follows that ‖∇ψ(t)‖L2 >

y0 for all t ∈ [0, T∗). Thus, by (2.2), (2.5), (2.7), and the assumption E(ψ0) < Np1–4
2Np1

(1 –
‖ψ0‖2p2–2

L2

‖R‖2p2–2
L2

)y2
0, we deduce that

F ′′(t) = 8
∥∥∇ψ(t)

∥∥2
L2 –

4Np1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2 –

8
p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

= 4Np1E(ψ0) – 2(Np1 – 4)
∥∥∇ψ(t)

∥∥2
L2

+
2(Np1 – 4)

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣u(t, x)
∣∣p2 dx

≤ 4Np1E(ψ0) – 2(Np1 – 4)
∥∥∇ψ(t)

∥∥2
L2 + 2(Np1 – 4)

‖ψ0‖2p2–2
L2

‖R‖2p2–2
L2

∥∥∇ψ(t)
∥∥2

L2
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≤ 2(Np1 – 4)
(

1 –
‖ψ0‖2p2–2

L2

‖R‖2p2–2
L2

)
y2

0

– 2(Np1 – 4)
(

1 –
‖ψ0‖2p2–2

L2

‖R‖2p2–2
L2

)∥∥∇ψ(t)
∥∥2

L2 < 0. (4.11)

Therefore, by the classical argument for Schrödinger equations, the solution ψ(t) of (1.1)
blows up.

Case (2): 1+ α+2
N < p2 < 1+ Np1+2α

2N and E(ψ0) < Np2–N–α–2
2(Np2–N–α) y2

1. Similarly, we define a function
g(y) on [0,∞) by

g(y) =
1
2

y2 –
C∗

p1 + 2
‖ψ0‖(p1+2)– Np1

2
L2 y

Np1
2 –

C∗

2p2
‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α , y ∈ [0,∞).

Thus, it follows that E(ψ(t)) ≥ g(‖∇ψ(t)‖L2 ), g(y) is continuous on [0,∞) and

g ′(y) = y –
C∗

p1 + 2
Np1

2
‖ψ0‖(p1+2)– Np1

2
L2 y

Np1
2 –1

–
C∗

2p2
(Np2 – N – α)‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α–1. (4.12)

Next, we define a function f (y) by

f (y) = 1 –
C∗

p1 + 2
Np1

2
‖ψ0‖(p1+2)– Np1

2
L2 y

Np1
2 –2

–
C∗

2p2
(Np2 – N – α)‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α–2. (4.13)

For the equation f (y) = 0, there is a unique positive solution y1. Indeed, by the assump-
tion 1 + α+2

N < p2 < 1 + Np1+2α

2N , for y > 0, we have

f ′(y) = –
C∗

p1 + 2
Np1

2

(
Np1

2
– 2

)
‖ψ0‖(p1+2)– Np1

2
L2 y

Np1
2 –3

–
C∗

2p2
(Np2 – N – α)(Np2 – N – α – 2)‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α–3 < 0, (4.14)

which implies that f (y) is decreasing on [0,∞). Due to f (0) = 1, there exists a unique y1 > 0
such that f (y1) = 0. Therefore, we have

f (y) > 0 for all y ∈ [0, y1) and f (y) < 0 for all y ∈ (y1, +∞).

This implies that g(y) is increasing on [0, y1), decreasing on (y1, +∞) and

gmax = g(y1)

=
(

1
2

–
1

Np2 – N – α

)
y2

1

+
C∗

p1 + 2
Np1 – 2(Np2 – N – α)

2(Np2 – N – α)
‖ψ0‖p1+2– Np1

2
L2 y

Np1
2 . (4.15)
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On the other hand, we deduce from (2.2) and the assumption E(u0) < Np2–N–α–2
2(Np2–N–α) y2

1 that

g
(∥∥∇ψ(t)

∥∥
L2

) ≤ E
(
ψ(t)

)
= E(ψ0)

<
(

1
2

–
1

Np2 – N – α

)
y2

1

+
C∗

p1 + 2
Np1 – 2(Np2 – N – α)

2(Np2 – N – α)
‖ψ0‖p1+2– Np1

2
L2 y

Np1
2 = g(y1). (4.16)

By the same argument as Case (1), we find that if ‖∇ψ0‖L2 < y1, then, for all t ∈ [0, T∗),
‖∇ψ(t)‖L2 < y1, which implies the solution ψ(t) of (1.1) exists globally.

And if ‖∇ψ0‖L2 > y1, by the same way, it follows that ‖∇ψ(t)‖L2 > y1 for all t ∈ [0, T∗).
Thus, it follows from (2.2) and (2.5) that

F ′′(t) = 8
∥∥∇ψ(t)

∥∥2
L2 –

4Np1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

–
4p2N – 4N – 4α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

= 8(Np2 – N – α)E(ψ0) – 4(Np2 – N – α – 2)
∥∥∇ψ(t)

∥∥2
L2

–
4(Np1 – 2(Np2 – N – α))

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

< 4(Np2 – N – α – 2)y2
1 – 4(Np2 – N – α – 2)y2

1 = 0. (4.17)

This implies that the solution of (1.1) blows up.
Case (3): 1 + Np1+2α

2N < p2 < 1 + 2+α
N–2 and E(ψ0) < Np1–4

2Np1
y2

2. By the same argument as Case
(2), we have

gmax = g(y2)

=
(

1
2

–
2

Np1

)
y2

2

+
C∗

2p2

2(Np2 – N – α) – Np1

Np1
‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α

2 , (4.18)

where y2 is the unique positive solution of (4.13). Thus, we deduce from (2.2) and the
assumption E(ψ0) < Np1–4

2Np1
y2

2 that

g
(∥∥∇ψ(t)

∥∥
L2

) ≤ E
(
ψ(t)

)
= E(ψ0)

<
(

1
2

–
2

Np1

)
y2

2 +
C∗

2p2

2(Np2 – N – α) – Np1

Np1
‖ψ0‖N+α–Np2+2p2

L2 yNp2–N–α

2

= g(y2).

By the same argument as Case (1), we find that if ‖∇ψ0‖L2 < y1, then, for all t ∈ [0, T∗),
‖∇ψ(t)‖L2 < y1, which implies the solution ψ(t) of (1.1) exists globally.
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And if ‖∇ψ0‖L2 > y2, in the same way, it follows that ‖∇ψ(t)‖L2 > y2 for all t ∈ [0, T∗).
Thus, it follows from (2.2) and (2.5) that

F ′′(t) = 8
∥∥∇ψ(t)

∥∥2
L2 –

4Np1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

–
4p2N – 4N – 4α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

= 4Np1E(ψ0) – 2(Np1 – 4)
∥∥∇ψ(t)

∥∥2
L2

–
4(Np2 – N – α) – 2Np1

p2

∥∥ψ(t)
∥∥p1+2

Lp1+2

< 2(Np1 – 4)y2
2 – 2(Np1 – 4)y2

2 = 0. (4.19)

This implies that the solution ψ(t) of (1.1) blows up. �

Theorem 4.3 Let λ1 = 1, λ2 = –1, 1 + Np1+2α

2N < p2 < 1 + 2+α
N–2 , and E(ψ0) < Np2–N–α–2

2(Np2–N–α) x2
0,

and ψ ∈ C([0, T∗), H1) be a solution of (1.1). If ‖∇ψ0‖ < x0, then the solution ψ(t) of (1.1)
exists globally; If ‖∇ψ0‖ > x0, then the solution ψ(t) of (1.1) blows up, where x0 is defined
by (4.21).

Proof Applying (2.10), it follows that

E
(
ψ(t)

)
=

1
2
∥∥∇ψ(t)

∥∥2
L2 +

1
p1 + 2

∥∥ψ(t)
∥∥p1+2

Lp1+2 –
1

2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

≥ 1
2
∥∥∇ψ(t)

∥∥2
L2 –

C∗

2p2

∥∥∇ψ(t)
∥∥Np2–N–α

L2

∥∥ψ(t)
∥∥N+α–Np2+2p2

L2

= f
(∥∥∇ψ(t)

∥∥
L2

)
, (4.20)

where the C∗ are defined by (2.11) and

f (x) :=
1
2

x2 –
C∗

2p2
‖ψ0‖N+α–Np2+2p2

L2 xNp2–N–α .

By a simple computation, we find that the unique positive solution x0 of f ′(x) = 0 is given
by

x0 =
(

2p2

C∗(Np2 – N – α)‖ψ0‖N+α–Np2+2p2
L2

) 1
Np2–N–α–2

. (4.21)

This implies that f is increasing on (0, x0) and decreasing on (x0,∞). By a simple compu-
tation, it follows that

f (x0) =
Np2 – N – α – 2
2(Np2 – N – α)

x2
0.

By (2.2) and the assumption E(ψ0) < f (x0), it follows that

f
(∥∥∇ψ(t)

∥∥
L2

) ≤ E(ψ0) < f (x0), ∀t ∈ [
0, T∗).
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If ‖∇ψ0‖L2 < x0, it follows from the continuity argument that ‖∇ψ(t)‖L2 < x0 for all t ∈
[0, T∗). Therefore, the solution ψ(t) of (1.1) exists globally.

If ‖∇ψ0‖L2 > x0, we deduce from the continuity argument that ‖∇ψ(t)‖L2 > x0 for all
t ∈ [0, T∗). We choose δ > 0 small enough so that

E(ψ0) ≤ (1 – δ)f (x0).

This implies that

8(Np2 – N – α)E(ψ0) ≤ 8(Np2 – N – α)(1 – δ)f (x0)

= 4(Np2 – N – α – 2)(1 – δ)x2
0. (4.22)

Thus, we deduce from (2.2), (2.5) and (4.22) that

F ′′(t) = 8
∥∥∇ψ(t)

∥∥2
L2 +

4Np1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

–
4p2N – 4N – 4α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

= 4(2 – Np2 + N + α)
∥∥∇ψ(t)

∥∥2
L2 +

4Np1 – 8(Np2 – N – α)
p1 + 2

∥∥ψ(t)
∥∥p1+2

Lp1+2

+ 8(Np2 – N – α)E(ψ0)

≤ – 4(Np2 – N – α – 2)δx2
0 < 0. (4.23)

Therefore, by the classical argument for Schrödinger equations, the solution ψ(t) of (1.1)
blows up. �

Theorem 4.4 Let λ1 = –1, λ2 = 1, 1 + α+2
N < p2 < 1 + Np1+2α

2N , and E(ψ0) < Np2–N–α–2
2(Np2–N–α) x2

0,
and ψ ∈ C([0, T∗), H1) be a solution of (1.1). If ‖∇ψ0‖ < x1, then the solution ψ(t) of (1.1)
exists globally; If ‖∇ψ0‖ > x1, then the solution ψ(t) of (1.1) blows up, where x1 is defined
by (4.25).

Proof Applying (2.7), it follows that

E
(
ψ(t)

)
=

1
2
∥∥∇ψ(t)

∥∥2
L2 –

1
p1 + 2

∥∥ψ(t)
∥∥p1+2

Lp1+2 +
1

2p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

≥ 1
2
∥∥∇ψ(t)

∥∥2
L2 –

C∗
p1 + 2

∥∥∇ψ(t)
∥∥ Np1

2
L2

∥∥ψ(t)
∥∥p1+2– Np1

2
L2

= f
(∥∥∇ψ(t)

∥∥
L2

)
, (4.24)

where the C∗ are defined by (2.8) and

f (x) :=
1
2

x2 –
C∗

p1 + 2
‖ψ0‖p1+2– Np1

2
L2 x

Np1
2 .
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By a simple computation, we find that the unique positive solution x1 of f ′(x) = 0 is given
by

x1 =
(

2(p1 + 2)

C∗Np1‖ψ0‖p1+2– Np1
2

L2

) 2
Np1–4

. (4.25)

This implies that f is increasing on (0, x1) and decreasing on (x1,∞). By a simple compu-
tation, it follows that

f (x1) =
Np1 – 4

2Np1
x2

1.

By (2.2) and the assumption E(ψ0) < f (x1), it follows that

f
(∥∥∇ψ(t)

∥∥
L2

) ≤ E(ψ0) < f (x1), ∀t ∈ [
0, T∗).

If ‖∇ψ0‖L2 < x1, it follows from the continuity argument that ‖∇ψ(t)‖L2 < x1 for all t ∈
[0, T∗). Therefore, the solution ψ(t) of (1.1) exists globally.

If ‖∇ψ0‖L2 > x1, we deduce from the continuity argument that ‖∇ψ(t)‖L2 > x1 for all
t ∈ [0, T∗). We can choose δ > 0 small enough so that

E(ψ0) ≤ (1 – δ)f (x1).

This implies that

4Np1E(ψ0) ≤ 4Np1(1 – δ)f (x1) = 2(Np1 – 4)(1 – δ)x2
1. (4.26)

Thus, we deduce from (2.2), (2.5) and (4.26) that

F ′′(t) = 8
∥∥∇ψ(t)

∥∥2
L2 –

4Np1

p1 + 2
∥∥ψ(t)

∥∥p1+2
Lp1+2

+
4p2N – 4N – 4α

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

= (8 – 2Np1)
∥∥∇ψ(t)

∥∥2
L2

+
4Np2 – 4N – 4α – 2Np1

p2

∫
RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣∣ψ(t, x)
∣∣p2 dx

+ 4Np1E(ψ0)

≤ – 2(Np1 – 4)δx2
1 < 0. (4.27)

Therefore, by the classical argument for Schrödinger equations, the solution ψ(t) of (1.1)
blows up. �

5 Conclusions
In this paper, we obtain some sharp thresholds of blow-up and global existence for the
nonlinear Schrödinger–Choquard equation. We firstly obtain some sufficient conditions
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about existence of blow-up solutions. Due to the loss of scaling invariance for this equa-
tion, we derive some sharp thresholds of blow-up and global existence by constructing
some new estimates. In particular, we prove the global existence for this equation with
critical mass in the L2-critical case.
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