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Abstract
In this paper, we investigate the following fractional Schrödinger–Poisson system:

{
(–�)su + u + φu = f (u), in R

3,
(–�)tφ = u2, in R

3,

where 3
4 < s < 1, 12 < t < 1, and f is a continuous function, which is superlinear at zero,

with f (τ )τ ≥ 3F(τ )≥ 0, F(τ ) =
∫ τ

0 f (s)ds, τ ∈ R. We prove that the system admits a
ground state solution under the asymptotically 2-linear condition. The result here
extends the existing study.
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1 Introduction
In this paper, we study the existence of ground state solutions for the following fractional
Schrödinger–Poisson system:

{
(–�)su + u + φu = f (u), in R

3,
(–�)tφ = u2, in R

3,
(1.1)

where 3
4 < s < 1, 1

2 < t < 1, (–�)s and (–�)t are the fractional Laplace operators, f satisfies
the following conditions:

(f1) f ∈ C(R,R), limτ→0
f (τ )
τ

= 0;
(f2)

lim|τ |→∞
f (τ )
|τ |2 = μ with

√√√√54
π

C(3, s)–1S2
(

32π

3

) 5
3

< μ < +∞,

where the constant S and the function C(3, s) will be specified in Sect. 2;
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(f3)

f (τ )τ ≥ 3F(τ ) ≥ 0, ∀τ ∈R, where F(τ ) =
∫ τ

0
f (s) ds.

In recent years, the nonlinear fractional Schrödinger–Poisson systems have received a
lot of attention. In [1], Gao, Tang and Chen studied the existence of ground state solutions
of (1.1) in a mild assumption on f with super-quadratic nonlinearity. If u is replaced by
V (x)u and f (u) = μ|u|q–2u+ |u|2∗

s –2u (2∗
s = 6

3–2s ) in (1.1), the existence of a nontrivial ground
state solution is given by Teng [2]. In [3], based on the symmetric mountain pass theorem,
He and Jing investigated a class of fractional Schrödinger–Poisson system with superlinear
terms, the existence and multiplicity of nontrivial solutions of such a system are obtained.
Wang, Ma and Guan [4] studied the existence of a sign-changing solution of the following
nonlinear fractional Schrödinger–Poisson system:

{
(–�)su + V (x)u + φu = K(x)f (u), in R

3,
(–�)tφ = u2, in R

3,

by means of the constraint variational method and the quantitative deformation lemma.
When s = t = 1, system (1.1) reduces to the following Schrödinger–Poisson system:

{
–�u + u + φu = g(u), in R

3,
–�φ = u2, in R

3.
(1.2)

Yin, Wu and Tang [5] proved the existence of ground state solutions of (1.2) by using

lim|t|→∞
f (t)
|t|2 = ν with

√√√√ 189
8πS

(
32π

3

) 5
3

< ν < +∞,

instead of the usual 2-superlinear condition lim|t|→∞ G(t)
|t|3 = +∞ (G(t) =

∫ t
0 g(s) ds), which

relaxed the conditions of nonlinearity in [6–8].
Inspired by [5], the main objective of this paper is to extend the main results of [1],

by relaxing the condition of super-quadratic nonlinearity used in [1]. That is, the nonlin-
earity f is assumed to be asymptotically 2-linear. We deal with the nonlinear fractional
Schrödinger–Poisson system (1.1) in view of variational method and some analysis tech-
nique. Our result also extends the main results of [5].

2 Preliminaries
The fractional Sobolev space Hs(R3) can be described by means of the Fourier transform,
i.e.

Hs(
R

3) =
{

u ∈ L2(
R

3) :
∫
R3

(|ξ |2s∣∣̂u(ξ )
∣∣2 +

∣∣̂u(ξ )
∣∣2)dξ < +∞

}
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endowed with the norm

‖u‖ := ‖u‖Hs =
(∫

R3

(|ξ |2s∣∣̂u(ξ )
∣∣2 +

∣∣̂u(ξ )
∣∣2)dξ

) 1
2

=
(∫

R3

(∣∣(–�)
s
2 u(x)

∣∣2 +
∣∣u(x)

∣∣2)dx
) 1

2
, ∀u ∈ Hs(

R
3).

Since 4s + 2t > 3, we have 2 ≤ 12
3+2t ≤ 6

3–2t , thus Hs(R3) ↪→ L
12

3+2t (R3). From [1], we know
that there exists a unique φt

u ∈Dt,2(R3) = {u ∈ L2∗
t (R3) : |ξ |t û(ξ ) ∈ L2(R3)} which is a weak

solution of (–�)tφt
u = u2, and it has the following representation:

φt
u(x) = ct

∫
R3

u2(y)
|x – y|3–2t dy, x ∈R

3,

where ct = π– 3
2 2–2t Γ (3–2t)

Γ (t) . Substituting φt
u in (1.1), we obtain the following fractional

Schrödinger equation:

(–�)su + u + φt
uu = f (u), x ∈R

3. (2.1)

For the properties of φt
u, see [2]. By (2.1), we define the functional I : Hs(R3) → R as

follows:

I(u) =
1
2

∫
R3

(∣∣(–�)
s
2 u

∣∣2 + u2)dx +
1
4

∫
R3

φt
uu2 dx –

∫
R3

F(u) dx, (2.2)

where F(u) =
∫ u

0 f (x) dx. It is easy to see that (f1) and (f2) imply that I is a well-defined
C1-functional, and

〈
I ′(u), v

〉
=

∫
R3

(
(–�)

s
2 u(–�)

s
2 v + uv

)
dx +

∫
R3

φt
uuv dx –

∫
R3

f (u)v dx, ∀v ∈ Hs(
R

3).

Hence, if u is a critical point of I , then (u,φt
u) is a solution of (1.1).

Set

uR(x) =

⎧⎪⎨
⎪⎩

1
R , |x| ≤ R,
1
R (2 – |x|

R ), R < |x| ≤ 2R,
0, |x| > 2R.

Hence uR ∈ Hs(R3). By Proposition 3.4 in [9], we have

‖uR‖2
Hs = 2C(3, s)–1

∫
R3

|ξ |2s∣∣FuR(ξ )
∣∣2 dξ , (2.3)

where F is the usual Fourier transform in R
3, and

C(3, s) =
(∫

R3

1 – cos(ζ1)
|ζ |3+2s dζ

)–1

,
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here ζ = (ζ1, ζ2, ζ3). From the inequality |ξ |2s ≤ 1 + |ξ |2, s ∈ (0, 1], together with (2.3), we
get

‖uR‖2
Hα ≤ 2C(3, s)–1

∫
R3

(
1 + |ξ |2)∣∣FuR(ξ )

∣∣2 dξ = 2C(3, s)–1‖uR‖2
H1 . (2.4)

If t > 1
2 , then we have by Lemma 2.3 in [2]

∫
R3

φt
uR(x)uR(x)2 dx ≤ S2

t |uR|412
3+2t

,

where

St = inf
u∈Dt,2(R3)\{0}

∫
R3 |(–�) t

2 u|2 dx

(
∫
R3 |u(x)|2∗

t dx)
2

2∗
t

.

Remark 2.1 If t = 1, then the above inequalities modifies to the following inequalities:

∫
R3

φuR(x)uR(x)2 dx ≤ S2|uR|412
5

, (2.5)

where

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx

(
∫
R3 |u(x)|6 dx) 1

3
.

From [5], we have

∫
R3

∣∣∇uR(x)
∣∣2 dx =

28π

3R
,

∫
R3

∣∣uR(x)
∣∣3 dx ≥ 4π

3
, (2.6)

and

|uR|412
5

=
(

32π

3

) 5
3

R. (2.7)

Lemma 2.1 If (f1) and (f2) hold, then
(i) there exists a v ∈ Hs(R3) \ {0} such that I(v) ≤ 0;

(ii) c := infγ∈Γ maxt∈[0,1] I(γ (t)) > 0, where

Γ =
{
γ ∈ C

(
[0, 1], Hs(

R
3)) : γ (0) = 0,γ (1) = v

}
.

Proof Set R = 8πμ0

3S2( 32π
3 )

5
3

, where

μ0 =

√√√√ 45
8π

C(3, s)–1S2
(

32π

3

) 5
3

<

√√√√ 6
π

C(3, s)–1S2
(

32π

3

) 5
3

.
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Denote uR,θ = θ2uR(θx), from (2.2), (2.4), Fatou’s lemma, (f2) and (2.5)–(2.7), we obtain

lim
θ→+∞

I(uR,θ )
θ3 = lim

θ→+∞
1
θ3

(
1
2

∫
R3

(∣∣(–�)
s
2 uR,θ

∣∣2 + u2
R,θ

)
dx

+
1
4

∫
R3

φt
uR,θ

u2
R,θ dx –

∫
R3

F(uR,θ ) dx
)

≤ lim
θ→+∞

1
θ3

(
C(3, s)–1

∫
R3

(|∇uR,θ |2 + u2
R,θ

)
dx

+
1
4

∫
R3

φt
uR,θ

u2
R,θ dx –

∫
R3

F(uR,θ ) dx
)

= lim
θ→+∞

1
θ3

(
C(3, s)–1

[
θ3

∫
R3

∣∣∇uR(x)
∣∣2 dx + θ

∫
R3

uR(x)2 dx
]

+
θ1+2t

4

∫
R3

φt
uR(x)uR(x)2 dx –

∫
R3

F
(
θ2uR(θx)

)
dx

)

= C(3, s)–1
∫
R3

∣∣∇uR(x)
∣∣2 dx +

1
4

∫
R3

φt
uR(x)uR(x)2 dx · lim

θ→+∞
1

θ2(1–t)

– lim
θ→+∞

∫
R3

F(θ2uR)
|θ2uR|3 |uR|3 dx

≤
{ 28π

3R C(3, s)–1 + S2

4 |uR|412
5

– μ

3
∫
R3 |uR|3 dx, t = 1,

28π
3R C(3, s)–1 – μ

3
∫
R3 |uR|3 dx, t < 1

<
28π

3R
C(3, s)–1 +

S2

4
|uR|412

5
–

√√√√ 6
π

C(3, s)–1S2
(

32π

3

) 5
3
∫
R3

|uR|3 dx

<
28π

3R
C(3, s)–1 +

S2

4

(
32π

3

) 5
3

R –
4π

3
μ0

= –
2π

3R
C(3, s)–1 < 0.

Thus, I(uR,θ ) ≤ 0 if θ is sufficiently large.
(ii) By (f1) and (f2), for ε = 1

4 > 0, there exists C > 0 such that

f (θ ) ≤ 1
4
θ + Cθ2. (2.8)

From (2.8) and by using the Sobolev inequality, we obtain

I(u) ≥ 1
2
‖u‖2 –

1
4
|u|22 – C|u|33 ≥ 1

4
‖u‖2 – CS– 3

2
s,3 ‖u‖3,

where

Ss,3 = inf
u∈Ds,2

∫
R3 (|(–�) s

2 u|2 + u2) dx

(
∫
R3 |u(x)|3 dx) 2

3
.

For sufficiently small ρ > 0, we have I(u) > 0 with ‖u‖ = ρ . �

Similar to the proof of Lemma 2.2 in [5], we have the following lemma.
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Lemma 2.2 Suppose that (f1), (f2) hold. If {un} ⊂ Hs(R3) is a bounded (PS)c
=0 sequence of
I , then there exists u0 
= 0 such that I ′(u0) = 0.

3 Main result
Theorem 3.1 Assume the conditions (f1)–(f3) are satisfied, then system (1.1) has at least a
ground state solution.

Proof For convenience, we introduce a functional on Hs(R3) as follows:

J (u) =
1 + 2s

2

∫
R3

∣∣(–�)
s
2 u

∣∣2 dx +
1
2

∫
R3

u2 dx +
5 – 2t

4

∫
R3

φt
uu2 dx

+
∫
R3

[
(1 + 2t)F(u) – 2f (u)u

]
dx. (3.1)

Inspired by the idea of Jeanjean [10], we define the map Ψ : R × Hs(R3) → Hs(R3) by
Ω(λ, w)(x) = e2λw(eλx). For each λ and w ∈ Hs(R3), we can compute the functional I ◦ Ω

as follows:

I
(
Ω(λ, w)

)
=

e(1+2s)λ

2

∫
R3

∣∣(–�)
s
2 w

∣∣2 +
eλ

2

∫
R3

w2

+
e(5–2t)λ

4

∫
R3

φt
ww2 –

1
e3λ

∫
R3

F
(
e2λw

)
. (3.2)

By (3.2), (f1) and (f2), we see that I ◦ Ω is continuously Fréchet-differentiable on R ×
Hs(R3). By virtue of Lemma 2.1, there exists λ∗ ∈ R such that (I ◦ Ω)(λ∗, uR) < 0. The
mountain pass level of I ◦ Ω is given as follows:

c̄ = inf
γ̄∈Γ̄

sup
t∈[0,1]

(I ◦ Ω)
(
γ̄ (t)

)
, (3.3)

where the family of paths is denoted by

Γ̄ =
{
γ̄ ∈ C

(
[0, 1];R× Hs(R)

)
: γ̄ (0) = (0, 0), (I ◦ Ω)

(
γ̄ (1)

)
< 0

}
.

For Γ = {Ω ◦ γ̄ : γ̄ ∈ Γ̄ }, we have c ≤ c̄. Obviously, {0}×Γ ⊂ Γ̄ and then c̄ ≤ c. Thus, c̄ = c.
It follows for each (η, u) ∈R× Hs(R3) that

I ′(Ω(λn, wn)
)[

Ω(λn, u)
]

= e(1+2s)λn

∫
R3

(–�)
s
2 wn(–�)

s
2 u

+ eλn

∫
R3

wnu + e(5–2t)λn

∫
R3

φt
wn wnu –

1
eλn

∫
R3

f
(
e2λn wn

)
u,

(I ◦ Ω)′(λn, wn)[η, u] = I ′(Ω(λn, wn)
)[

Ω(λn, u)
]

+ J
(
Ω(λn, wn)

)
η.

From Theorem 2.9 of [11], (3.3) and setting un = Ω(λn, wn), one has

I(un) → c > 0, I ′(un) → 0, J (un) → 0. (3.4)
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By (3.4) and (f3), we derive that

c ≥ I(un) –
1

5 – 2t
J (un) + o(1)

=
2 – (s + t)

5 – 2t

∫
R3

∣∣(–�)
s
2 un

∣∣2 dx +
2 – t

5 – 2t

∫
R3

u2
n dx

+
2

5 – 2t

∫
R3

[
f (un)un – 3F(un)

]
dx + o(1)

≥ 2 – t
5 – 2t

∫
R3

u2
n dx + o(1), (3.5)

which implies that {un} is bounded in L2(R3). According to (3.4), we obtain

∫
R3

f (un)un dx + o
(‖un‖

)
=

∫
R3

(∣∣(–�)
s
2 un

∣∣2 + u2
n
)

dx +
∫
R3

φt
un u2

n dx

≥
∫
R3

∣∣(–�)
s
2 un

∣∣2 dx. (3.6)

Combining (f1) and (f2), we have

f (τ )τ ≤ C|τ |3 + ετ 2. (3.7)

By means of (3.7), the interpolation and Sobolev inequalities, we get

∫
R3

f (un)un dx ≤ C
∫
R3

|un|3 dx + ε

∫
R3

u2
n dx

≤ C
(∫

R3
|un|2 dx

) 6s–3
4s ·

(∫
R3

|un|2∗
s dx

) 3–2s
4s

+ Cε

≤ C
(∫

R3
|un|2 dx

) 6s–3
4s ·

(∫
R3

∣∣(–�)
s
2 un

∣∣2 dx
) 3

4s
+ Cε. (3.8)

Since s > 3
4 , by (3.6) and (3.8), we know that {(–�) s

2 un} is bounded in L2(R3). Hence, {un}
is bounded in Hs(R3).

Define

m = inf
M

I(u), M =
{

u ∈ Hs(
R

3) \ {0}|I ′(u) = 0
}

.

In view of Lemma 2.2 and {un} being bounded, we obtain u0 
= 0 and I ′(u0) = 0. Thus M
is not empty and 0 ≤ m ≤ I(u0). In the following we will prove m can be achieved in M.
Suppose that {un} is a sequence of nontrivial critical points of I satisfying I(un) → m.
Similar to the proofs of (3.5), (3.6) and (3.8), we find that {un} is bounded in Hs(R3). By
I ′(un)un = 0, (2.8) and the Sobolev inequality, we have

‖un‖2 =
∫
R3

f (un)un dx –
∫
R3

φt
un u2

n dx

≤ 1
4
|un|22 + C|un|33 ≤ 1

4
‖un‖2 + CS– 3

2
s,3 ‖un‖3. (3.9)
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From (3.9), there exists a positive ρ > 0 such that

lim inf
n→∞‖un‖ ≥ ρ > 0. (3.10)

Applying the Lions lemma in [11], if {un} vanishes, one has un → 0 in Lq(R3) for all q ∈
(2, 6). Thus, if t > 1

2 , then it follows (12) in [2] that

∫
R3

φt
un u2

n dx ≤ S
1
2
t |un|412

3+2t
→ 0.

By (3.7) and un → 0 in Lq(R3), we get
∫
R3 f (un)un dx → 0. Combining with (3.9), we can

easily deduce that ‖un‖ → 0 in a contradiction with (3.10). Hence there exist r, δ > 0 and
a sequence {yn} ⊂ R

3 such that limn→∞ supyn∈R3
∫

Br (yn) |un|2 ≥ δ > 0. Set ūn = un(x + yn),
then we have ūn ⇀ u 
= 0 in Hs(R3), I(ūn) → m and I ′(ūn) = 0. Thus, we get I ′(u) = 0 and
I(u) ≥ m. Since I ′(u) = 0, one has

∫
R3

(∣∣(–�)
s
2 u

∣∣2 + u2)dx +
∫
R3

φt
uu2 dx –

∫
R3

f (u)u dx = 0, (3.11)

and by the Pohožaev identity [2, 12], we have

3 – 2s
2

∫
R3

∣∣(–�)
s
2 u

∣∣2 dx +
3
2

∫
R3

u2 dx +
3 + 2t

4

∫
R3

φt
uu2 dx = 3

∫
R3

F(u) dx. (3.12)

According to (3.11)–(3.12), one hasJ (u) = 0. As I ′(ūn) = 0, I ′(u) = 0 and by Fatou’s lemma
we have

m = lim
n→∞

(
2 – (s + t)

5 – 2t

∫
R3

∣∣(–�)
s
2 ūn

∣∣2 dx +
2 – t

5 – 2t

∫
R3

ū2
n dx

+
2

5 – 2t

∫
R3

[
f (ūn)ūn – 3F(ūn)

]
dx

)

≥ 2 – (s + t)
5 – 2t

∫
R3

∣∣(–�)
s
2 u

∣∣2 dx +
2 – t

5 – 2t

∫
R3

u2 dx

+
2

5 – 2t

∫
R3

[
f (u)u – 3F(u)

]
dx

= I(u) –
1

5 – 2t
J (u) = I(u) ≥ m.

Hence I(u) = m. The proof is complete. �

Remark 3.1 If s = t = 1, Our main result Theorem 3.1 reduces to Theorem 1.1 in [5]. On
the other hand, Theorem 3.1 in this paper relaxes the condition of super-quadratic non-
linearity in [1] to being asymptotically 2-linear.
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