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Abstract
In this paper we consider singular Sturm–Liouville problems with eigenparameter
dependent boundary conditions and two singular endpoints. The spectrum of such
problems can be approximated by those of the inherited restriction operators
constructed. Via the abstract operator theory, the strongly resolvent convergence and
norm resolvent convergence of a sequence of operators are obtained and it follows
that the spectral inclusion of spectrum holds. Moreover, spectral exactness of
spectrum holds for two special cases.
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1 Introduction
We consider the following Sturm–Liouville differential equation:

ly :=
1
w

[
–
(
py′)′ + qy

]
= λy, x ∈ (a, b), (1.1)

where λ is a complex parameter, –∞ ≤ a < b ≤ +∞, 1
p , q, w ∈ Lloc(a, b), p, w > 0 almost

everywhere on (a, b).
Assume that a < a0 < b0 < b and λ0 ∈ R, u1(x), v1(x) are two linearly independent real

solutions on the interval (a, a0) of the equation ly = λ0y such that

[u1, v1](a) = 1.

The eigenparameter dependent boundary condition at a is

λ
(
α1[y, u1](a) + β1[y, v1](a)

)
= α2[y, u1](a) + β2[y, v1](a), (1.2)
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where η = α2β1 – α1β2 > 0. If the endpoint b is of limit circle type, then the boundary
condition is imposed as

cosγ [y, u2](b) – sinγ [y, v2](b) = 0, (1.3)

where γ ∈ (0,π ], u2(x), v2(x) are two linearly independent real solutions on (b0, b) of ly =
λ̃0y for some λ̃0 ∈R such that

[u2, v2](b) = 1.

If the endpoint b is of limit point type, then there are no boundary conditions imposed.
For a given singular differential operator, its spectrum can be approximated by the eigen-

values of a sequence of regular operators, which plays an important role in the theory
of differential boundary value problems and numerical computation of spectrum; see
[2, 19, 21, 25]. This is an interesting research topic and can be found in [1, 5, 7, 16, 22, 24].
In [1, 5, 7, 16, 23], regular approximation of singular differential operator have been stud-
ied from second order Sturm–Liouville operators and fourth order operators to even or-
der differential operators and Hamiltonian operators. In [22], Sturm–Liouville problems
with transmission conditions are investigated and in [24] Sturm–Liouville problems with
eigenparameter dependent boundary conditions and one singular endpoint are consid-
ered.

The differential boundary value problems (see [12–14]) with eigenparameter dependent
boundary conditions have been widely investigated by many authors such as [3, 4, 6, 8, 9,
11, 17, 20, 24, 26] because of the important application in probability theory and physics
and so on. In the present paper we consider Sturm–Liouville problems with two singular
endpoints and one eigenparameter dependent boundary condition. We find that its spec-
trum can be approximated by the eigenvalues of a sequence of regular problems, based on
the method of the strong graph limit, which is different from that of the previous papers
such as [1, 22, 24]. This paper can be regarded as a continuation and extension of [24].

The paper is organized as follows: In Sect. 2, the inherited restriction operators are con-
structed and are proved to be self-adjoint. In Sect. 3, by the method of strong graph limit,
the spectral inclusion of spectrum is obtained. Moreover, in the limit circle case or for the
operators bounded below, spectral exactness holds for the eigenvalues below the essential
spectrum.

2 Construction of the induced restriction operators
Define a Hilbert space

H = L2
w(a, b) ⊕C

with the inner product

(F , G) = (f , g)1 +
1
η

f1ḡ1,

where

F = (f , f1), G = (g, g1) ∈ H , f , g ∈ L2
w(a, b), (f , g)1 =

∫ b

a
f (x)g(x)w(x) dx.
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Let

Dmax =
{

y ∈ L2
w(a, b) : y, py′ ∈ ACloc(a, b), ly ∈ L2

w(a, b)
}

.

Define an operator

AF =
(
lf ,α2[f , u1](a) + β2[f , v1](a)

)

for any F ∈ D(A). If the endpoint b is of limit point type, let the domain D(A) of A be

D(A) =
{

F = (f , f1) ∈ H : f ∈ Dmax, f1 = α1[f , u1](a) + β1[f , v1](a)
}

.

If the endpoint b is of limit circle type, let

D(A) =
{

F = (f , f1) ∈ H : f ∈ Dmax, f1 = α1[f , u1](a) + β1[f , v1](a),

cosγ [f , u2](b) – sinγ [f , v2](b) = 0
}

.

Then we have the following lemma.

Lemma 1
(1) Let y, z, u, v ∈ Dmax. If [v, u] = 1 for some c, a ≤ c ≤ b, then

[y, z](c) = [y, v](c)[z̄, ū](c) – [y, ū](c)[z̄, v](c).

(2) The endpoint b is of the limit point case if and only if [y, z](b) = 0 for any y, z ∈ Dmax.
(3) If the endpoint a is of the limit circle case and u, v ∈ Dmax, [u, v](a) = 1, then there

exists a f ∈ Dmax such that [f , u](a) = α, [f , v](a) = β for any α,β ∈ C.

Proof See [21], Lemma 10.4.1, 10.4.2, 10.4.6. �

In the following we will get the first main result on the operator A.

Theorem 1 The operator A defined as above is a densely defined, symmetric and self-
adjoint operator in the Hilbert space H .

Proof Step 1. We prove the operator A is densely defined. That is to say, for any F = (f , f1) ∈
H , if F ⊥ D(A), then F = 0.

Since C∞
0 (a, b) ⊕ {0} ⊂ D(A), then, for any G = (g, 0) ∈ C∞

0 (a, b) ⊕ {0} ⊂ D(A), we have

(F , G) =
∫ b

a
f (x)g(x)w(x) dx = 0.

Therefore f (x) = 0 almost everywhere on (a, b). On the other hand, for any G = (g, g1) ∈
D(A), it follows from (F , G) = 1

η
f1ḡ1 = 0 that f1 = 0.
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Step 2. The operator A is symmetric in H . For any F , G ∈ D(A),

(AF , G) – (F , AG) =
∫ b

a
lf (x)g(x)w(x) dx +

1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
g1

–
∫ b

a
f (x)lg(x)w(x) dx –

1
η

f1α2[g, u1](a) + β2[g, v1](a)

=
∫ b

a

[
–
(
pf ′)′ + qf

]
g dx –

∫ b

a
f
[
–
(
pg ′)′ + qg

]
dx

+
1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
α1[g, u1](a) + β1[g, v1](a)

–
1
η

(
α1[f , u1](a) + β1[f , v1](a)

)
α2[g, u1](a) + β2[g, v1](a)

= [f , g]|ba – det

(
[f , u1](a) [f , v1](a)
[u1, g](a) [v1, g](a)

)

.

It follows from Lemma 1(1) that

(AF , G) – (F , AG) = [f , g]|ba + [f , g](a)[u1, v1](a).

Since [u1, v1](a) = 1 and u1 is a real function,

(AF , G) – (F , AG) = [f , g]|ba + [f , g](a) = [f , g](b).

If the endpoint b is of the limit point case, then [f , g](b) = 0 for any F , G ∈ D(A) by Lemma
1(2). If b is of the limit circle case, then f , g satisfy the boundary condition (1.3). It follows
from [u2, v2](b) = 1 that

[f , g](b) = [f , g](b)[u2, v2](b) = det

(
[f , u2](b) [f , v2](b)
[g, u2](b) [g, v2](b)

)

= [f , u2](b)[g, v2](b) – [f , v2](b)[g, u2](b) = 0.

Step 3. The operator A is self-adjoint. For any F = (f , f1) ∈ D(A) and some K ∈ H ,
(AF , G) = (F , K), we prove that G ∈ D(A) and AG = K . It is sufficient to prove that when b
is of the limit point case

(1) g, pg ′ ∈ ACloc(a, b), lg ∈ L2
w(a, b), k = lg,

(2) g1 = α1[g, u1](a) + β1[g, v1](a),
(3) k1 = α2[g, u1](a) + β2[g, v1](a),

hold and when b is of the limit circle case, in addition to (1), (2), and (3), the equality
(4) cosγ [g, u2](b) – sinγ [g, v2](b) = 0

holds.
For any f ∈ C∞

0 (a, b), F = (f , 0) ∈ D(A), then

(AF , G) =
∫ b

a
lf gw(x) dx =

∫ b

a
f (x)k(x)w(x) dx = (f , k)1
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by (AF , G) = (F , K). It follows from the classical Sturm–Liouville theory that (1) holds.
Hence

(AF , G) – (F , K)

=
∫ b

a
lf (x)g(x)w(x) dx +

1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
g1

–
∫ b

a
f (x)k(x)w(x) dx –

1
η

(
α1[f , u1](a) + β1[f , v1](a)

)
k1

=
∫ b

a
lf (x)g(x)w(x) dx +

1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
g1

–
∫ b

a
f (x)lg(x)w(x) dx –

1
η

(
α1[f , u1](a) + β1[f , v1](a)

)
k1

= [f , g]|ba +
1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
g1

–
1
η

(
α1[f , u1](a) + β1[f , v1](a)

)
k1 = 0. (2.1)

If b is of the limit point case, then [f , g](b) = 0. Thus

[f , g](a) =
1
η

(
α2[f , u1](a) + β2[f , v1](a)

)
g1 –

1
η

(
α1[f , u1](a) + β1[f , v1](a)

)
k1. (2.2)

It follows from [u1, v1](a) = 1 and Lemma 1(1) that

[f , g](a) = [f , g](a)[u1, v1](a) = [f , u1](a)[g, v1](a) – [f , v1](a)[g, u1](a). (2.3)

It follows from Lemma 1(3) that there exists a function f ∈ Dmax such that [f , u1](a) = 1,
[f , v1](a) = 0. Inserting these into (2.2) and (2.3) we have

α2g1 – α1k1 = η[g, v1](a).

Similarly we can obtain

β2g1 – β1k1 = –η[g, u1](a).

Thus

g1 = α1[g, u1](a) + β1[g, v1](a), k1 = α2[g, u1](a) + β2[g, v1](a).

Items (2) and (3) follow.
If b is of the limit circle case, then we can choose F ∈ D(A) such that f = 0 in the right

neighborhood of a and cosγ [f , u2](b) – sinγ [f , v2](b) = 0. Therefore [f , u1](a) = [f , v1](a) =
[f , g](a) = 0. Inserting these into (2.1), we can obtain

0 = [f , g](b) = [f , g](b)[u2, v2](b) = det

(
[f , u2](b) [f , v2](b)
[g, u2](b) [g, v2](b)

)

.



Zhang et al. Boundary Value Problems          (2020) 2020:6 Page 6 of 13

It follows that (4) holds. Choose f such that f = 0 in the left neighborhood of b and
[f , u1](a) = 0, [f , v1](a) = 1 or f = 0 in the left neighborhood of b and [f , u1](a) = 1,
[f , v1](a) = 0, similarly to the proof in the limit point case, we can conclude (2) and (3)
hold. �

Let

a < ar < a0 < b0 < br < b, r ∈N
+ = {1, 2, . . .}

and {ar} is a strictly decreasing sequence with ar → a and {br} is a strictly increasing
sequence with br → b. Define the Hilbert space

Hr = L2
w(ar , br) ⊕C

with the inner product

(Fr , Gr) = (f , g)1r +
1
η

f1rg1r ,

where

Fr = (f , f1r), Gr = (g, g1r) ∈ Hr , f , g ∈ L2
w(ar , br), (f , g)1r =

∫ br

ar

f (x)g(x)w(x) dx,

f1r = α1[f , u1](ar) + β1[f , v1](ar), g1r = α1[g, u1](ar) + β1[g, v1](ar).

Let the maximum domain and the minimum domain as follows:

Dr
max =

{
y ∈ L2

w(ar , br) : y, py′ ∈ AC(ar , br), ly ∈ L2
w(ar , br)

}
,

Dr
min =

{
y ∈ Dr

max : [y, z](ar) – [y, z](br) = 0, for all z ∈ Dr
max

}
.

Define an operator

ArFr =
(
lf ,α2[f , u1](ar) + β2[f , v1](ar)

)

for any Fr = (f , f1r) ∈ D(Ar). If the endpoint b is of the limit point case, then let the domain
of Ar be

D(Ar) =
{

Fr = (f , f1r) ∈ Hr : f ∈ Dr
max,

f1r = α1[f , u1](ar) + β1[f , v1](ar), [f ,ϕr](br) = 0
}

,

where ϕr ∈ Dr
max, ϕr /∈ Dr

min, [ϕr ,ϕr](br) = 0. In particular ϕr = ϕ|(b0,br) and ϕ can be chosen
to be any non-trivial real solution of (1.1) for some λ ∈R on (b0, b). If the endpoint b is of
the limit circle case, let

D(Ar) =
{

Fr = (f , f1r) ∈ Hr : f ∈ Dr
max, f1r = α1[f , u1](ar) + β1[f , v1](ar),

cosγ [f , u2](br) – sinγ [f , v2](br) = 0
}

.
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The operator Ar is usually called an inherited restriction operator. Then we have the fol-
lowing.

Theorem 2 The operator Ar defined as above is a self-adjoint operator in the Hilbert space
Hr for any r ∈N

+.

Proof It is obvious that Ar is densely defined. In the following we prove Ar is symmetric.
For any Fr , Gr ∈ D(Ar), then

(ArFr , Gr) – (Fr , ArGr) = [f , g]|br
ar + [f , g](ar)[u1, v1](ar).

Since [u1, v1](ar) = [u1, v1](a) = 1, thus

(ArFr , Gr) – (Fr , ArGr) = [f , g](br).

If the endpoint b is of the limit point case, then [f ,ϕ](br) = [g,ϕ](br) = 0. Thus

[f , g](br) = 0.

If b is of the limit circle case, then f , g satisfy

cosγ [f , u2](br) – sinγ [f , v2](br) = cosγ [g, u2](br) – sinγ [g, v2](br) = 0.

Together with [u2, v2](br) = [u2, v2](b) = 1, we can conclude that

[f , g](br) = [f , g](br)[u2, v2](br) = det

(
[f , u2](br) [f , v2](br)
[g, u2](br) [g, v2](br)

)

= 0.

Similarly to the proof of the self-adjointness of A in Theorem 1, the proof is completed. �

We define an operator A′
r in the space H as follows:

A′
r = Ar ⊕ Θr = ArPr

with the domain D(A′
r) = D(Ar) ⊕ H⊥

r , where Pr is the orthogonal projection of H onto Hr ,
Θ is the zero operator in the space H⊥

r = L2
w(a, ar) ⊕ L2

w(br , b). It is obvious that A′
r is also

a self-adjoint operator in the space H .

3 Convergence of operators and of spectrum
In this section we shall give the convergence of the inherited restriction operators and of
spectrum. Some fundamental concepts and lemmas are needed, which can be found in
[1, 10, 15, 18].

Definition 1 Let An, A be self-adjoint operators. Then An is said to converge to A in the
strong resolvent sense if (An – λI)–1 → (A – λI)–1 strongly for all λ with 
λ �= 0. An is said
to converge to A in the norm resolvent sense if (An – λI)–1 → (A – λI)–1 in norm for all λ

with 
λ �= 0.
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Definition 2 Let An be a sequence of operators on a Hilbert space H . We say that 〈ψ ,ϕ〉 ∈
H ×H is in the strong graph limit of An if we can find ψn ∈ D(An) so that ψn → ψ , Anψn →
ϕ. We denote the set of pairs in the strong graph limit by Γ s∞. If Γ s∞ is the graph of an
operator A we say that A is the strong graph limit of An.

Lemma 2 Suppose that An and A are self-adjoint operators. Then An is convergent to A in
the strong resolvent sense if and only if A is the strong graph limit of An.

In the following we can obtain the convergence in the strong resolvent sense, using the
method of the strong graph limit, which is different from that of the previous papers [1, 5,
22, 24].

Theorem 3 Suppose the operators A, Ar , A′
r are defined as above. Then

(1) A′
r is convergent to A in the strong resolvent sense;

(2) the spectral inclusion holds. That is to say, if λ ∈ σ (A), then there exists λr ∈ σ (A′
r) so

that λr → λ;
(3) let {E(Ar,λ)}, {E(A,λ)} with λ not an eigenvalue of A be spectral projection of the

operators Ar , A, respectively, and Pr be a unit projection from H to Hr . Then
E(Ar ,λ)Pr converges strongly to E(A,λ), i.e. for any f ∈ H , then

∥∥E(Ar ,λ)Prf – E(A,λ)f
∥∥ → 0.

Proof Firstly we prove that, for any

F = (f , f1) =
(
f ,α1[f , u1](a) + β1[f , v1](a)

) ∈ D(A),

there exists Fr = (fr ,α1[fr , u1](ar) + β1[fr , v1](ar)) ∈ D(A′
r) so that

Fr → F , A′
rFr → AF .

Indeed, we can let fr1 = f |x∈(a,b0) as x ∈ (a, b0). It follows from

[fr1, u1](ar) → [f , u1](a), [fr1, v1](ar) → [f , v1](a)

that

α1[fr1, u1](ar) + β1[fr1, v1](ar) → α1[f , u1](a) + β1[f , v1](a), (3.1)

α2[fr1, u1](ar) + β2[fr1, v1](ar) → α2[f , u1](a) + β2[f , v1](a). (3.2)

If the endpoint b is of the limit point case, we construct two operators Tr , T as follows:

D(Tr) =
{

y ∈ L2
w(b0, br) : y, py′ ∈ AC(b0, br), ly ∈ L2

w(b0, br),

f̃ (b0)
(
py′)(b0) –

(
pf̃ ′)(b0)y(b0) = 0, [y,ϕ](br) = 0

}
,

Try = Ay|(b0,br),
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D(T) =
{

y ∈ L2
w(b0, b) : y, py′ ∈ ACloc(b0, b), ly ∈ L2

w(b0, b),

f (b0)
(
py′)(b0) –

(
pf ′)(b0)y(b0) = 0

}
,

Ty = Ay|(b0,b).

Define an operator T ′
r in the space L2

w(b0, b) ⊕C as follows:

T ′
r = Tr ⊕ Θr = TrPr

with the domain D(T ′
r) = D(Tr) ⊕ L2

w(br , b). Obviously Tr and T are both self-adjoint op-
erators and T ′

r is convergent to T in the strong resolvent sense by Theorem 4.1 and The-
orem 6.1 of [1]. By Lemma 2, we can find that, for f |(b0,b) ∈ D(T), there exists a function
fr2 ∈ D(T ′

r) such that

fr2 → f |(b0,b), T ′
r fr2 → T f |(b0,b),

f |(b0,b)(b0) = fr2(b0),
(
p f ′|(b0,b)

)
(b0) =

(
p f ′

r2
)
(b0).

(3.3)

Let

fr =

⎧
⎨

⎩
fr1, x ∈ (a, b0),

fr2, x ∈ (b0, b).
(3.4)

Then by (3.1)–(3.4), we get Fr → F , A′
rFr → AF . Therefore the operator A′

r is convergent
to A in the strong resolvent sense by Lemma 2. When the endpoint b is of the limit circle
case, similar result can be obtained.

Items (2) and (3) follow from Theorem 3.6 in [1] and this completes the proof. �

As both endpoints are of the limit circle case, we have the following results.

Theorem 4 Suppose the operators Ar , A are defined as above and the endpoint b is of the
limit circle case. Then

(7) the operator A has only point spectrum, i.e. the eigenvalues of (1.1)–(1.3);
(2) the operator Ar has only point spectrum;
(3) (Ar – λI)–1Pr is convergent to (A – λI)–1 in norm for any λ with 
λ �= 0 and thus the

spectral exactness holds, That is to say, if Ar is spectral included and if any
limit-point of a sequence {λr ∈ σ (Ar)} belongs to σ (A);

(4) let {E(Ar,λ)}, {E(A,λ)} with λ not an eigenvalue of A be spectral projection of the
operators Ar , A, respectively, and Pr be a unit projection from H to Hr . Then
E(Ar ,λ)Pr converges to E(A,λ) not only strongly but in norm i.e.

∥∥E(Ar ,λ)Pr – E(A,λ)
∥∥ → 0;

(5) if the operator A is bounded below and denote by λn(Ar), λn(A) the eigenvalues of Ar ,
A with n ∈N = {0, 1, 2, . . .}, then λn(Ar) → λn(A) as r → ∞.
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Proof For any G = (g, g1) ∈ H , λ /∈ σp(A), consider the following equation AF = λF + G:

⎧
⎪⎪⎨

⎪⎪⎩

lf = λf + g,

α2[f , u1](a) + β2[f , v1](a) = λ(α1[f , u1](a) + β1[f , v1](a)) + g1,

cosγ [f , u2](b) – sinγ [f , v2](b) = 0.

Assume that φ(x,λ), ψ(x,λ) are two linearly independent solutions of ly = λy and satisfy

⎧
⎨

⎩
φ(c,λ) = 1,

(pφ′)(c,λ) = 0,

⎧
⎨

⎩
ψ(c,λ) = 0,

(pψ ′)(c,λ) = 1.

Using the variable of constant, we can obtain the solution of the equation lf = λf + g is

f (x) = φ(x,λ)
∫ x

c
ψ(ξ ,λ)g(ξ ) dξ – ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ + c̃1φ(x,λ) + c̃2ψ(x,λ).

Let

w11 = (α2 – λα1)[φ, u1](a) + (β2 – λβ1)[φ, v1](a),

w21 = cosγ [φ, u2](b) – sinγ [φ, v2](b),

w12 = (α2 – λα1)[ψ , u1](a) + (β2 – λβ1)[ψ , v1](a),

w22 = cosγ [ψ , u2](b) – sinγ [ψ , v2](b),

W (λ) = det

(
w11 w12

w21 w22

)

.

Then W (λ) = 0 if and only if λ is an eigenvalue of (1.1)–(1.3). Inserting f (x) into the two
boundary conditions, we have

c̃1 =
det(cij)2×2

W (λ)
, c̃2 =

det(dij)2×2

W (λ)
,

where

c11 = d12

= g1 – (α2 – λα1)
[
φ(x,λ)

∫ x

c
ψ(ξ ,λ)g(ξ ) dξ , u1

]
(a)

– (β2 – λβ1)
[
φ(x,λ)

∫ x

c
ψ(ξ ,λ)g(ξ ) dξ , v1

]
(a)

+ (α2 – λα1)
[
ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ , u1

]
(a)

+ (β2 – λβ1)
[
ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ , v1

]
(a),
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c21 = d22

= – cosγ

[
φ(x,λ)

∫ x

c
ψ(ξ ,λ)g(ξ ) dξ , u2

]
(b)

+ sinγ

[
φ(x,λ)

∫ x

c
ψ(ξ ,λ)g(ξ ) dξ , v2

]
(b)

+ cosγ

[
ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ , u2

]
(b)

– sinγ

[
ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ , v2

]
(b),

c12 = w12, c22 = w22, d11 = w11, d21 = w21.

Thus the equation AF = λF + G has a unique solution F ∈ D(A) and the operator A has
only point spectrum.

For any G = (g, g1) ∈ Hr , λ /∈ σp(Ar), consider the following equation ArF = λF + G:

⎧
⎪⎪⎨

⎪⎪⎩

lf = λf + g,

α2[f , u1](ar) + β2[f , v1](ar) = λ(α1[f , u1](ar) + β1[f , v1](ar)) + g1,

cosγ [f , u2](br) – sinγ [f , v2](br) = 0.

Using the variable of constant, we can obtain the solution of lf = λf + g :

f (x) = φ(x,λ)
∫ x

c
ψ(ξ ,λ)g(ξ ) dξ – ψ(x,λ)

∫ x

c
φ(ξ ,λ)g(ξ ) dξ + c̃1

r
φ(x,λ) + c̃2

r
ψ(x,λ).

Similarly to the above proof, Ar has only a point spectrum and c̃1
r → c̃1, c̃2

r → c̃2. Items
(3), (4) and (5) follow. �

As the endpoint a is of the limit circle case and b is of the limit point case, we can
construct special inherited restriction operators such that spectral exactness holds.

Theorem 5 Suppose the operator A is defined as above and {E(Ar,λ)}, {E(A,λ)}, Pr are
defined as in Theorem 4,

(1) The endpoint b is of the limit point case.
(2) The operator A is bounded below. If there exist finite eigenvalues below the essential

spectrum σe(A), let these eigenvalues be λn(A) with n = 0, 1, 2, . . . , n0. If there exist
infinite eigenvalues below σe(A), denote by λn(A) with n ∈N all the eigenvalues.

(3) The operator Ãr is defined as follows:

D(Ãr) =
{

Fr = (f , f1r) ∈ Hr : f , pf ′ ∈ AC(ar , br), lf ∈ L2
w(ar , br),

f1r = α1[f , u1](ar) + β1[f , v1](ar), f (br) = 0
}

,

ÃrFr = ArFr ;

let {E(Ãr,λ)}, {E(A,λ)} with λ not an eigenvalue of A be spectral projection of the
operators Ãr , A, respectively, and Pr be a unit projection from H to Hr .
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Then
(1) E(Ãr ,λ)Pr converges to E(A,λ) not only strongly but in norm.
(2) Spectral exactness holds and hence λn(Ãr) → λn(A), r → ∞.

Proof Define a Hilbert space Ĥr = L2
w(ar , b) and an operator Âr as follows:

D(Âr) =
{

Yr = (yr , y1r) ∈ Ĥr ⊕ C, yr , py′
r ∈ ACloc(ar , b),

lyr ∈ L2
w(ar , b), y1r = α1[yr , u1](ar) + β1[yr , v1](ar)

}
;

ÂrYr =
(
lyr ,α2[yr , u1](ar) + β2[yr , v1](ar)

)
.

Let λ ∈ C\R. Let ul be a solution of (1.1) on (a, b) which satisfies the boundary condition
(1.2). It is obvious that ul is unique up to a constant. Let ur be a solution of (1.1) lying
in L2

w(a, b). Since b is of the limit point case, then ur is also unique up to a constant. It
follows that ul , ur are two linearly independent functions and then we can choose suitable
constants such that W [ul, ur] = 1. Denote by R(s, t,λ), Rr(s, t,λ) the kernels of (A – λI)–1,
(Âr – λI)–1, then [18]

R(s, t,λ) – Rr(s, t,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

ul(s)ur(t), a < s < ar , s ≤ t < b,

–crur(s)ur(t), ar ≤ s < t < b, ar ≤ t < s < b,

ur(s)ul(t), a < t < ar , t < s < b.

By Theorem 3, (Âr – λI)–1Pr is strongly convergent to (A – λI)–1. Hence cr → 0 as r → ∞.
Thus (Âr – λI)–1Pr is convergent to (A – λI)–1 in norm and Âr is spectral exact for A.
Therefore as r is sufficiently large, for any λ below σe(A), we have

dim E(Âr ,λ) = dim E(A,λ) < +∞.

On the other hand, the closed form of Ãr is a restriction of Âr on (ar , br) and thus

dim E(Ãr ,λ) ≤ dim E(Âr ,λ) = dim E(A,λ) < +∞.

By Theorem 3, E(Ãr ,λ)Pr is strongly convergent to E(A,λ). Hence E(Ãr ,λ)Pr is convergent
to E(A,λ) in norm by Lemmas 1.23 and 1.24 in Chap. 8 of [10]. Item (2) follows. �
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