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Abstract
In this paper, we apply a reliable combination of maximummodulus method with
respect to the Schrödinger operator and Phragmén–Lindelöf method to investigate
nonlinear conservation laws for the Schrödinger boundary value problems of second
order. As an application, we prove the global existence to the solution for the Cauchy
problem of the semilinear Schrödinger equation. The results reveal that this method
is effective and simple.
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1 Introduction
In this article, we consider the following Schrödinger boundary value problems of second
order (see [1–4, 12, 24, 29, 33, 38]):

ifs + �f = –|f |pf , (t, s) ∈Rn × [0, L),

f (0, t) = f0(t),
(1.1)

where i =
√

–1,

� =
n∑

i=1

∂2

∂t2
i

is the Laplace operator in Rn,

f (t, s) : Rn × [0, L) → C

denotes the complex valued function, L is the maximum existence time, n is the space
dimension and p satisfies the embedding condition

4
n

< p <

⎧
⎨

⎩
+∞, n = 1, 2,

4
n–2 , n > 2.
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There has been a lot of interest in this Schrödinger equation, because of the significance
in physics. Liu [24] investigated the stationary Schrödinger equation

ift +
1
2
�f +

1
2
γ�2f + |f |2pf = 0, (1.2)

where γ ∈ R, p ≥ 1, and the space dimension is no more than three. Problem (1.2) de-
scribes a stable soliton which is a wave pulse or wave beam, specially, there are solitons in
magnetic materials for p = 1 in 3D space. Hu and Qiao [34] presented a numerical study
on the axially symmetric fourth-order Schrödinger equation

i
∂f
∂ξ

+
1
2

S�⊥f + λ�2
⊥f + μ|f |2f = 0, (1.3)

where S > 0, μ > 0,

�⊥ = ∂2/∂ρ2 + (1/ρ)∂/∂ρ

and ξ , ρ are properly normalized cylindrical variables.
For λ < 0, Eq. (1.3) plays a crucial role in the self-focusing, here the fourth derivative

term in (1.3) may give rise to an oscillatory approach to the asymptotically homogeneous
wave beam. Huang and Rui [22] analyzed the self-focusing and singularity formation in
the mixed-dispersion nonlinear Schrödinger equation

ift + �f + ε�2f + |f |2pf = 0, (t, s) ∈Rn × [0, L), (1.4)

where ε = ±1, p ≥ 1, which occurs in propagation models for fiber arrays. The authors
showed that the generic propagation dynamics for ε < 0 is focusing–defocusing oscilla-
tions. Qiao and Hou [33] considered the Schrödinger equation in dimensionless variables

ift + D�f + P�2f + B|f |2f + K |f |4f = 0, (1.5)

where D, P, B, K ∈ R and BK < 0. This equation was used for describing the dynamics of
slowly varying wave packet envelope amplitude.

Given its mathematical interest, a lot of attention is paid to the existence and nonex-
istence of global solutions to the second-order boundary value problems related to the
Schrödinger equation. Zhao [51] studied the equation

ift + �2f + β�f + λ|f |p–1f = 0, (t, s) ∈Rn × [0, L), (1.6)

where λ,β ∈R, p ∈ (1, 2# – 1], and 2# = 2n
n–4 is the energy critical exponent for the embed-

ding from H2 into Lebesgue’s spaces.
On the other hand, we have the boundary value problem with respect to the Schrödinger

operator corresponding to (1.5) given by (see [6, 9, 10, 15, 17, 26, 40, 41, 44])

f ≥ 0, 0 ≤ ω ≤ 1, u(1 – ω) = 0 in P,

χ (t1)(ft2 + ω)t2 – ωs = 0 in P,
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u = φ on Σ2,

ω(·, 0) = ω0 in ,ג

χ (t1)(ft2 + ω) · ν = 0 on Σ1,

χ (t1)(ft2 + ω) · ν ≤ 0 on Σ4.

Regarding the existence of a solution of the problem related to the Schrödinger oper-
ator (1.1) we refer to [33] and [24], respectively, for the evolutionary dam problem with
homogeneous coefficients and for a class of free boundary problem with respect to the
Schrödinger operator in heterogeneous domain. The regularity of the solution of the
problem [24] with respect to the Schrödinger operator was discussed in [34] (see also
[13, 20, 21, 31, 36]), where it was proved that ω ∈ C0([0, L]; Lp(ג)) for all p ∈ [1, +∞) in the
class of free boundary problems with respect to the Schrödinger operator of types

ift – �2f = –|f |2pu, (t, s) ∈ ×Rn × [0, L),

f (t, 0) = f0(t),
(1.7)

and that f ∈ C0([0, M]; Lp(ג)) for all p ∈ [1, 2] in the second-order class. More results as re-
gards Schrödinger-type equations, wavelet analysis, distribution theory and calculus of
variations were studied in previous work [16, 18, 19, 27, 32, 50]. The semilinear ellip-
tic equation on Rn was considered in [7]. The existence of infinitely many solutions to
it under a variety of additional conditions was proved. Bound state solutions of sublin-
ear Schrödinger equations with lack of compactness were studied in [8]. The existence of
ground state solutions for nonlinear fractional Schrödinger equation was obtained in [11]
by applying the minimization method with a constraint over a Pohožaev manifold. A dif-
fusion model of Kirchhoff-type driven by a nonlocal integro-differential operator was con-
sidered in [48]. The existence of multiple solutions for the non-homogeneous fractional
p-Laplacian equations of Schrödinger–Kirchhoff type was also considered in [45]. Bound-
ary value problems driven by a combination of differential operators of different nature
(such as (p, 2)-equations) were studied in [30]. In 2019, Xue and Tang [49] established the
existence of bound state solutions for a class of quasilinear Schrödinger equations whose
nonlinear term is asymptotically linear in Rn. After changing the variables, the quasilin-
ear equation becomes a semilinear equation, whose respective associated functional is well
defined in H1(Rn). The proofs are based on the Pohozaev manifold and a linking theorem.

As an application of the Phragmén–Lindelöf method related to a second-order bound-
ary value problem with respect to the Schrödinger equation, in this paper we consider the
conservation laws for a second-order boundary value problems related to the Schrödinger
equation. As an application, we prove the global existence to the solution for the Cauchy
problem of the semilinear Schrödinger equation. The results reveal that this method is
effective and simple.

2 Lemmas
In this section, we obtain some lemmas which will be needed in the sequel.
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For the second-order boundary value problem (1.1) of the Schrödinger equation for 0 <
E(f0) < d, we have

I(f ) =
∫

Rn

(
|f |2 + |∇f |2 –

np
2(p + 2)

|f |p+2
)

dt

and

J
′′(s) = 8

∫

Rn

(
|∇f |2 –

np
2(p + 2)

|f |p+2
)

dt.

Obviously, J′′(s) has a very similar structure with the Nehari functional I(f ), hence I(f ) <
0 can easily yield J′′(s) < 0 to prove the blowup of the solution.

But for the second-order boundary value problem (1.1) of the fourth-order semilinear
Schrödinger equation, we do not have such luck. We shall derive in the main part of this
paper that the corresponding J ′′(s) for the fourth-order semilinear Schrödinger equation
is (see [37])

J ′′(s) = 8
(

4
∫

Rn

∣∣∇(�f )
∣∣2 dt + 4

∫

Rn
|�f |2 dt +

∫

Rn
|∇f |2 dt

)

+ 4
(

–
np

p + 2

∫

Rn
|f |p+2 dt + (2n + 4) Re

∫

Rn
|f |pf �f̄ dt

+ 4 Re
∫

Rn
|f |pfx · ∇(�f̄ ) dt

)

by comparing it with

I(f ) =
∫

Rn

(
|f |2 + |∇f |2 + |�f |2 –

np
2(p + 2)

|f |p+2
)

dt.

We define the energy functional

E(f ) =
∫

Rn

(
1
2
|∇f |2 –

1
p + 2

|f |p+2
)

dt,

the auxiliary functionals

P(f ) =
∫

Rn

(
1
2
|f |2 +

1
2
|∇f |2 –

1
p + 2

|f |p+2
)

dt

and

I(f ) =
∫

Rn

(
|f |2 + |∇f |2 –

np
2(p + 2)

|f |p+2
)

dt.

For the above two functionals, P(f ) is composed of both mass and energy, and I(f ) can
be considered as Nehari functional. Further we define the Hilbert space

H =
{

f ∈ H1(Rn) :
∫

Rn
|t|2|f |2 dt < ∞

}
,
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the Nehari manifold

M =
{

f ∈ H1(Rn) \ {0} : I(f ) = 0
}

,

the invariant manifolds

G =
{

f ∈H : P(f ) < d,I(f ) > 0
} ∪ {0}

and

B =
{

f ∈ H : P(f ) < d,I(f ) < 0
}

,

where d = inff ∈MP(f ).

Lemma 2.1
(i) For set G, we can obtain P(f ) > 0 by I(f ) > 0. So the set G is equivalent to

G
′ =

{
f ∈H|0 < P(f ) < d,I(f ) > 0

} ∪ {0}.

(ii) For set B, if P(f ) ≤ 0, we can get E(f ) < 0, which is a sufficient condition for finite
time blowup; cf. [52]. Therefore, it is only necessary here to consider the case of
E(f ) > 0, i.e., we only need

B
′ =

{
f ∈H|0 < P(f ) < d,I(f ) < 0

}
.

The above remark is also applicable to sets G and B in Sect. 3.
For the second-order boundary value problem (1.1) of the second-order semilinear

Schrödinger equation, we summarize some results established in [23, 35, 46, 47] as fol-
lows.

Lemma 2.2 Assume that f0 ∈H and p satisfies the embedding condition [43]

4
n

< p <

⎧
⎨

⎩
+∞, n = 1, 2,

4
n–2 , n > 2.

(i) There exist L > 0 and a unique local solution f (t, s) of problem (1.1) in
C([0, Lmax];H). Moreover if

Lmax = sup
{

L > 0 : u = f (t, s) exists on [0, L]
}

< ∞

then

lim
t→Lmax

‖f ‖H = ∞ (blowup),

otherwise Lmax = ∞ (global existence).
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(ii) For the solution in (i),

∫

Rn

∣∣f (s)
∣∣2 =

∫

Rn
|f0|2 dt (mass conservation),

E
(
f (s)

)
= E(f0) (energy conservation),

P
(
f (s)

) ≡P(f0).

(iii) d > 0, cf. [25, 42].
(iv) If f0 ∈G, then the solution of problem (1.1) is global.
(v) If f0 ∈B, then the solution of problem (1.1) blows up in finite time.

In fact, although [28] proved the blowup solution by a variance of the argument in [39],
there is no explicit computation of J′′(s). Now we give the specific computation of J′′(s)
for the second-order boundary value problem (1.1).

Lemma 2.3 Assume that f0 ∈ B, f (t, s) ∈ ([0, L);H) is the solution of (1.1). Let J(s) =∫
Rn |t|2|f |2 dt. Then

J
′′(s) = 8

∫

Rn

(
|∇f |2 –

np
2(p + 2)

|f |p+2
)

dt.

Proof To prove the existence of the solution of (1.1), let f be a solution of (1.1) for the value
λ of the parameter. Then, owing to (1.4), to the dominance of the principal eigenvalue of
the operator –�2 in the domain Rn × [0, L) under Dirichlet boundary conditions, to the
facts that f̄t is strongly positive in Rn and to the monotonicity of the principal eigenvalue
with respect to the potential on the boundary conditions, we obtain

J
′(s) =

∫

Rn
|t|2(uf̄t + f̄ ft) dt, (2.1)

which yields

J
′(s) =

∫

Rn
|t|2(f̄ ft + f̄ ft) dt = 2 Re

∫

Rn
|t|2 f̄ ft dt. (2.2)

Multiplying both sides of (2.1) by i, we have

ft = i
(
�f + |f |pf

)
.

Substituting the above equation into (2.2) we have

J
′(s) = 2 Im

∫

Rn
|t|2(ft�f̄ + f �f̄t) dt

= 2 Im
∫

Rn

(|t|2ft�f̄ + �
(|t|2f

)
f̄t
)

dt

= 2 Im
∫

Rn

(
|t|2ft�f̄ + f̄t

n∑

i=1

∂2

∂t2
i

(|t|2f
)
)

dt
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= 2 Im
∫

Rn

(
|t|2ft�f̄ + f̄t

n∑

i=1

∂

∂ti

(
|t|2 ∂f

∂ti
+ 2tiu

))
dt

= 2 Im
∫

Rn

(
|t|2ft�f̄ + f̄t

(
2nf + 4

n∑

i=1

ti · ∂f
∂ti

+ |t|2
n∑

i=1

∂2u
∂t2

i

))
dt

= 2 Im
∫

Rn

(|t|2ft�f̄ + f̄t
(
2nf + 4x · ∇f + |t|2�f

))
dt

= 2 Im
∫

Rn

(|t|2ft�f̄ + |t|2ft�f̄ + f̄t(2nf + 4x · ∇f )
)

dt

= 4 Im
∫

Rn
(Nu + 2x · ∇f )f̄t dt (2.3)

and

J
′′(s) = 2 Re

∫

Rn
i|t|2 f̄

(
�f + |f |pf

)
dt

= –2 Im
∫

Rn
|t|2 f̄

(
�f + |f |pf

)
dt

= –2 Im
∫

Rn
|t|2(f̄ �f + |f |p+2)dt

= –2 Im
∫

Rn
|t|2 f̄ �fdt

= 2 Im
∫

Rn
|t|2f �f̄ dt.

It follows from (2.1) that

f̄t = –i
(
�f̄ + |f |pf̄

)
. (2.4)

Substituting the above equation into (2.3), we can get

J
′′(s) = –4 Im

∫

Rn
i(nf + 2x · ∇f )

(
�f̄ + |f |pf̄

)
dt

= –4 Re
∫

Rn
(nf + 2x · ∇f )

(
�f̄ + |f |pf̄

)
dt

= –4
(

Re
∫

Rn
(nf + 2x · ∇f )�f̄ dt + Re

∫

Rn
(nf + 2x · ∇f )|f |pf̄ dt

)

= –4(I1 + I2), (2.5)

where

I1 := Re
∫

Rn
(nf + 2x · ∇f )�f̄ dt

and

I2 := Re
∫

Rn
(nf + 2x · ∇f )|f |pf̄ dt.
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For I1 and I2, we have

I1 = n
∫

Rn
|f |p+2 dt + Re

∫

Rn
x · (|f |p(f̄ ∇f + u∇ f̄ )

)
dt

= n
∫

Rn
|f |p+2 dt + Re

∫

Rn
x · (|f |p∇(uf̄ )

)
dt

= n
∫

Rn
|f |p+2 dt + Re

∫

Rn
x · ((|f |2)p/2∇|f |2)dt

= n
∫

Rn
|f |p+2 dt +

2
p + 2

Re
∫

Rn
x · ∇(|f |2)

p+2
2 dt

= n
∫

Rn
|f |p+2 dt –

2n
p + 2

Re
∫

Rn
|f |p+2 dt

=
np

p + 2
Re

∫

Rn
|f |p+2 dt

and

I2 = N Re
∫

Rn
f �f̄ dt + 2 Re

∫

Rn
(t · ∇f )�f̄ dt

= –n
∫

Rn
|∇f |2 dt – 2 Re

∫

Rn
∇(t · ∇f )∇ f̄ dt

= –n
∫

Rn
|∇f |2 dt – 2 Re

∫

Rn

n∑

i=1

∂

∂ti

( n∑

j=1

tj
∂f
∂tj

)
∂ f̄
∂ti

dt

= –n
∫

Rn
|∇f |2 dt – 2 Re

∫

Rn

n∑

i=1

n∑

j=1

∂

∂ti

(
tj

∂f
∂tj

)
∂ f̄
∂ti

dt

= –n
∫

Rn
|∇f |2 dt – 2 Re

∫

Rn

n∑

i=1

∂f
∂ti

∂ f̄
∂ti

dt

– 2 Re
∫

Rn

n∑

i=1

n∑

j=1

tj
∂2u

∂ti∂tj

∂ f̄
∂ti

dt

= –n
∫

Rn
|∇f |2 dt – 2

∫

Rn
|∇f |2 dt

– Re
∫

Rn

n∑

i=1

n∑

j=1

tj

(
∂2u

∂ti∂tj

∂ f̄
∂ti

+
∂2 f̄

∂ti∂tj

∂f
∂ti

)
dt

= –n
∫

Rn
|∇f |2 dt – 2

∫

Rn
|∇f |2 dt – Re

∫

Rn

n∑

i=1

n∑

j=1

tj
∂

∂tj

(
∂f
∂ti

∂ f̄
∂ti

)
dt

= –n
∫

Rn
|∇f |2 dt – 2

∫

Rn
|∇f |2 dt – Re

∫

Rn
x · ∇|∇f |2 dt

= –n
∫

Rn
|∇f |2 dt – 2

∫

Rn
|∇f |2 dt + n

∫

Rn
|∇f |2 dt

= –2
∫

Rn
|∇f |2 dt. (2.6)
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Substituting the above equation and (2.6) into (2.5), finally we derive

J
′′(s) = –4

(
–2

∫

Rn
|∇f |2 dt +

np
p + 2

Re
∫

Rn
|f |p+2 dt

)

= 8
∫

Rn

(
|∇f |2 –

np
2(p + 2)

|f |p+2
)

dt.

Then the proof is complete. �

3 Main result
In this section, we shall state and prove our main result.

Theorem 3.1 (Conservation laws) Let f0 ∈ H2 and f ∈ ([0, L);H2) be the unique solution
of problem (1.1). Then

∫

Rn

∣∣f (s)
∣∣2 =

∫

Rn
|f0|2 dt (mass conservation), (3.1)

E
(
f (s)

)
= E(f0) (energy conservation), (3.2)

P
(
f (s)

) ≡P(f0). (3.3)

Proof It follows that

d
dt

(∫

Rn
|f |2 dt

)
=

d
dt

(∫

Rn
uf̄ dt

)

=
∫

Rn
(uf̄t + ft f̄ ) dt

=
∫

Rn
(ft f̄ + ft f̄ ) dt

= 2 Re
∫

Rn
f̄ ft dt (3.4)

from the definitions of the energy functional E(f (s)) and P(f (s)), which yields

f̄ ft = i
(
f̄ �f – f̄ �2f + |f |p+2). (3.5)

It follows from (3.4) and (3.5) that

d
dt

(∫

Rn
|f |2 dt

)
= 2 Re

∫

Rn
i
(
f̄ �f – f̄ �2u + |f |p+2)dt

= –2 Im
∫

Rn

(
f̄ �f – f̄ �2u + |f |p+2)dt

= 2 Im
∫

Rn

(|∇f |2 + |�f |2 – |f |p+2)dt = 0.

So (3.1) holds.
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Then we prove the energy conservation as follows:

d
dt

(
E
(
f (s)

))
=

d
dt

(∫

Rn

(
1
2
|∇f |2 +

1
2
|�f |2 –

1
p + 2

|f |p+2
)

dt
)

=
d
dt

(∫

Rn

(
1
2
∇f · ∇ f̄ +

1
2
�f �f̄ –

1
p + 2

(uf̄ )
p+2

2

)
dt

)

=
∫

Rn

(
1
2

(∇ft · ∇ f̄ + ∇f · ∇ f̄t) +
1
2

(�ft�f̄ + �f �f̄t)

–
1
2

(uf̄ )p/2(ft f̄ + uf̄t)
)

dt,

which yields

d
dt

(
E
(
f (s)

))
=

d
dt

(∫

Rn

(
1
2
|∇f |2 +

1
2
|�f |2 –

1
p + 2

|f |p+2
)

dt
)

=
d
dt

(∫

Rn

(
1
2
∇f · ∇ f̄ +

1
2
�f �f̄ –

1
p + 2

(uf̄ )
p+2

2

)
dt

)

=
∫

Rn

(
1
2

(∇ft · ∇ f̄ + ∇f · ∇ f̄t) +
1
2

(�ft�f̄ + �f �f̄t)

–
1
2

(uf̄ )p/2(ft f̄ + uf̄t)
)

dt

=
∫

Rn

(
1
2

(∇ft · ∇ f̄ + ∇ f̄ · ∇ft) +
1
2

(�ft�ū + �ū�ft)

–
1
2

(uf̄ )p/2(ft f̄ + uf̄t)
)

dt

= Re
∫

Rn

(
(∇ft · ∇ f̄ ) + (�ft�f̄ ) – (uf̄ )p/2(ft f̄ )

)
dt

= – Re
∫

Rn

(
ft�f̄ – ft�

2 f̄ + |f |pf̄ ft
)

dt

= – Re
∫

Rn
ft
(
�f̄ – �2 f̄ + |f |pf̄

)
dt. (3.6)

So

i|ft|2 = –f̄t
(
�f – �2u + |f |pf

)
.

Then substituting the above equation into (3.6) gives

d
dt

(
E
(
f (s)

))
= Re

∫

Rn
i|ft|2 dt = – Im

∫

Rn
|ft|2 dt = 0,

thus (3.2) holds.
Finally, we obtain (3.3) from (3.1) and (3.2). �

4 An application
As a crucial application, we prove the global existence to the solution for the Cauchy prob-
lem of the semilinear Schrödinger equation.
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As shown in [5, 14], the negative initial energy (E(f0) < 0) is currently the sufficient con-
dition for blowup of the Cauchy problem (1.1), i.e., in this case, it is impossible to divide
the initial condition to obtain the sharp condition of global existence and blowup in the
frame of the variational method. Therefore, we only consider the case of 0 < E(f0) < d and
try to build a similar result to the second-order semilinear Schrödinger equation. First we
need to verify d > 0.

Lemma 4.1 The depth of the potential well is positive, i.e., d > 0.

Proof It follows from the Sobolev embedding inequalities that

∫

Rn

(|∇f |2 + |f |2)dt ≤
∫

Rn

(|∇f |2 + |f |2 + |�f |2)dt

=
np

2(p + 2)

∫

Rn
|f |p+2 dt

≤ np
2(p + 2)

(∫

Rn
c
(|∇f |2 + |f |2)dt

) p+2
2

,

for any f ∈ M.
Put

C =
(

2(p + 2)
np

)2/p

c– p+2
p .

Then

0 < C ≤
∫

Rn

(|∇f |2 + |f |2)dt. (4.1)

It follows from (4.1) and the definition of P(f ) that

P(f ) =
∫

Rn

(
1
2
|f |2 +

1
2
|∇f |2 +

1
2
|�f |2 –

1
p + 2

|f |p+2
)

dt

=
(

1
2

–
1

p + 2
· 2(p + 2)

np

)∫

Rn

(|f |2 + |∇f |2 + |�f |2)dt

+
1

p + 2
· 2(p + 2)

np

∫

Rn

(
|f |2 + |∇f |2 + |�f |2 –

np
2(p + 2)

|f |p+2
)

dt

=
np – 2

2np

∫

Rn

(|f |2 + |∇f |2 + |�f |2)dt

≥ np – 2
2np

∫

Rn

(|∇f |2 + |f |2)dt

≥ C > 0.

Finally, we obtain the desired result. �

Theorem 4.1 Let f0 ∈ G . Then the solution f (t, s) of the initial value problem (1.1) be global,
i.e., the maximum existence time L = ∞.
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Proof It follows from Lemma 4.1 that

d > P(f ) =
∫

Rn

(
1
2
|f |2 +

1
2
|∇f |2 +

1
2
|�f |2 –

1
p + 2

|f |p+2
)

dt

=
(

1
2

–
1

p + 2
· 2(p + 2)

np

)∫

Rn

(|f |2 + |∇f |2 + |�f |2)dt

+
1

p + 2
· 2(p + 2)

np

∫

Rn

(
|f |2 + |∇f |2 + |�f |2 –

np
2(p + 2)

|f |p+2
)

dt

≥ np – 2
2np

∫

Rn

(|f |2 + |∇f |2 + |�f |2)dt

for any t ∈ [0, L), which yields

∫

Rn

(|∇f |2 + |f |2 + |�f |2)dt ≤ 2dnp
np – 2

.

Then according to Theorem 3.1, the existence time of a local solution of (1.1) can be
extended to infinity, thus the solution of the problem (1.1) is global. �

5 Conclusions
In this paper, we applied a reliable combination of maximum modulus method with re-
spect to the Schrödinger operator and Phragmén–Lindelöf method to investigate con-
servation laws for a second-order boundary value problems related to the Schrödinger
equation. As an application, we prove the global existence to the solution for the Cauchy
problem of the semilinear Schrödinger equation. The results reveal that this method is
effective and simple.
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