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AYu+u+gu=ru), inR3,
A =1, in R3,

where % <s< 1, % <t<1,and fis a continuous function, which is superlinear at zero,
with f(t)t > 3F(t) > 0, F(T) = fot f(s)ds, T € R. We prove that the system admits a
ground state solution under the asymptotically 2-linear condition. The result here
extends the existing study.
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1 Introduction
In this paper, we study the existence of ground state solutions for the following fractional
Schrodinger—Poisson system:

(~AYu+u+du=f(u), inR3

1.1
(=AY = u?, in R3, D
where % <s<1, % <t <1, (-A) and (-A)’ are the fractional Laplace operators, f satisfies

the following conditions:
() f € CR,R), lim, o2 = 0;
(f2)

5
54 32 3

& =p  with —C(S,s)—lsz(Tﬂ> < WU < +00,
T

BRI

where the constant S and the function C(3,s) will be specified in Sect. 2;
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(f3)
f(r)t =3F(r) >0, VteR,whereF(r)= /rf(s) ds.
0

In recent years, the nonlinear fractional Schrodinger—Poisson systems have received a
lot of attention. In [1], Gao, Tang and Chen studied the existence of ground state solutions
of (1.1) in a mild assumption on f with super-quadratic nonlinearity. If « is replaced by
V()uwand f(u) = wulT2u+ |u|> 2u (2F = 5-)in (1.1), the existence of a nontrivial ground
state solution is given by Teng [2]. In [3], based on the symmetric mountain pass theorem,
He and Jing investigated a class of fractional Schrédinger—Poisson system with superlinear
terms, the existence and multiplicity of nontrivial solutions of such a system are obtained.
Wang, Ma and Guan [4] studied the existence of a sign-changing solution of the following
nonlinear fractional Schrédinger—Poisson system:

(=AYu+ V(x)u+ du = Kx)f(u), inR3,
: (-A)¢ =u?, in R3,
by means of the constraint variational method and the quantitative deformation lemma.

When s = ¢ = 1, system (1.1) reduces to the following Schrédinger—Poisson system:

p— 1 3
i—Au+u+¢u—g(u), inR”, (1.2)

—A¢ =u?, in R3,

Yin, Wu and Tang [5] proved the existence of ground state solutions of (1.2) by using

) 189 /3273
lim —= =v with |— — ] <v<+o0,
tl—>oc0 |t]2 8tS\ 3

instead of the usual 2-superlinear condition lim;_, « %? =+00 (G(¢) = fot g(s)ds), which
relaxed the conditions of nonlinearity in [6—8].

Inspired by [5], the main objective of this paper is to extend the main results of [1],
by relaxing the condition of super-quadratic nonlinearity used in [1]. That is, the nonlin-
earity f is assumed to be asymptotically 2-linear. We deal with the nonlinear fractional
Schrodinger—Poisson system (1.1) in view of variational method and some analysis tech-

nique. Our result also extends the main results of [5].

2 Preliminaries
The fractional Sobolev space H*(R?) can be described by means of the Fourier transform,

i.e.

H*(R?) = {u e I*(R%): A;{S(gﬁsm(g)ﬁ + [aE)|) de < +oo}
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endowed with the norm

1
2

el == lluall s = (/Rg(hsﬂs )| + @)’ ds)

1
2

=(/ (|(—A)3M(x)|2+’u(x)|2)dx> ., YueH(R?).
R3

Since 4s + 2t > 3, we have 2 < £ < &, thus H*(R?) — L35 (R3). From [1], we know
that there exists a unique ¢/ € D**(R?) = {u € L* (R®) : |£|'H(¢) € L*(R?)} which is a weak

solution of (~A)'¢! = u?, and it has the following representation:

u*(y)
o (%) = c; /RB PvERY dy, xeR3,
where ¢, = 71‘%2’2‘%. Substituting ¢, in (1.1), we obtain the following fractional

Schrodinger equation:
(AYu+u+¢lu=f(u), xeR. (2.1)

For the properties of ¢!, see [2]. By (2.1), we define the functional Z : H*(R%®) — R as

follows:

I(u) = %/H‘{SO(—A)%u’z +u) dx+%/R3 ¢;u2dx—/Rs F(u) dx, (2.2)

where F(u) = fou f(x)dx. It is easy to see that (f) and (f;) imply that 7 is a well-defined

C!-functional, and

(I/(u),v>:/ ((—A)%u(—A)%v+uv)a,’x+v/]RS ¢;uvdx—/l;3f(u)vdx, Vv € H(R%).

R3

Hence, if u is a critical point of Z, then (1, ¢!) is a solution of (1.1).

Set
¥ x| <R,
up(x) = 525, R<|x| <2R,
0, |x| > 2R.

Hence ugp € H*(R3). By Proposition 3.4 in [9], we have
el =20, [ 1612\ Funte) e, 23)
R

where F is the usual Fourier transform in R3, and

1-cos(1) >_1
C(3,s) = —d ,
(35) (/Rs g

Page 3 of 9
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here ¢ = (¢1, &9, ¢3). From the inequality |£|% < 1 + |£]2, s € (0,1], together with (2.3), we
get

lurl}e <2C3,5)7" f (1 IE%) | Fur(®)|” d& = 2C(3,5) lul?- (2.4)
R
Ift> %, then we have by Lemma 2.3 in [2]
2 20 14
./]R3 ¢;R(x)uk(x) dx < S; |MR|%;

where

NHLY
St= inf f]R3|( ) Lt| X

5
ueDH2(R3)\{0} (f]R3 |u(x)|2;‘ dx)%

Remark 2.1 If t = 1, then the above inequalities modifies to the following inequalities:

/ o) dx = Slugl’y, 25)
R
where

So i dwlVePdx

ueDRENO) (fus |u(x)] dx) 5

From [5], we have

2 2871 3 477
\Y dx = —, d —, 2.6
/RBI up(x)|” dx R /Rsluze(xﬂ ¥z = (2.6)
and
327\ 3
JT
IuRI‘i_z:<—) R (2.7)
5 3

Lemma 2.1 If (fi) and (f,) hold, then
(i) there exists a v e H*(R?) \ {0} such that Z(v) < 0;

(ii) c¢:=inf,cr maxeepo,1) Z(y (£)) > 0, where
r={y eC([0,1], H*(R*)) : y(0) = 0,y (1) = v}.

Proof Set R= —2T40 __ where
32 2
382(551)3

5 5
45 32 3 6 32 3
o= | —C(3,5)7182 il < | —C(3,s)7182 il .
8w 3 b4 3
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Denote ugg = 02ug(6x), from (2.2), (2.4), Fatou’s lemma, (f;) and (2.5)—(2.7), we obtain

. Z(uge) . 1(1 S 12,2
GEIPOC 63 zellrflooﬁ 5,/@3(‘(_&2”&9’ +MR,9)dx

1
+ 1/3¢£’R,6u122'9 dx—/SF(uR,g)dx)
5911m —(C(3 s)” / |Vuge|® + upy) dx
1/ o Ul dx—/ Flugg) dx
4 &3 urp RO &3 !

1
= lim —(C(@3,s)! 93/ ‘VuR(x)yzdx+9/ ur(x)? dx
6—+00 O3 R3 R3
91+2t , ) )
7 /3¢,,R(x)uze(x) dx_./RS F(0%ur(6x)) dx)

=C(3,s)7! ’VMR dx+—/ q)uR ug(x)® dx - LlrpooQZT
F(6*
_ lim/ ( MR)|MR|3dx
o=%0 Jes 16%uzl?

<{28”C(3s)1 S luglty = & fos luplPdx, =1,
5

BLCB) - & [ lurl® dx, t<1
B 069 + Skl - | Scone( 2 f gl d
< —— ,S + — U — — S u X
3R g R R
287 L S2(327\3  an
2B, 222 -2
<R B 4( 3 ) 3 Mo

2
= ——T[C(B,s)‘1 <0
3R

Thus, Z(ury) < 0 if 0 is sufficiently large.
(ii) By (f1) and (f3), for & = i > 0, there exists C > 0 such that

1
fO) < 19 +CO2. (2.8)
From (2.8) and by using the Sobolev inequality, we obtain

1 1 1 _3
L(u) > §IIu||2 - Eluli - Clul} > L—LIIuII2 — CS, 3 lull®,

where
S fR3(|( A3 ul +u?) dx
5,3 = .
”ED“ (fus 1) dx)3
For sufficiently small p > 0, we have I(x) > 0 with || = p. a

Similar to the proof of Lemma 2.2 in [5], we have the following lemma.
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Lemma 2.2 Suppose that (f1), (f2) hold. If {u,} C H*(R3) is a bounded (PS).4 sequence of
T, then there exists uy # 0 such that T’ (ug) = 0.

3 Main result
Theorem 3.1 Assume the conditions (fi)—(f3) are satisfied, then system (1.1) has at least a

ground state solution.

Proof For convenience, we introduce a functional on H*(R3) as follows:

1+2 s 1 5-2t
Tu) = — S/ |(—A)7u|2dx+—/ w’dx + / ¢.u* dx
2 R3 2 R3 4 R3

+ / [(1+20)F () - 2f (w)u] dx. (3.1)
R3
Inspired by the idea of Jeanjean [10], we define the map ¥ : R x H*(R3) — H*(R®) by

(A, w)(x) = e#*w(e*x). For each A and w € H*(R3), we can compute the functional Z o £2

as follows:

e(1+25))\ s 12 eA )
(2, w)) = 5 /I;gl(—A)Zw| + E/légw

o5-20%

1
t,2_ = F 21 . 3.2
+ ) /Rs o, W & | (e w) (3.2)

By (3.2), (fi) and (f2), we see that Z o §2 is continuously Fréchet-differentiable on R x
H*(R3). By virtue of Lemma 2.1, there exists A* € R such that (Z o 2)(A*, ug) < 0. The

mountain pass level of 7 o 2 is given as follows:

¢=inf sup (Zo .Q)()?(t)), (3.3)

i
vel tel0,1]

where the family of paths is denoted by
I'={y € C([0,1;R x H*(R)) : 7(0) = (0,0), (Z 0 £2)(7(1)) <0}.

ForI'={Q0y:y € I'},wehavec<¢c. Obviously, {0} x I C I"and then ¢ < ¢. Thus, ¢ = c.
It follows for each (n,u) € R x H*(R?) that

T'(2 s W) [2 (s )] = €172 / (-A)2w,(-A)u
]R3

1
e | w2 ot wau—— | f (e w,)u,
n An
R3 R3 e

R3

(T 0 2) (Ap, W), ul = I/(~Q()Lm Wn)) [Q()Lm u)] + j(Q()Lm Wn))n'
From Theorem 2.9 of [11], (3.3) and setting u, = §£2(),,, w,,), one has

I(u,) = c>0, 7' (u,) — 0, J(u,) = 0. (3.4)
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By (3.4) and (f3), we derive that

62 T ~ - Tlun) + o)

2 t s 2—t
= 2-(s+2) |(=A)2u ‘ dx + / u? dx
5-2t R3 5-2t R3
2
+ gy - [f(u,,)u,, - 3[-'(14,,)] dx +o(1)
2-t
— ufl dx +o0(1),
5 - 2t R3

which implies that {u,} is bounded in L2(R3). According to (3.4), we obtain

/f(u,,)undx+o(||un||):/ (|(—A)%un|2+ui)dx+/ ¢;nuidx
R3 R3 R3
|( A% | dx.
Combining (f;) and (f,), we have
f(O)r <Clt]? + et

By means of (3.7), the interpolation and Sobolev inequalities, we get

/ f(u,,)undst/ |un|3dx+£/ uidx
R3 R3 R3
6s-3 3-2s
S AN
SC(/ Iun|2dx) . (/ |14, | % dx) +Ce
R3 R3
6s=3 3
2 & s 2 i
SC(/ |14 dx) </ |(=A)Zu,| dx) + Ce.
R3 R3

Page 7 of 9

(3.5)

(3.6)

(3.8)

Since s > 2, by (3.6) and (3.8), we know that {(-A) 3u,) is bounded in L2(R3). Hence, {u,}

is bounded in H*(R3).
Define

m=infZ(w), M= {u e H*(R®) \ {0}|Z'(w) = O}.

In view of Lemma 2.2 and {u,} being bounded, we obtain uy # 0 and Z'(u) = 0. Thus M

is not empty and 0 < m < Z(up). In the following we will prove m can be achieved in M.

Suppose that {u,} is a sequence of nontrivial critical points of Z satisfying Z(u,) — m.
Similar to the proofs of (3.5), (3.6) and (3.8), we find that {u,} is bounded in H*(R3). By

T'(uy)uy, =0, (2.8) and the Sobolev inequality, we have

O W A
R3 R3

1 1 _3
2 3 2 3
§E|Mn|2+c|un|3§:1'”un” + CS, 3 llunll”.

(3.9)
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From (3.9), there exists a positive p > 0 such that
lim inf ||u,|>p>0. (3.10)
n—00

Applying the Lions lemma in [11], if {u,} vanishes, one has u, — 0 in LI(R3) for all g €
(2,6). Thus, if £ > %, then it follows (12) in [2] that

1
/ s, wndx < S} |uy*, — 0.
R3 3+2t

By (3.7) and u,, — 0 in L1(R3), we get fR3f(un)un dx — 0. Combining with (3.9), we can
easily deduce that ||, || — 0 in a contradiction with (3.10). Hence there exist r,é > 0 and
a sequence {y,} C R3 such that lim,,_, o, Sup,, cgs fBr(yn) lu,|? > 8 > 0. Set i1, = u,(x + y,),
then we have i, — u #0 in H*(R3), Z(it,) — m and T'(i1,,) = 0. Thus, we get Z'(u) = 0 and
T(u) > m. Since Z'(u) = 0, one has

/(‘(—A)%u’2+u2)dx+/ ¢f{u2dx—ff(u)udx=0, (3.11)
R3 R3 R3

and by the Pohozaev identity [2, 12], we have

3-2 . 3 342t
S/ |(—A)7u|2dx+—/ Wdx+ 22 /¢;u2dx:3/ Fwdx.  (3.12)
2 R3 2 R3 4 R3 R3

Accordingto (3.11)-(3.12), one has J (#) = 0. As Z'(i1,,) = 0, Z' (1) = 0 and by Fatou’s lemma

we have
2— t —t
m= lim( (s + )/ ’( A)2un‘ dx+ / ﬁfldx
n—oo\ 5-2¢ -2t Jg3
2 - _
syl [f(un)un - 3F(it,)] dx
2 t s 2—-t
. 2-(s+1) & 7u|2dx+ / u® dx
5 2t R3 5-2t R3
2
5 5 [f(u)u 3F(u)]
=Z(u) - EJ(M) =L(u)>m
Hence Z(u) = m. The proof is complete. d

Remark 3.1 If s = ¢t = 1, Our main result Theorem 3.1 reduces to Theorem 1.1 in [5]. On
the other hand, Theorem 3.1 in this paper relaxes the condition of super-quadratic non-
linearity in [1] to being asymptotically 2-linear.
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