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Abstract
In this article, we first investigate the linear difference operator
(Ax)(t) := x(t) –

∑n
i=1 ci(t)x(t – δi(t)) in a continuous periodic function space. The

existence condition and some properties of the inverse of the operator A are explicitly
pointed out. Afterwards, as applications of properties of the operator A, we study the
existence of periodic solutions for two kinds of second-order functional differential
equations with this operator. One is a kind of second-order functional differential
equation, by applications of Krasnoselskii’s fixed point theorem, some sufficient
conditions for the existence of positive periodic solutions are established. Another
one is a kind of second-order quasi-linear differential equation, we establish the
existence of periodic solutions of this equation by an extension of Mawhin’s
continuous theorem.
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1 Introduction
Difference operators play a very important role in solving functional differential equa-
tions, which derived from some practical problems, such as biology, economics and pop-
ulation models [11, 20, 25]. In the 1970s, Hale [10] gave a definition for a functional dif-
ferential equations of an operator. Under the condition that the operator is stable, many
researchers obtained the existence of periodic solutions for these functional differential
equations by means of some fixed point theorems and topology degree theory. Zhang
[26] in 1995 first introduced the properties of the linear autonomous difference opera-
tor (A1x)(t) := x(t) – cx(t – δ), where c, δ are constants, which became an effective tool
for the research on differential equation, since it relieved the above stability restriction.
This work has attracted the attention of many scholars in differential equations, for ex-
ample [2–4, 6–8, 13, 15, 17–19, 21–24, 27]. Lu and Ge [13] in 2004 investigated a linear
autonomous difference operator with multiple parameters (A2x)(t) := x(t) –

∑n
i=1 cix(t –δi)

which is an extension of A1. And they obtained the existence of periodic solutions for the
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corresponding differential equation. Du et al. [8] in 2009 studied the difference opera-
tor (A3x)(t) := x(t) – c(t)x(t – δ), where c(t) is a periodic function. By applying Mawhin’s
continuation theorem and the properties of A3, they obtained sufficient conditions for
the existence of periodic solutions to a kind of Liénard differential equation. Afterwards,
Ren et al. [19] in 2011 considered a kind of second-order functional differential equation.
By applications of the fixed point index theorem and the properties of the linear differ-
ence operator (A4x)(t) := x(t) – cx(t – δ(t)), where δ(t) is a periodic function, they obtained
sufficient conditions for the existence, multiplicity and nonexistence of positive periodic
solutions to the corresponding equation. Subsequently, Cheng and Li in [3] investigated
the difference operator (A5x)(t) := x(t) – c(t)x(t – δ(t)), and applied it to a study of the cor-
responding functional differential equation.

Naturally, a new question arises: how does the linear difference operator work on mul-
tiple variable parameters? Besides practical interests, the topic has obvious intrinsic the-
oretical significance. To answer this question, in this paper, we discuss properties of the
difference operator with multiple variable parameters (Ax)(t) := x(t) –

∑n
i=1 ci(t)x(t – δi(t)),

which is shown in Sect. 2, where ci(t), δi(t) ∈ C(R,R), and ci(t), δi(t) are ω-periodic func-
tions on t, ω is a positive constant. As applications of properties of the difference operator
A, we investigate the existence of periodic solutions for two kinds of second-order differ-
ential equations as follows.

In Sect. 3, we consider a kind of second-order differential equation with difference op-
erator A:

(
(Ax)(t)

)′′ + a(t)x(t) = f
(
t, x

(
t – τ (t)

))
, (1.1)

where τ (t) ∈ C(R,R), a(t) ∈ C(R, (0, +∞)), f (t, x) := f (t, x(t –τ (t))) ∈ C(R×R,R), and τ (t),
a(t), f (t, x) are ω-periodic functions on t. By employing properties of A and Krasnoselskii’s
fixed point theorem, some sufficient conditions for the existence of positive periodic so-
lutions are established. Meanwhile, we obtain the f (t, x) condition which is weaker than
the condition F(t, x) := f (t, x(t – τ (t))) – ca(t)x(t – τ (t)) in [5, 14]. And we establish the
existence of positive periodic solutions of Eq. (1.1) in the cases that 0 <

∑n
i=1 ci(t) < 1 and

–1 <
∑n

i=1 ci(t) < 0, the authors in [19, 22] only discussed the existence of periodic solu-
tions for equations in the case that –1 < c < 0.

In Sect. 4, by applications of the extension of Mawhin’s continuous theorem due to Ge
and Ren [9], we study the following second-order quasi-linear differential equation:

(
φp(Ax)′(t)

)′ = f̃
(
t, x(t), x′(t)

)
, (1.2)

where φp : R →R is given by φp(s) = |s|p–2s, where p > 1 is a constant, f̃ : [0, T]×R×R →R

is an L2-Carathéodory function, i.e. it is measurable in the first variable and continu-
ous in the second variable, and for every 0 < r < s there exists hr,s ∈ L2[0, T] such that
|f̃ (t, x(t), x′(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [0, T]. The obvious difficulty of Eq. (1.2)
lies in the following two respects. First, although (Ax)(t) = x(t) –

∑n
i=1 ci(t)x(t – δi(t)) is a

natural generalization of the operator (Ajx)(t), j = 1, 2, 3, 4, 5, this class of differential equa-
tion with A typically possesses a more complicated nonlinearity than differential equation
with (Ajx)(t). Second, we do not get (Ax)′(t) = (Ax′)(t), it means that the prior bounds of
periodic solutions are not easy to estimate, we get over this problem here.
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2 Properties of the difference operator A
In this section, we consider properties of the difference operator A. We first give the fol-
lowing notations which will be used in the proofs. Let

Cω :=
{

x ∈ C(R,R) : x(t + ω) = x(t), t ∈ R
}

with norm ‖x‖ := maxt∈[0,ω] |x(t)|. Clearly, (Cω,‖ · ‖) is a Banach space. Define

C+
ω :=

{
x ∈ C

(
R, (0, +∞)

)
: x(t + ω) = x(t), t ∈R

}
,

c∗ := min
t∈[0,ω]

∣
∣
∣
∣
∣

n∑

i=1

ci(t)

∣
∣
∣
∣
∣
, c∗ := max

t∈[0,ω]

∣
∣
∣
∣
∣

n∑

i=1

ci(t)

∣
∣
∣
∣
∣
,

‖ci‖ := max
t∈[0,ω]

∣
∣ci(t)

∣
∣, c∞ :=

n∑

i=1

‖ci‖, i = 1, 2, . . . , n,

k :=
{

k̂ | ‖ck̂‖ = max
{‖c1‖,‖c2‖, . . . ,‖cn‖

}}
.

Lemma 2.1 ([12]) If c(t) ∈ Cω , δ(t) ∈ C1
ω := {x ∈ C1(R,R) : x(t + ω) = x(t), t ∈R} and δ′(t) <

1, then c(μ(t)) ∈ Cω , where μ(t) is the inverse function of t – δ(t).

Define operators A, B : Cω → Cω by

(Ax)(t) = x(t) –
n∑

i=1

ci(t)x
(
t – δi(t)

)
, (Bx)(t) =

n∑

i=1

ci(t)x
(
t – δi(t)

)
,

then we have the following properties of the difference operator A.

Theorem 2.2
(1) If

∑n
i=1 ‖ci‖ < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

1 –
∑n

i=1 ‖ci‖ ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

1 –
∑n

i=1 ‖ci‖
∫ ω

0

∣
∣x(t)

∣
∣dt.

(2) If
∑n

i=1 ‖ei‖ < 1 and δ′
k(t) < 1, then the operator A has a continuous inverse A–1 on

Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖ek‖‖x‖

1 –
∑n

i=1 ‖ei‖ ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ ‖ek‖

1 –
∑n

i=1 ‖ei‖
∫ ω

0

∣
∣x(t)

∣
∣dt,

where
∑n

i=1 ‖ei‖ = ‖ 1
ck

‖ +
∑n

i=1
i	=k

‖ ci
ck

‖, and for any t0 ∈ R, ck(t0) 	= 0.

Proof Case 1:
∑n

i=1 ‖ci‖ < 1.
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Let t = D0 and Dj = t –
∑j

i=1 δli (Di–1), j = 1, 2, . . . , then

(Bx)(t) =
n∑

l1=1

cl1 (D0)x(D1),

(
B2x

)
(t) =

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1)x(D2),

therefore, we have

(
Bjx

)
(t) =

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)x(Dj)

and

∞∑

j=0

(
Bjx

)
(t) = x(t) +

∞∑

j=1

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)x(Dj),

where B0 = I . Since A = I – B and ‖B‖ ≤ ∑n
i=1 ‖ci‖ < 1, we see that A has a continuous

inverse A–1: Cω → Cω with

(
A–1x

)
(t) =

(
(I – B)–1x

)
(t) =

∞∑

j=0

(
Bjx

)
(t)

= x(t) +
∞∑

j=1

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)x(Dj). (2.1)

Then

∣
∣
(
A–1x

)
(t)

∣
∣ =

∣
∣
∣
∣
∣
x(t) +

∞∑

j=1

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)x(Dj)

∣
∣
∣
∣
∣

≤ ‖x‖ +
∞∑

j=1

( n∑

i=1

‖ci‖
)j

‖x‖

≤ ‖x‖
1 –

∑n
i=1 ‖ci‖ .

Moreover, we obtain

∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt =

∫ ω

0

∣
∣
∣
∣
∣

∞∑

j=0

(
Bjx

)
(t)

∣
∣
∣
∣
∣
dt

≤
∞∑

j=0

∫ ω

0

∣
∣
(
Bjx

)
(t)

∣
∣dt

≤
∞∑

j=0

∫ ω

0

∣
∣
∣
∣
∣

n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)x(Dj)

∣
∣
∣
∣
∣
dt
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≤
∞∑

j=0

( n∑

i=1

‖ci‖
)j ∫ ω

0

∣
∣x(t)

∣
∣dt

≤ 1
1 –

∑n
i=1 ‖ci‖

∫ ω

0

∣
∣x(t)

∣
∣dt.

Case 2:
∑n

i=1 ‖ei‖ < 1 and δ′
k(t) < 1.

The operator (Ax)(t) = x(t) –
∑n

i=1 ci(t)x(t – δi(t)) can be converted to

(Ax)(t) = x(t) – ck(t)x
(
t – δk(t)

)
–

n∑

i=1
i	=k

ci(t)x
(
t – δi(t)

)

= –ck(t)

(

x
(
t – δk(t)

)
–

x(t)
ck(t)

+
n∑

i=1
i	=k

ci(t)
ck(t)

x
(
t – δi(t)

)
)

.

From Lemma 2.1, there exists an inverse function μ ∈ C(R, R), such that μ(t – δk(t)) = t.
Define

(Ex)(t) = x(t) –
1

ck(μ(t))
x
(
μ(t)

)
+

n∑

i=1
i	=k

ci(μ(t))
ck(μ(t))

x
(
μ(t) – δi

(
μ(t)

))
,

ei(t) =

⎧
⎨

⎩

1
ck (μ(t)) , for i = k,

– ci(μ(t))
ck (μ(t)) , for i 	= k;

εi(t) =

⎧
⎨

⎩

μ(t), for i = k,

μ(t) – δi(μ(t)), for i 	= k.

Then (Ex)(t) = x(t) –
∑n

i=1 ei(t)x(εi(t)). Define (B̂x)(t) =
∑n

i=1 ei(t)x(εi(t)), let D̂0 = t and
D̂j = εlj · · · εl2εl1 (t), j = 0, 1, 2, . . . , lj = 1, 2, . . . , n, we have

(B̂x)(t) =
n∑

l1=1

el1 (D̂0)x(D̂1),

(
B̂2x

)
(t) =

n∑

l1=1

el1 (D̂0)
n∑

l2=1

el2 (D̂1)x(D̂2),

. . . ,

(
B̂jx

)
(t) =

n∑

l1=1

el1 (D̂0)
n∑

l2=1

el2 (D̂1) · · ·
n∑

lj=1

elj (D̂j–1)x(D̂j).

Since ‖B̂‖ ≤ ∑n
i=1 ‖ei‖ = ‖ 1

ck
‖ +

∑n
i	=k ‖ ci

ck
‖ < 1, we arrive at

(
E–1x

)
(t) =

∞∑

j=0

(
B̂jx

)
(t) =

∞∑

j=0

( n∑

l1=1

el1 (D̂0)
n∑

l2=1

el2 (D̂1) · · ·
n∑

lj=1

elj (D̂j–1)x(D̂j)

)

.
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Since (Ax)(t) = –ck(t)(Ex)(t – δk(t)) := X(t) ∈ Cω , we have (Ex)(t) = – X(μ(t))
ck (μ(t)) = –ek(t) ×

X(μ(t)) := X0(t) ∈ Cω . Therefore,

(
A–1X

)
(t) = x(t) =

(
E–1X0

)
(t)

=
∞∑

j=0

( n∑

l1=1

el1 (D̂0)
n∑

l2=1

el2 (D̂1) · · ·
n∑

lj=1

elj (D̂j–1)X0(D̂j)

)

.

Similar to Case 1, we can get

∣
∣
(
A–1X

)
(t)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

j=0

( n∑

l1=1

el1 (D̂0)
n∑

l2=1

el2 (D̂1) · · ·
n∑

lj=1

elj (D̂j–1)X0(D̂j)

)∣
∣
∣
∣
∣

≤
∞∑

j=0

( n∑

i=1

‖ei‖
)j

‖X0‖

≤ ‖X‖‖ek‖
1 –

∑n
i=1 ‖ei‖

and
∫ ω

0

∣
∣
(
A–1X

)
(t)

∣
∣dt ≤ 1

1 –
∑n

i=1 ‖ei‖
∫ ω

0

∣
∣X0(t)

∣
∣dt ≤ ‖ek‖

1 –
∑n

i=1 ‖ei‖
∫ ω

0

∣
∣X(t)

∣
∣dt. �

Remark 2.3 Theorem 2.2 extends and improves the corresponding lemmas in [3, 8, 13, 19,
26].

If δi(t) = δi, i = 1, 2, . . . , n, here δi are constants, then the operator A can be written as

(Ax)(t) = x(t) –
n∑

i=1

ci(t)x(t – δi),

then we have the following corollary.

Corollary 2.4
(1) If

∑n
i=1 ‖ci‖ < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

1 –
∑n

i=1 ‖ci‖ ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

1 –
∑n

i=1 ‖ci‖
∫ ω

0

∣
∣x(t)

∣
∣dt.

(2) If
∑n

i=1 ‖ei‖ < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖ek‖‖x‖

1 –
∑n

i=1 ‖ei‖ ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ ‖ek‖

1 –
∑n

i=1 ‖ei‖
∫ ω

0

∣
∣x(t)

∣
∣dt,

where
∑n

i=1 ‖ei‖ = ‖ 1
ck

‖ +
∑n

i=1
i	=k

‖ ci
ck

‖, and for any t0 ∈ R, ck(t0) 	= 0.
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If ci(t) = ci, i = 1, 2, . . . , n, i.e., the ci are constants, then the operator A can be written as

(Ax)(t) = x(t) –
n∑

i=1

cix
(
t – δi(t)

)
,

therefore, we have the following corollary.

Corollary 2.5
(1) If

∑n
i=1 |ci| < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

1 –
∑n

i=1 |ci| ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

1 –
∑n

i=1 |ci|
∫ ω

0

∣
∣x(t)

∣
∣dt.

(2) If | 1
ck

| +
∑n

i=1
i	=k

| ci
ck

| < 1, and δ′
k(t) < 1, then the operator A has a continuous inverse A–1

on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

|ck| – 1 –
∑n

i=1
i	=k

|ci| ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

|ck| – 1 –
∑n

i=1
i	=k

|ci|
∫ ω

0

∣
∣x(t)

∣
∣dt,

where |ck| = max{|c1|, |c2|, . . . , |cn|} and ck 	= 0.

If ci(t) = ci, δi(t) = δi, i = 1, 2, . . . , n, i.e. the ci, δi are constants, then the operator A can be
written as

(Ax)(t) = x(t) –
n∑

i=1

cix(t – δi),

then we obtain the following.

Corollary 2.6
(1) If

∑n
i=1 |ci| < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

1 –
∑n

i=1 |ci| ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

1 –
∑n

i=1 |ci|
∫ ω

0

∣
∣x(t)

∣
∣dt.

(2) If | 1
ck

| +
∑n

i=1
i	=k

| ci
ck

| < 1, then the operator A has a continuous inverse A–1 on Cω ,

satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

|ck| – 1 –
∑n

i=1
i	=k

|ci| ,
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(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

|ck| – 1 –
∑n

i=1
i	=k

|ci|
∫ ω

0

∣
∣x(t)

∣
∣dt,

where |ck| = max{|c1|, |c2|, . . . , |cn|} and ck 	= 0.

Remark 2.7 Corollary 2.6 can be found in [13].

If n = 1, then the operator A can be written as

(Ax)(t) = x(t) – c1(t)x
(
t – δ1(t)

)
,

therefore, we can get the following corollary.

Corollary 2.8
(1) If ‖c1‖ < 1, then the operator A has a continuous inverse A–1 on Cω , satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

1 – ‖c1‖ ,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

1 – ‖c1‖
∫ ω

0

∣
∣x(t)

∣
∣dt.

(2) If c1∗ > 1 and δ′
1(t) < 1, then the operator A has a continuous inverse A–1 on Cω ,

satisfying

(i)
∣
∣
(
A–1x

)
(t)

∣
∣ ≤ ‖x‖

c1∗ – 1
,

(ii)
∫ ω

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤ 1

c1∗ – 1

∫ ω

0

∣
∣x(t)

∣
∣dt.

Remark 2.9 Corollary 2.8 can be found in [3].

Remark 2.10 When n = 1, (1) if c1(t) = c, where c is constant, we can get the corresponding
properties of A4 in [19]; (2) if δ1(t) = δ, where δ is constant, we can get the corresponding
properties of A3 in [8]; (3) if c1(t) = c, δ1(t) = δ, we can get the corresponding properties of
A1 in [26].

3 Periodic solutions for Eq. (1.1)
In this section, we discuss the existence of positive periodic solutions for Eq. (1.1) in the
cases that 0 <

∑n
i=1 ci(t) < 1 and –1 <

∑n
i=1 ci(t) < 0. Firstly, we recall Krasnoselskii’s fixed

point theorem and some lemmas which our proofs are based on.

Theorem 3.1 (Krasnoselskii’s fixed point theorem [1]) Let Cω be a Banach space. Assume
that Ω is a bounded closed convex subset of Cω . If Q, S : Ω → Cω satisfy

(i) Qx1 + Sx2 ∈ Ω , ∀x1, x2 ∈ Ω ,
(ii) S is a contractive operator and Q is a completely continuous operator.

Then Q + S has a fixed point in Ω .
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Lemma 3.2 ([5]) The equation

⎧
⎨

⎩

y′′(t) + My(t) = h(t),

y(0) = y(ω), y′(0) = y′(ω),
(3.1)

has a unique ω-periodic solution

y(t) =
∫ ω

0
G(t, s)h(s) ds,

where

G(t, s) =

⎧
⎪⎨

⎪⎩

cos
√

M(t–s– ω
2 )

2
√

M sin
√

Mω
2

, 0 ≤ s ≤ t ≤ ω,

cos
√

M(t–s+ ω
2 )

2
√

M sin
√

Mω
2

, 0 ≤ t < s ≤ ω.

Lemma 3.3 ([5])
∫ ω

0 G(t, s) ds = 1
M . And G(t, s) is a differentiable function with t.

Lemma 3.4 ([22]) If M < ( π
ω

)2, then 0 < l ≤ G(t, s) ≤ L for all t ∈ [0,ω] and s ∈ [0,ω].

Next, we consider the existence of positive periodic solutions for Eq. (1.1) in the case
that c∞ ∈ (0, m

M+m ). Let y(t) = (Ax)(t), from Theorem 2.2, we have x(t) = (A–1y)(t). Hence,
Eq. (1.1) can be transformed into

y′′(t) + a(t)y(t) – a(t)H
(
y(t)

)
= f

(
t, x

(
t – τ (t)

))
, (3.2)

where H(y(t)) = –(
∑n

i=1 ci(t)(A–1y)(t – δi(t))) = –(
∑n

i=1 ci(t)x(t – δi(t))).
We consider

y′′(t) + a(t)y(t) – a(t)H
(
y(t)

)
= h(t), h ∈ C+

ω. (3.3)

Define the operators T , N : Cω → Cω by

(Th)(t) =
∫ ω

0
G(t, s)h(s) ds, (Ny)(t) =

(
M – a(t)

)
y(t) + a(t)H

(
y(t)

)
. (3.4)

Clearly, T is completely continuous and N is bounded in Cω . From Eq. (3.4) and
Lemma 3.2, the solution for Eq. (3.3) can be written as

y(t) = (Th)(t) + (TNy)(t). (3.5)
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On the other hand, since H(y(t)) = –
∑n

i=1 ci(t)(A–1y)(t – δi(t)), from Lemma 2.2, it is clear
that

∣
∣Ny(t)

∣
∣ ≤ (

M – a(t)
)∣
∣y(t)

∣
∣ +

∣
∣a(t)

∣
∣

∣
∣
∣
∣
∣
–

n∑

i=1

ci(t)
(
A–1y

)(
t – δi(t)

)
∣
∣
∣
∣
∣

≤ (M – m)
∣
∣y(t)

∣
∣ + M

n∑

i=1

‖ci‖ · 1
1 –

∑n
i=1 ‖ci‖ · ‖y‖

≤
(

M – m +
Mc∞

1 – c∞

)

‖y‖. (3.6)

And it follows that

‖N‖ ≤ M – m +
Mc∞

1 – c∞
. (3.7)

In view of c∞ ∈ (0, m
M+m ) and ‖T‖ ≤ 1

M (see Lemma 3.3), we have from Eq. (3.7)

‖TN‖ ≤ ‖T‖‖N‖ ≤ 1
M

(

M – m +
Mc∞

1 – c∞

)

≤ M – m(1 – c∞)
M(1 – c∞)

< 1. (3.8)

Therefore,

y(t) = (I – TN)–1(Th)(t). (3.9)

Define an operator P : Cω → Cω by

(Ph)(t) = (I – TN)–1(Th)(t). (3.10)

Obviously, if M < ( π
ω

)2, for any h ∈ C+
ω , y(t) = (Ph)(t) is the unique positive ω-periodic

solution of Eq. (1.1). Let

k0 :=
√

(1 – c2∗)2 + 4σ 2 – (1 – c2∗)
2σ

, σ :=
l
L

.

Consider the equation

σ c2
∞ +

(
1 – c2

∗
)
c∞ – σ = 0, (3.11)

it is easy to verify that σ c2∞ +(1–c2∗)c∞ –σ ≤ 0 when 0 < c∞ ≤ k0, and we have the following
lemmas.

Lemma 3.5 Assume that M < ( π
ω

)2, ci(t) ≤ 0, c∞ ∈ (0, m
M+m ) and c∞ ≤ k0 hold, where i =

1, 2, . . . , n. Then

(Th)(t) ≤ (Ph)(t) ≤ M(1 – c∞)
m – (M + m)c∞

‖Th‖, for all h ∈ C+
ω.
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Proof From Eq. (3.8), for all h ∈ C+
ω , we obtain

(Ph)(t) = (I – TN)–1(Th)(t) ≤ ∥
∥(I – TN)–1∥∥‖Th‖

≤ ‖Th‖
1 – ‖TN‖ ≤ M(1 – c∞)

m – (M + m)c∞
‖Th‖. (3.12)

Since ‖TN‖ < 1, by Neumann expansions of P, we have

P = (I – TN)–1T

=
(
I + TN + (TN)2 + · · · )T

= T + TNT + (TN)2T + · · · . (3.13)

From Lemma 3.4, for all h(t) ∈ C+
ω , we arrive at

(Th)(t) =
∫ ω

0
G(t, s)h(s) ds

≥ l
∫ ω

0
h(s) ds =

l
L

L
∫ ω

0
h(s) ds

≥ σ max
t∈[0,ω]

∫ ω

0
G(t, s)h(s) ds = σ‖Th‖ > 0.

In view of ci(t) ≤ 0 (i = 1, 2, . . . , n) and c∞ ≤ k0, we get by Eq. (2.1)

(
A–1Th

)
(t) =

∞∑

j=0

( n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)(Th)(Dj)

)

= (Th)(t) +
∞∑

j=even

( n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)(Th)(Dj)

)

+
∞∑

j=odd

( n∑

l1=1

cl1 (D0)
n∑

l2=1

cl2 (D1) · · ·
n∑

lj=1

clj (Dj–1)(Th)(Dj)

)

≥ σ‖Th‖ + σ‖Th‖
∞∑

j=even

cj
∗ – ‖Th‖

∞∑

j=odd

c∗j

≥ σ‖Th‖ + σ‖Th‖
∞∑

j=even

cj
∗ – ‖Th‖

∞∑

j=odd

cj
∞

≥ σ‖Th‖
1 – c2∗

–
c∞‖Th‖
1 – c2∞

≥ 0,

therefore, from equality (3.4), we can observe that

(NTh)(t) =
(
M – a(t)

)
(Th)(t) – a(t)

( n∑

i=1

ci(t)
(
A–1Th

)(
t – δi(t)

)
)

≥ 0,
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clearly, (TNTh)(t) ≥ 0. Then from the above analysis, we can get

(Ph)(t) = (Th)(t) + (TNTh)(t) +
(
(TN)2Th

)
(t) +

(
(TN)3Th

)
(t) + · · ·

≥ (Th)(t), for all h ∈ C+
ω. �

Lemma 3.6 Assume that M < ( π
ω

)2, ci(t) ≥ 0 and c∞ ∈ (0, m
M+m ) hold, where i = 1, 2, . . . , n.

Then

m – (M + m)c∞
M(1 – c∞)

(Th)(t) ≤ (Ph)(t) ≤ M(1 – c∞)
m – (M + m)c∞

‖Th‖, for all h ∈ C+
ω.

Proof Similarly as the proof of Lemma 3.5, it is easy to verify that

(Ph)(t) ≤ ‖Th‖
1 – ‖TN‖ ≤ M(1 – c∞)

m – (M + m)c∞
‖Th‖.

From Eq. (3.13), we have

P =
(
I + TN + (TN)2 + (TN)3 + · · · )T

=
(
I + (TN)2 + (TN)4 + · · · )T +

(
TN + (TN)3 + (TN)5 + · · · )T

=
(
I + (TN)2 + (TN)4 + · · · )T +

(
I + (TN)2 + (TN)4 + · · · )TNT

=
(
I + (TN)2 + (TN)4 + · · · )(I + TN)T . (3.14)

Then we get by Eq. (3.8)

(Ph)(t) ≥ (I + TN)(Th)(t) ≥ (
I – ‖TN‖)(Th)(t)

≥ m – (m + M)c∞
M(1 – c∞)

(Th)(t) > 0, for all h ∈ C+
ω. �

When n = 1, then (Ax)(t) = x(t) – c1(t)x(t – δ1(t)), if c1(t) = c, here c is a constant, then
we have the following corollary.

Corollary 3.7 Assume that M < ( π
ω

)2 and |c| ∈ (0, m
M+m ) hold.

(i) If c < 0 and |c| ≤ σ , then

(Th)(t) ≤ (Ph)(t) ≤ M(1 – |c|)
m – (M + m)|c| ‖Th‖, for all h ∈ C+

ω.

(ii) If c > 0, then

m – (M + m)c
M(1 – c)

(Th)(t) ≤ (Ph)(t) ≤ M(1 – c)
m – (M + m)c

‖Th‖, for all h ∈ C+
ω.

Remark 3.8 If
∑n

i=1 ‖ei‖ < 1 and δ′
k(t) < 1, since

‖TN‖ ≤ ‖T‖‖N‖ ≤ 1 –
m
M

+
c∞‖ 1

ck
‖

1 –
∑n

i=1 ‖ei‖ ,

we cannot get ‖TN‖ < 1, therefore, we cannot get Lemma 3.5 and Lemma 3.6.
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Next, we define operators Q, S : Cω → Cω by

(Qx)(t) = P
(
f
(
t, x

(
t – τ (t)

)))
, (Sx)(t) =

n∑

i=1

ci(t)x
(
t – δi(t)

)
. (3.15)

From the above analysis, the existence of periodic solutions for Eq. (1.1) is equivalent to
the existence of solutions for the operator equation

Qx + Sx = x (3.16)

in Cω . Moreover, we have the following lemma.

Lemma 3.9 Q is completely continuous in Cω .

Proof Since T is completely continuous and N is bounded in Cω , from Eq. (3.13), we see
that P is completely continuous in Cω . By Eq. (3.15), it is easy to verify that Q is completely
continuous in Cω . �

Now, we present our results of Eq. (1.1) in the case that c∞ ∈ (0, m
M+m ).

Case 1: ci(t) > 0, i = 1, 2, . . . , n.

Theorem 3.10 Assume that M < ( π
ω

)2, ci(t) > 0 and 0 < c∗ ≤ ∑n
i=1 ci(t) ≤ c∞ < m

M+m hold.
Furthermore, suppose the following condition is satisfied:

(F1) There exist two positive constants r and R such that

M2(1 – c∗)(1 – c∞)r
(m – (M + m)c∞)2 < R

and

M2(1 – c∗)(1 – c∞)r
m – (M + m)c∞

≤ f (t, x) ≤ (
m – (M + m)c∞

)
R,

for all t ∈ [0,ω] and x ∈ [r, R].
Then Eq. (1.1) has at least one positive ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof Let

Ω = {x ∈ Cω : r ≤ x ≤ R, for all t ∈R}.

Obviously, Ω is a bounded closed convex set in Cω .
For any x ∈ Ω , t ∈R, we get by Eq. (3.15)

(Qx)(t + ω) = P
(
f
(
t + ω, x

(
t + ω – τ (t + ω)

)))
= P

(
f
(
t, x

(
t – τ (t)

)))
= (Qx)(t)

and

(Sx)(t + ω) =
n∑

i=1

ci(t + ω)x
(
t + ω – δi(t + ω)

)
=

n∑

i=1

ci(t)x
(
t – δi(t)

)
= (Sx)(t),

which show that (Qx)(t) and (Sx)(t) are ω-periodic. Thus, Q(Ω) ⊂ Cω , S(Ω) ⊂ Cω .



Li et al. Boundary Value Problems          (2020) 2020:8 Page 14 of 29

For all x1, x2 ∈ Ω and t ∈ R, from Lemma 3.3, Lemma 3.6 and condition (F1), we have

(Qx1)(t) + (Sx2)(t) = P
(
f
(
t, x1

(
t – τ (t)

)))
+

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≤ M(1 – c∞)
m – (M + m)c∞

∥
∥T

(
f
(
t, x1

(
t – τ (t)

)))∥
∥ +

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≤ M(1 – c∞)
m – (M + m)c∞

max
t∈[0,ω]

∫ ω

0
G(t, s)f

(
s, x1

(
s – τ (s)

))
ds

+
n∑

i=1

ci(t)x2
(
t – δi(t)

)

≤ M(1 – c∞)
m – (M + m)c∞

(
m – (M + m)c∞

)
R · 1

M
+ R

n∑

i=1

ci(t)

≤ M(1 – c∞)
m – (M + m)c∞

(
m – (M + m)c∞

)
R · 1

M
+ c∞R

= R

and

(Qx1)(t) + (Sx2)(t) = P
(
f
(
t, x1

(
t – τ (t)

)))
+

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≥ m – (M + m)c∞
M(1 – c∞)

∫ ω

0
G(t, s)f

(
s, x1

(
s – τ (s)

))
ds

+
n∑

i=1

ci(t)x2
(
t – δi(t)

)

≥ m – (M + m)c∞
M(1 – c∞)

· M2(1 – c∞)
m – (M + m)c∞

(1 – c∗)r · 1
M

+ r
n∑

i=1

ci(t)

≥ (1 – c∗)r + c∗r

= r,

which imply that r ≤ Qx1 + Sx2 ≤ R, for all x1, x2 ∈ Ω . Therefore, Qx1 + Sx2 ∈ Ω .
For all x1, x2 ∈ Ω , we obtain

∣
∣Sx1(t) – Sx2(t)

∣
∣ =

∣
∣
∣
∣
∣

n∑

i=1

ci(t)x1
(
t – δi(t)

)
–

n∑

i=1

ci(t)x2
(
t – δi(t)

)
∣
∣
∣
∣
∣

≤
n∑

i=1

∣
∣ci(t)

(
x1

(
t – δi(t)

)
– x2

(
t – δi(t)

))∣
∣

≤
n∑

i=1

‖ci‖‖x1 – x2‖ = c∞‖x1 – x2‖,

then from c∞ ∈ (0, m
M+m ), we conclude that S is contractive.
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Since Q is completely continuous, by Theorem 3.1, there is an x ∈ Ω such that
Qx + Sx = x. Therefore, Eq. (1.1) has at least one positive ω-periodic solution x(t) with
r ≤ x(t) ≤ R. �

Case 2: ci(t) < 0, i = 1, 2, . . . , n.
We consider the existence of periodic solutions for Eq. (1.1) in the case that – m

M+m <
∑n

i=1 ci(t) < 0. To conclude the main result, firstly, we consider the equation

Mc2 – (2M + m)c + m = 0. (3.17)

It is obvious that Eq. (3.17) has a solution ζ = 2M+m–
√

(2M+m)2–4Mm
2M and 0 < ζ < m

m+M . If
c∞ < ζ , we have Mc2∞ – (2M + m)c∞ + m > 0.

On the other hand, for any 0 < c1, c2 < m
m+M , we obtain

(M + m)c1c2 – mc1 – Mc2 + M

> (M + m)c1c2 – m
m

m + M
– M

m
m + M

+ M

= (M + m)c1c2 – m + M > 0.

Then if r > 0, we can get (M+m)c∞c∗–Mc∞–mc∗+M
Mc2∞–(2M+m)c∞+m r > 0, since c∗ ≤ c∞ < m

M+m .
Therefore, we have the following theorem.

Theorem 3.11 Assume that M < ( π
ω

)2, ci(t) < 0 and c∞ < min{k0, ζ } hold. Furthermore,
suppose the following condition is satisfied:

(F2) There exist two positive constants r, R such that

(M + m)c∞c∗ – Mc∞ – mc∗ + M
Mc2∞ – (2M + m)c∞ + m

r < R

and

M(r + c∞R) ≤ f (t, x) ≤ m – (M + m)c∞
1 – c∞

(R + c∗r),

for all t ∈ [0,ω] and x ∈ [r, R].
Then Eq. (1.1) has at least one positive ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof We follow the same notations as in the proof of Theorem 3.10. For all x1, x2 ∈ Ω ,
from Lemma 3.3, Lemma 3.5 and condition (F2), we see that

(Qx1)(t) + (Sx2)(t) = P
(
f
(
t, x1

(
t – τ (t)

)))
+

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≤ M(1 – c∞)
m – (M + m)c∞

∥
∥T

(
f
(
t, x1

(
t – δ(t)

)))∥
∥ +

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≤ M(1 – c∞)
m – (M + m)c∞

max
t∈[0,ω]

∫ ω

0
G(t, s)f

(
s, x1

(
s – δ(s)

))
ds + r

n∑

i=1

ci(t)
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≤ M(1 – c∞)
m – (M + m)c∞

· m – (M + m)c∞
1 – c∞

(R + c∗r) · 1
M

– c∗r

= R

and

(Qx1)(t) + (Sx2)(t) = P
(
f
(
t, x1

(
t – τ (t)

)))
+

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≥
∫ ω

0
G(t, s)f

(
s, x1

(
s – τ (s)

))
ds +

n∑

i=1

ci(t)x2
(
t – δi(t)

)

≥ M(r + c∞R) · 1
M

– c∞R

= r.

From the above two inequalities, it is clear that Qx1 + Sx2 ∈ Ω , for all x1, x2 ∈ Ω .
We use a similar argument as in the proof of Theorem 3.10, we can observe that

Q(Ω) ⊂ Cω , S(Ω) ⊂ Cω , S is contractive. Since Q is completely continuous, we get by a
direct application of Theorem 3.1 that Eq. (1.1) has at least one positive ω-periodic solu-
tion x(t) with r ≤ x(t) ≤ R. �

Remark 3.12 If n = 1, then (Ax)(t) = x(t) – c1(t)x(t – δ1(t)), we can also get Theorem 3.10
and Theorem 3.11 in a similar way.

If n = 1 and c1(t) = c, where c is a constant, from Corollary 3.7, we can get the following
corollaries, which improve and extend the corresponding results from [5].

Corollary 3.13 Assume that M < ( π
ω

)2 and 0 < c < m
M+m hold. Furthermore, suppose the

following condition is satisfied:
(F∗

1 ) There exist two positive constants r and R such that

M2(1 – c)2r
(m – (M + m)c)2 < R

and

M2(1 – c)2r ≤ f (t, x) ≤ (
m – (M + m)c

)2R,

for all t ∈ [0,ω] and x ∈ [r, R].
Then Eq. (1.1) has at least one positive ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Remark 3.14 Corollary 3.13 extends and improves Theorem 2.1 in [5].

Corollary 3.15 Suppose that M < ( π
ω

)2, c < 0 and |c| < min{σ , ζ } hold. Furthermore, as-
sume that the following condition is satisfied:

(F∗
2 ) There exist two non-negative constants r, R such that

(M + m)|c|2 – (M + m)|c| + M
M|c|2 – (2M + m)|c| + m

r < R
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and

M
(
r + |c|R) ≤ f (t, x) ≤ m – (M + m)|c|

1 – |c|
(
R + |c|r),

for all t ∈ [0,ω] and x ∈ [r, R].
Then Eq. (1.1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Remark 3.16 Corollary 3.15 extends and improves Theorem 2.3 in [5].

4 Periodic solution for Eq. (1.2)
In this section, we investigative the existence of periodic solutions for Eq. (1.2) by applica-
tions of the extension of Mawhin’s continuous theorem [9], in order to use this theorem,
we recall it first.

Let X̃ and Z̃ be Banach spaces with norms ‖ · ‖X̃ and ‖ · ‖Z̃ , respectively. A continuous
operator M̃ : X̃ ∩ dom M̃ → Z̃ is said to be quasi-linear if

(1) Im M̃ := M̃(X̃ ∩ dom M̃) is a closed subset of Z̃;
(2) ker M̃ := {x ∈ X̃ ∩ dom M̃ : M̃x = 0} is a subspace of X̃ with dim ker M̃ < +∞.
Let X̃1 = ker M̃ and X̃2 be the complement space of X̃1 in X̃, then X̃ = X̃1 ⊕X̃2. Meanwhile,

Z̃1 is a subspace of Z̃ and Z̃2 is the complement space of Z̃1 in Z̃, so Z̃ = Z̃1 ⊕ Z̃2. Suppose
that P̃ : X̃ → X̃1 and Q̃ : Z̃ → Z̃1 are two projects and Ω̃ ⊂ X̃ is an open bounded set with
the origin θ̃ ∈ Ω̃ .

Let Ñλ̃ : Ω̃ → Z̃, λ̃ ∈ [0, 1] is a continuous operator. Denote Ñ1 by Ñ , and let
∑

λ = {x ∈
Ω̃ : M̃x = Ñλx}. Ñλ̃ is said to be M̃-compact in Ω̃ if

(3) there is a vector subspace Z̃1 of Z̃ with dim Z̃1 =dim X̃1 and an operator R̃ : Ω̃ × X̃2

being continuous and compact such that, for λ̃ ∈ [0, 1],

(̃I – Q̃)Ñλ̃(Ω̃) ⊂ Im M̃ ⊂ (̃I – Q̃)Z̃, (4.1)

Q̃Ñλ̃x = 0, λ̃ ∈ (0, 1) ⇔ Q̃Ñx̃ = 0, (4.2)

R̃(·, 0) is the zero operator and R̃(·, λ̃)|∑
λ̃

= (̃I – P̃)|∑
λ̃
, (4.3)

and

M̃
[
P̃ + R̃(·,λ)

]
= (̃I – Q̃)Ñλ̃. (4.4)

Lemma 4.1 ([9]) Let X̃ and Z̃ be Banach space with norm ‖ · ‖X̃ and ‖ · ‖Z̃ , respectively,
and Ω̃ ⊂ X̃ be an open and bounded set with θ̃ ∈ Ω̃ . Suppose that M̃ : X̃ ∩ dom M̃ → Z̃ is
a quasi-linear operator and

Ñλ̃ : Ω̃ → Z̃, λ̃ ∈ (0, 1)

is an M̃-compact mapping. In addition, if
(a) M̃x 	= Ñλ̃x, λ̃ ∈ (0, 1), x ∈ ∂Ω̃ ,
(b) deg{̃JQ̃Ñ , Ω̃ ∩ ker M̃, 0} 	= 0,

where Ñ = Ñ1, then the abstract equation M̃x = Ñx has at least one solution in Ω̃ .

Let J̃ : Z̃1 → X̃1 be a homeomorphism with J̃(θ̃ ) = θ̃ .
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Theorem 4.2 Assume
∑n

i=1 ‖ci‖ < 1, or ‖ 1
ck

‖ +
∑n

i=1
i	=k

‖ ci
ck

‖ < 1, Ω̃ be open bounded set in

C1
ω . Suppose the following conditions hold:

(i) For each λ̃ ∈ (0, 1), the equation

(
φp(Ax)′(t)

)′ = λ̃f̃
(
t, x(t), x′(t)

)
(4.5)

has no solution on ∂Ω̃ .
(ii) The equation

F̃(a) :=
1
ω

∫ ω

0
f̃
(
a, x(a), 0

)
dt = 0

has no solution on ∂Ω̃ ∩R.
(iii) The Brouwer degree

deg{̃F , Ω̃ ∩R, 0} 	= 0.

Then Eq. (1.2) has at least one periodic solution on Ω̃ .

Proof In order to use Lemma 4.1 to study the existence of periodic solution to Eq. (1.2).
We can set X̃ := {x ∈ C[0,ω] : x(0) = x(ω)} and Z̃ := C[0,ω],

M̃ : X̃ ∩ dom M̃ → Z̃, (M̃x)(t) =
(
φp(Ax)′(t)

)′, (4.6)

where dom M̃ := {u ∈ X̃ : φp(Au)′ ∈ C1(R,R)}. Then ker M̃ = R. In fact

ker M̃ =
{

x ∈ X̃ :
(
φp(Ax)′(t)

)′ = 0
}

=
{

x ∈ X̃ : φp(Ax)′ ≡ c̃
}

=
{

x ∈ X̃ : (Ax)′ ≡ φq(c) := c̃1
}

=
{

x ∈ X̃ : (Ax)(t) ≡ c̃1t + c̃2
}

,

where q > 1 is a constant with 1
p + 1

q = 1 and c̃, c̃1, c̃2 are constants in R. Since (Ax)(0) =
(Ax)(ω), we get ker M̃ = {x ∈ X̃ : (Ax)(t) ≡ c̃2}. In addition,

Im M̃ =
{

ỹ ∈ Z̃, for x(t) ∈ X̃ ∩ dom M̃,
(
φp(Ax)′(t)

)′ = ỹ(t),

∫ ω

0
ỹ(t) dt =

∫ ω

0

(
φp(Ax)′(t)

)′ dt = 0
}

.

So M̃ is quasi-linear. Let

X̃1 = ker M̃, X̃2 =
{

x ∈ X̃ : x(0) = x(ω) = 0
}

,

Z̃1 = R, Z̃2 = Im M̃.
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Clearly, dim X̃1 = dim Z̃1 = 1, and X̃ = X̃1 ⊕ X̃2, P̃ : X̃ → X̃1, Q̃ : Z̃ → Z̃1, be defined by

P̃x = x(0), Q̃y =
1
ω

∫ ω

0
y(s) ds.

For ∀Ω̃ ⊂ X̃, define Ñλ̃ : Ω̃ → Z̃ by

(Ñλ̃x)(t) = λ̃f̃
(
t, x(t), x′(t)

)
.

We claim (̃I – Q̃)Ñλ̃(Ω̃) ⊂ Im M̃ = (̃I – Q̃)Z̃ holds. In fact, for x ∈ Ω̃ , we see that

∫ ω

0
(̃I – Q̃)Ñλ̃x(t) dt

=
∫ ω

0
(̃I – Q̃)λ̃f̃

(
t, x(t), x′(t)

)
dt

=
∫ ω

0
λ̃f̃

(
t, x(t), x′(t)

)
dt –

∫ ω

0

λ̃

ω

∫ ω

0
f̃
(
s, x(s), x′(s)

)
ds dt

= 0.

Therefore, we have (̃I – Q̃)Ñλ̃(Ω̃) ⊂ Im M̃. Moreover, for any x ∈ Z̃, we get

∫ ω

0
(̃I – Q̃)x(t) dt

=
∫ ω

0

(

x(t) –
1
ω

∫ ω

0
x(s) ds

)

dt

=
∫ ω

0
x(t) dt –

∫ ω

0

1
ω

∫ ω

0
x(s) ds dt

= 0.

So, (̃I – Q̃)Z̃ ⊂ Im M̃. On the other hand, x ∈ Im M̃ and
∫ ω

0 x(t) dt = 0, then we have x(t) =
x(t) –

∫ ω

0 x(t) dt. Hence, we can get x(t) ∈ (̃I – Q̃)Z̃. Therefore, Im M̃ = (̃I – Q̃)Z̃.
From Q̃Ñλ̃x = 0, we obtain

λ̃

ω

∫ ω

0
f̃
(
t, x(t), x′(t)

)
dt = 0.

Since λ̃ ∈ (0, 1), then we have 1
ω

∫ ω

0 f̃ (t, x(t), x′(t)) dt = 0. Therefore, Q̃Ñx = 0, then Eq. (4.4)
also holds.

Let J̃ : Z̃1 → X̃1, J̃(x) = x, then J̃(0) = 0. Define R̃ : Ω̃ × [0, 1] → X̃2,

R̃(x, λ̃)(t)

= A–1
∫ t

0
φ–1

p

(

ã +
∫ s

0
λf̃

(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du

)

ds, (4.7)
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where ã ∈ R̃ is a constant such that

R̃(x, λ̃)(ω) = A–1
∫ ω

0
φ–1

p

(

ã +
∫ s

0
λ̃f̃

(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(t), x′(u)

)
du

)

ds

= 0. (4.8)

From Lemma 3.1 of [16], we know that ã is uniquely defined by

ã = ¯̃a(x,λ),

where ¯̃a(x,λ) is continuous on Ω̃ × [0, 1] and bounded sets of Ω̃ × [0, 1] into bounded sets
of R.

From Eq. (4.4), one can find that

R̃ : Ω̃ × [0, 1] → X̃2.

Now, for any x ∈ ∑
λ̃ = {x ∈ Ω̃ : M̃x = Ñλ̃x} = {x ∈ Ω̃ : (φp(Ax)′(t))′ = λ̃f̃ (t, x(t), x′(t))}, we

have
∫ ω

0 f̃ (t, x(t), x′(t)) dt = 0, together with Eq. (4.2) gives

R̃(x, λ̃)(t) = A–1
∫ t

0
φ–1

p (ã +
∫ s

0
λ̃f̃

(
u, x(u), x′(u) du

)
ds

= A–1
∫ t

0
φ–1

p

(

ã +
∫ s

0

(
φp(Ax)′(u)

)′ du
)

ds

= A–1
∫ t

0
φ–1

p
(
ã + φp(Ax)′(s) – φp(Ax)′(0)

)
ds.

Take ã = φp(Ax)′(0), then we can get

R̃(x, λ̃)(ω) = A–1
∫ ω

0

(
φ–1

p
(
φp(Ax)′(s)

))
ds

= A–1
∫ ω

0
(Ax)′(t) ds

= A–1((Ax)(ω) – (Ax)(0)
)

= x(ω) – x(0)

= 0,

where ã is unique, we see that

ã = ¯̃a(x, λ̃) = φp(Ax)′(0), ∀λ̃ ∈ [0, 1].

So, we have

R̃(x, λ̃)(t)|x∈∑
λ̃

= A–1
∫ t

0

(

φ–1
p

(

φp(Ax)′(0) +
∫ s

0
λ̃f̃

(
u, x(u), x′(u)

)
du

))

ds

= A–1
∫ t

0

(
φ–1

p
(
φp(Ax)′(s)

))
ds
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= A–1
∫ t

0
(Ax)′(s) ds

= x(t) – x(0)

= (̃I – P̃)x(t),

which yields the second part of (4.3). Meanwhile, if λ̃ = 0, the

∑

λ̃

= {x ∈ Ω̃ : M̃x = Ñλ̃x} =
{

x ∈ Ω̃ :
(
φp(Ax)′(t)

)′ = λ̃f̃
(
t, x(t), x′(t)

)}
= c̃3,

where c̃3 ∈ R is a constant. Thus, by the continuity of ¯̃a(x, λ̃) with respect to (x, λ̃), ã =
¯̃a(x, 0) = φp(Ac̃)′(0) = 0, we have

R̃(x, 0)(t) = A–1
∫ t

0
φ–1

p (0) ds = 0, ∀x ∈ Ω̃ ,

which yields the first part of Eq. (4.3). Furthermore, we consider

M̃(̃P + R̃) = (̃I – Q̃)Ñλ̃,

in fact,

d
dt

φp
(
A(̃P + R̃)

)′ = (̃I – Q̃)Ñλ̃. (4.9)

Integrating both sides of Eq. (4.9) over [0, s], we have

∫ s

0

d
dt

φp
(
A(̃P + R̃)

)′ ds =
∫ s

0
(̃I – Q̃)Ñλ̃ ds.

Therefore,

φp
(
A(̃P + R̃)

)′(s) – ã = λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

∫ s

0

λ̃

ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
dudt

= λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du,

where ã := φp(A(̃P + R̃))′(0). Then we can get

(
A(̃P + R̃)

)′(s) = φ–1
p

(

ã + λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du

)

. (4.10)

Integrating both sides of Eq. (4.10) over [0, t], we arrive at

∫ t

0

(
A(̃P + R̃)

)′(s) ds

=
∫ t

0
φ–1

p

(

ã + λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du

)

ds,
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then

(̃P + R̃)(t) – (̃P + R̃)(0)

= A–1
(∫ t

0
φ–1

p

(

ã + λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du

)

ds
)

.

Since R̃(x, λ̃)(0) = 0, P̃(t) = P̃(0) = 0, we can get

R̃(x, λ̃)(t)

= A–1
(∫ t

0
φ–1

p

(

ã + λ̃

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λ̃s
ω

∫ ω

0
f̃
(
u, x(u), x′(u)

)
du

)

ds
)

.

Hence, Ñλ̃ is M-compact on Ω̃ . Obviously, the equation

(
φp(Ax)′(t)

)′ = λ̃f̃
(
t, x(t), x′(t)

)

can be converted to

M̃x = Ñλ̃x, λ̃ ∈ (0, 1),

where M̃ and Ñλ̃ are defined by Eqs. (4.2) and (4.6), respectively. As proved above,

Ñλ̃ : Ω̃ → Z̃, λ̃ ∈ (0, 1)

is an M̃-compact mapping. From assumption (i), one finds

M̃x 	= Ñλ̃x, λ̃ ∈ (0, 1), x ∈ ∂Ω̃ ,

and assumptions (ii) and (iii) imply that deg{̃JQ̃Ñ , Ω̃ ∩ ker M̃, θ̃} is valid and

deg{̃JQ̃Ñ , Ω̃ ∩ ker M̃, θ̃} 	= 0.

So by applications of Lemma 4.2, we see that Eq. (4.5) has one ω-periodic solution. �

4.1 Application of Theorem 4.2: quasi-linear equation
As an application, we consider the following p-Laplacian neutral equation:

(

φp

(

x(t) –
n∑

i=1

ci(t)x
(
t – δi(t)

)
)′)′

+ g
(
t, x(t)

)
= p(t), (4.11)

where g(t, x(t)) ∈ C(R × R,R) is an ω-periodic function about t, p ∈ C(R,R) is an ω-
periodic function and

∫ ω

0 p(t) dt = 0. By application of Theorem 4.2, we will investi-
gate the existence of periodic solution for Eq. (4.11) satisfying

∑n
i=1 ‖ci‖ < 1, or ‖ 1

ck
‖ +

∑n
i=1
i	=k

‖ ci
ck

‖ < 1.

Theorem 4.3 Assume the following conditions are satisfied:
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(H1) There exist two positive constants D̃1 and D̃2 with D̃1 < D̃2, such that g(t, x(t)) > 0
for x(t) > D̃2 and g(t, x(t)) < 0 for x(t) < –D̃1.

(H2) There exist positive constants m, n and B̃ such that

∣
∣g

(
t, x(t)

)∣
∣ ≤ m|x|p–1 + n, for |x| > B̃ and t ∈R.

Then Eq. (4.11) has at least one solution with period ω if

σ̃ω(m(1 +
∑n

i=1 ‖ci‖))
1
p

2
+

σ̃ω
∑n

i=1 ‖c′
i‖

2
+ σ̃

n∑

i=1

‖ci‖‖δ′
i‖

1 – δ′
i(t)

< 1,

where δ′
i(t) < 1 for i = 1, 2, . . . , n and

σ̃ =

⎧
⎪⎪⎨

⎪⎪⎩

1
1–

∑n
i=1 ‖ci‖ , for

∑n
i=1 ‖ci‖ < 1,

1
1–‖ 1

ck
‖–

∑n
i=1
i	=k

‖ ci
ck

‖ , for ‖ 1
ck

‖ +
∑n

i=1
i	=k

‖ ci
ck

‖ < 1.

Proof Consider the homotopic equation

(

φp

(

x(t) –
n∑

i=1

ci(t)x
(
t – δi(t)

)
)′)′

+ λ̃g
(
t, x(t)

)
= λ̃p(t). (4.12)

Firstly, we claim that the set of all ω-periodic solutions of Eq. (4.12) is bounded. Let x(t) ∈
Cω be an arbitrary ω-periodic solution of Eq. (4.12). Integrating both sides of Eq. (4.12)
over [0,ω], we have

∫ ω

0
g
(
t, x(t)

)
dt = 0. (4.13)

From the mean value theorem, there is a constant ξ ∈ (0,ω) such that

g
(
ξ , x(ξ )

)
= 0,

then we get by condition (H1)

–D̃1 ≤ x(ξ ) ≤ D̃2.

Therefore,

‖x‖ = max
t∈[0,ω]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+ω]

∣
∣x(t)

∣
∣

=
1
2

max
t∈[ξ ,ξ+ω]

(∣
∣x(t)

∣
∣ +

∣
∣x(t – ω)

∣
∣
)

=
1
2

max
t∈[ξ ,ξ+ω]

(∣
∣
∣
∣x(ξ ) +

∫ ω

ξ

x′(s) ds
∣
∣
∣
∣ +

∣
∣
∣
∣x(ξ ) –

∫ ξ

t–ω

x′(s) ds
∣
∣
∣
∣

)
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≤ D̃2 +
1
2

(∫ t

ξ

∣
∣x′(s)

∣
∣ds +

∫ ξ

t–ω

∣
∣x′(s)

∣
∣ds

)

≤ D̃2 +
1
2

∫ ω

0

∣
∣x′(s)

∣
∣ds. (4.14)

Multiplying both sides of Eq. (4.12) by (Ax)(t) and integrating over the interval [0,ω],
we get

∫ ω

0

(
φp(Ax)′(t)

)′(Ax)(t) dt + λ̃

∫ ω

0
g
(
t, x(t)

)
(Ax)(t) dt = λ̃

∫ ω

0
p(t)(Ax)(t) dt. (4.15)

Substituting
∫ ω

0 (φp(Ax)′(t))′(Ax)(t) dt = –
∫ ω

0 |(Ax)′(t)|p dt into Eq. (4.15), it is clear that

–
∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt = –λ̃

∫ ω

0
g
(
t, x(t)

)
(Ax)(t) dt + λ̃

∫ ω

0
p(t)(Ax)(t) dt.

So, we have

∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt ≤

∫ ω

0

∣
∣g

(
t, x(t)

)∣
∣

∣
∣
∣
∣
∣
x(t) –

n∑

i=1

ci(t)x
(
t – δi(t)

)
∣
∣
∣
∣
∣
dt

+
∫ ω

0

∣
∣p(t)

∣
∣

∣
∣
∣
∣
∣
x(t) –

n∑

i=1

ci(t)x
(
t – δi(t)

)
∣
∣
∣
∣
∣
dt

≤
(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ ω

0

∣
∣g

(
t, x(t)

)∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ ω

0

∣
∣p(t)

∣
∣dt. (4.16)

Define

E1 :=
{

t ∈ [0,ω] | ∣∣x(t)
∣
∣ ≤ B̃

}
, E2 :=

{
t ∈ [0,ω] | ∣∣x(t)

∣
∣ > B̃

}
.

From condition (H2), we obtain

∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt ≤

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫

E1+E2

∣
∣g

(
t, x(t)

)∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ ω

0

∣
∣p(t)

∣
∣dt

≤
(

1 +
n∑

i=1

‖ci‖
)

‖x‖(m‖x‖p–1ω + nω + ‖gB̃‖ω)

+

(

1 +
n∑

i=1

‖ci‖
)

‖p‖ω‖x‖

= mω

(

1 +
n∑

i=1

‖ci‖
)

‖x‖p + Ñ1‖x‖, (4.17)
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where ‖gB̃‖ := max|x|≤B̃ |g(t, x(t))|, ‖p‖ := maxt∈[0,ω] |p(t)| and Ñ1 := (1 +
∑n

i=1 ‖ci‖)(‖gB̃‖ω +
nω + ‖p‖ω). Substituting Eq. (4.14) into Eq. (4.17), we get

∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt ≤ mω

(

1 +
n∑

i=1

‖ci‖
)(

D̃2 +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

)p

+ Ñ1

(

D̃2 +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

)

. (4.18)

Since (Ax)(t) = x(t) –
∑n

i=1 x(t – δi(t)), we arrive at

(Ax)′(t) =

(

x(t) –
n∑

i=1

ci(t)x
(
t – δi(t)

)
)′

= x′(t) –
n∑

i=1

c′
i(t)x

(
t – δi(t)

)
–

n∑

i=1

ci(t)x′(t – δi(t)
)(

1 – δ′
i(t)

)

= x′(t) –
n∑

i=1

c′
i(t)x

(
t – δi(t)

)
–

n∑

i=1

ci(t)x′(t – δi(t)
)

+
n∑

i=1

ci(t)x′(t – δi(t)
)
δ′

i(t)

and

(
Ax′)(t) = x′(t) –

n∑

i=1

ci(t)x′(t – δi(t)
)
.

Thus,

(
Ax′)(t) = (Ax)′(t) +

n∑

i=1

c′
i(t)x

(
t – δi(t)

)
–

n∑

i=1

ci(t)x′(t – δi(t)
)
δ′

i(t).

By applying Lemma 2.2 and the Hölder inequality, we have

∫ ω

0

∣
∣x′(t)

∣
∣dt =

∫ ω

0

∣
∣
(
A–1Ax′)(t)

∣
∣dt ≤ σ̃

∫ ω

0

∣
∣
(
Ax′)(t)

∣
∣dt

= σ̃

∫ ω

0

∣
∣
∣
∣
∣
(Ax)′(t) +

n∑

i=1

c′
i(t)x

(
t – δi(t)

)
–

n∑

i=1

ci(t)x′(t – δi(t)
)
δ′

i(t)

∣
∣
∣
∣
∣
dt

≤ σ̃

∫ ω

0

∣
∣(Ax)′(t)

∣
∣dt + σ̃

∫ ω

0

∣
∣
∣
∣
∣

n∑

i=1

c′
i(t)x

(
t – δi(t)

)
∣
∣
∣
∣
∣
dt

+ σ̃

∫ ω

0

∣
∣
∣
∣
∣

n∑

i=1

ci(t)x′(t – δi(t)
)
δ′

i(t)

∣
∣
∣
∣
∣
dt

≤ σ̃ω
1
q

(∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt

) 1
p

+ σ̃ω

n∑

i=1

∥
∥c′

i
∥
∥‖x‖

+ σ̃

n∑

i=1

‖ci‖
∥
∥δ′

i
∥
∥

∫ ω

0

∣
∣x′(t – δi(t)

)∣
∣dt
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≤ σ̃ω
1
q

(∫ ω

0

∣
∣(Ax)′(t)

∣
∣p dt

) 1
p

+ σ̃ω

n∑

i=1

∥
∥c′

i
∥
∥‖x‖

+ σ̃

n∑

i=1

‖ci‖‖δ′
i‖

1 – δ′
i

∫ ω

0

∣
∣x′(t)

∣
∣dt, (4.19)

where ‖c′
i‖ = maxt∈[0,ω] |c′

i(t)|, ‖δ′
i‖ = maxt∈[0,ω] |δ′

i(t)|, for i = 1, 2, . . . , n. Substituting Eq.
(4.14) and Eq. (4.18) into Eq. (4.19), since (a + b)k ≤ ak + bk , 0 < k < 1, we get

∫ ω

0

∣
∣x′(t)

∣
∣dt ≤ σ̃ω

1
q

(

mω

(

1 +
n∑

i=1

‖ci‖
)) 1

p (

D̃2 +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

)

+ σ̃ω
1
q (Ñ1)

1
p

(

D̃2 +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

) 1
p

+ σ̃

n∑

i=1

∥
∥c′

i
∥
∥ω

(

D̃2 +
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

)

+ σ̃

n∑

i=1

‖ci‖‖δ′
i‖

1 – δ′
i

∫ ω

0

∣
∣x′(t)

∣
∣dt

≤
(

σ̃ω(m(1 +
∑n

i=1 ‖ci‖))
1
p

2
+

σ̃
∑n

i=1 ‖c′
i‖ω

2
+ σ̃

n∑

i=1

‖ci‖‖δ′
i‖

1 – δ′
i

)

×
∫ ω

0

∣
∣x′(t)

∣
∣dt + σ̃ω

1
q

(

mω

(

1 +
n∑

i=1

‖ci‖
)) 1

p

D̃2 + σ̃ω
1
q (Ñ1D̃2)

1
p

+ σ̃ω
1
q (Ñ1)

1
p

(
1
2

∫ ω

0

∣
∣x′(t)

∣
∣dt

) 1
p

+ σ̃

n∑

i=1

∥
∥c′

i
∥
∥ωD̃2. (4.20)

Since σ̃ω(m(1+
∑n

i=1 ‖ci‖))
1
p

2 + σ̃ω
∑n

i=1 ‖c′i‖
2 + σ̃

∑n
i=1

‖ci‖‖δ′
i‖

1–δ′
i

< 1, it is easily seen that there exists a
constant M′

1 > 0 (independent of λ̃) such that

∫ ω

0

∣
∣x′(t)

∣
∣dt ≤ M′

1. (4.21)

From Eq. (4.14), we have

‖x‖ ≤ D̃2 +
1
2

∫ ω

0

∣
∣x′(s)

∣
∣ds ≤ D̃2 +

1
2

M′
1 := M1. (4.22)

As (Ax)(0) = (Ax)(ω), there exists a point t0 ∈ (0,ω) such that (Ax)′(t0) = 0, while φp(0) =
0, from Eq. (4.12), we see that

∣
∣φp(Ax)′(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t0

(
φp(Ax)′(s)

)′ ds
∣
∣
∣
∣

≤ λ̃

∫ ω

0

∣
∣g

(
t, x(t)

)∣
∣dt + λ̃

∫ ω

0

∣
∣p(t)

∣
∣dt

≤ ω‖gM1‖ + ω‖p‖ := M′
2,
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where ‖gM1‖ := max|x(t)|≤M1 |g(t, x(t))|. Next we claim that there exists a positive constant
M∗

2 > M′
2 + 1, such that, for all t ∈R, we obtain

∥
∥(Ax)′

∥
∥ ≤ M∗

2. (4.23)

In fact, if (Ax)′ is not bounded, there exists a positive constant M′′
2 such that ‖(Ax)′‖ >

M′′
2 for some (Ax)′ ∈ R, therefore, we have ‖φp(Ax)′‖ = ‖(Ax)′‖p–1 ≥ (M′′

2)p–1. Then it is a
contradiction, so Eq. (4.23) holds. From Lemma 2.2 and Eq. (4.23), we arrive at

∥
∥x′∥∥ =

∥
∥A–1Ax′∥∥

=
∥
∥A–1(Ax′)(t)

∥
∥

≤ σ̃

∥
∥
∥
∥
∥

(Ax)′(t) +
n∑

i=1

c′
i(t)x

(
t – δi(t)

)
–

n∑

i=1

‖ci‖
∥
∥
∥
∥
∥
δ′

i

∥
∥
∥
∥

∫ ω

0

∣
∣x′(t – δi(t)

)∣
∣dt

∥
∥
∥
∥

≤ σ̃
∥
∥(Ax)′

∥
∥ + σ̃

( n∑

i=1

∥
∥c′

i
∥
∥‖x‖

)

+ σ̃

n∑

i=1

‖ci‖
∥
∥δ′

i
∥
∥

∫ ω

0

∣
∣x′(t – δi(t)

)∣
∣dt

≤ σ̃M∗
2 + σ̃

n∑

i=1

∥
∥c′

i
∥
∥M1 + σ̃

n∑

i=1

‖ci‖‖δ′
i‖

1 – δ′
i

M′
1 := M2. (4.24)

Set M∗ =
√

M2
1 + M2

2 + 1, we have

Ω̃ =
{

x ∈ C1
ω(R,R) | ‖x‖ ≤ M∗ + 1,

∥
∥x′∥∥ ≤ M∗ + 1

}
,

and we know that Eq. (4.11) has no solution on ∂Ω̃ as λ̃ ∈ (0, 1) and when x(t) ∈ ∂Ω̃ ∩R,
x(t) = M∗ + 1 or x(t) = –M∗ – 1. So, from condition (H1), we see that

1
ω

∫ ω

0
g
(
M∗ + 1

)
dt > 0,

1
ω

∫ ω

0
g
(
–M∗ – 1

)
dt < 0,

since
∫ ω

0 e(t) dt = 0. So condition (ii) of Theorem 4.2 is also satisfied. Obviously, we can get

deg{̃F , Ω̃ ∩R, 0} = deg

{
1
ω

∫ ω

0
g
(
t, x(t)

)
dt, ∂Ω̃ ∩R, 0

}

= deg{x, ∂Ω̃ ∩R, 0} 	= 0.

So condition (iii) of Theorem 4.2 is satisfied. In view of Theorem 4.2, there exists at least
one ω-periodic solution. �

5 Conclusions
In this paper, we first investigate some properties of the neutral operator with multiple
variable parameters (Ax)(t). Afterwards, applying Krasnoselskii’s fixed point theorem and
properties of the operator A, we prove the existence of a positive periodic solution for
a second-order neutral differential equation with multiple variable parameters. On the
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other hand, we find that the second-order quasi-linear neutral differential equation has a
periodic solution by using the extension of Mawhin’s continuous theorem.

Acknowledgements
FFL, ZHB, SWY and YX are grateful to anonymous referees for their constructive comments and suggestions which have
greatly improved this paper.

Funding
This work was supported by National Natural Science Foundation of China (No. 71601072), Education Department of
Henan Province project (Nos. 16B110006, 20B110006), Fundamental Research Funds for the Universities of Henan
Province (NSFRF170302), Young backbone teachers of colleges and universities in Henan Province (2017GGJS057).

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
FFL, ZHB, SWY and YX contributed to each part of this study equally and declare that they have no competing interests.

Competing interests
FL, ZHB, SWY and YX declare that they have no competing interests.

Consent for publication
FFL, ZHB, SWY and YX read and approved the final version of the manuscript.

Authors’ contributions
FFL, ZHB, SWY and YX contributed equally and significantly in writing this article. All authors read and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 August 2019 Accepted: 17 December 2019

References
1. Burton, T.: A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11, 85–88 (1998)
2. Cheng, Z., Bi, Z.: Study on a kind of p-Laplacian neutral differential equation with multiple variable coefficients.

J. Appl. Anal. Comput. 9, 501–525 (2019)
3. Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable

coefficient and delay. Mediterr. J. Math. 15, 1–19 (2018)
4. Cheng, Z., Li, F.: Weak and strong singularities fro second-order nonlinear differential equations with a linear

difference operator. J. Fixed Point Theory Appl. 21, 1–23 (2019)
5. Cheung, W., Ren, J., Han, W.: Positive periodic solution of second-order neutral functional differential equations.

Nonlinear Anal. 71, 3948–3955 (2009)
6. Danca, M., Feckan, M., Pospisil, M.: Difference equations with impulses. Opusc. Math. 39, 5–22 (2019)
7. Du, B.: Anti-periodic solutions problems for inertial competitive neutral-type neutral networks via Wirtinger

inequality. J. Inequal. Appl. 2019, 187 (2019)
8. Du, B., Guo, L., Ge, W., Lu, S.: Periodic solutions for generalized Liénard neutral equation with variable parameter.

Nonlinear Anal. TMA 70, 2387–2394 (2009)
9. Ge, W., Ren, J.: An extension of Mawhin’s continuation theorem and its application to boundary value problems with

a p-Laplacian. Nonlinear Anal. TMA 58, 477–488 (2004)
10. Hale, J.: Theory of Functional Differential Equations. Springer, Berlin (1977)
11. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)
12. Lu, S., Ge, W.: Periodic solutions for a kind of second order differential equation with multiple deviating arguments.

Appl. Math. Comput. 146, 195–209 (2003)
13. Lu, S., Ge, W.: Existence of periodic solutions for a kind of second order neutral functional differential equation. Appl.

Math. Comput. 157, 433–448 (2004)
14. Luo, Y., Wei, W., Shen, J.: Existence of positive periodic solutions for two kinds of neutral functional differential

equations. Appl. Math. Lett. 21, 581–587 (2008)
15. Lv, L., Cheng, Z.: Positive periodic solution to superlinear neutral differential equation with time-dependent

parameter. Appl. Math. Lett. 98, 271–277 (2019)
16. Manasevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equ. 145,

367–393 (1998)
17. Pinelas, S., Dix, J.: Oscillation of solutions to non-linear difference equations with several advanced arguments. Opusc.

Math. 37, 889–898 (2017)
18. Radulescu, V., Repovs, D.: Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative

Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)



Li et al. Boundary Value Problems          (2020) 2020:8 Page 29 of 29

19. Ren, J., Cheng, Z., Siegmund, S.: Neutral operator and neutral differential equation. Abstr. Appl. Anal. 2011, 969276
(2011)

20. Ren, J., Zhu, D., Wang, H.: Spreading-vanishing dichotomy in information diffusion in online social networks with
intervention. Discrete Contin. Dyn. Syst., Ser. B 24, 1843–1865 (2019)

21. Stevic, S.: Solvability of a product-type system of difference equations with six parameters. Adv. Nonlinear Anal. 8,
29–51 (2019)

22. Wu, J., Wang, Z.: Two periodic solutions of second-order neutral functional differential equations. J. Math. Anal. Appl.
329, 677–689 (2007)

23. Xu, Y., Zhu, D., Ren, J.: On a reaction–diffusion–advection system: fixed boundary or free boundary. Electron. J. Qual.
Theory Differ. Equ. 2018, 26 (2018)

24. Yao, S., Cheng, Z.: The homotopy perturbation method for a nonlinear oscillator with a damping. J. Low Freq. Noise
Vib. Act. Control 38, 1110–1112 (2019)

25. Yao, S., Ma, Z., Cheng, Z.: Pattern formation of a diffusive predator–prey model with strong Allee effect and
nonconstant death rate. Physica A 527, 1–11 (2019)

26. Zhang, M.: Periodic solution of linear and quasilinear neutral functional differential equation. J. Math. Anal. Appl. 189,
378–392 (1995)

27. Zhou, T., Du, B., Du, H.: Positive periodic solution for indefinite singular Liénard equation with p-Laplacian. Adv. Differ.
Equ. 2019, 158 (2019)


	Linear difference operator with multiple variable parameters and applications to second-order differential equations
	Abstract
	MSC
	Keywords

	Introduction
	Properties of the difference operator A
	Periodic solutions for Eq. (1.1)
	Periodic solution for Eq. (1.2)
	Application of Theorem 4.2: quasi-linear equation

	Conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


