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Abstract
The multiplicity of homoclinic solutions is obtained for a class of the p-Laplacian
Hamiltonian systems d

dt (|u̇(t)|p–2u̇(t)) – a(t)|u(t)|p–2u(t) +∇W(t,u(t)) = 0 via variational
methods, where a(t) is neither coercive nor bounded necessarily andW(t,u) is under
new concave–convex conditions. Recent results in the literature are generalized even
for p = 2.

MSC: 34C37; 35A15; 35B38

Keywords: Homoclinic solutions; p-Laplacian operator; Variational methods

1 Introduction
Let us consider the p-Laplacian Hamiltonian systems

d
dt

(∣∣u̇(t)
∣∣p–2u̇(t)

)
– a(t)

∣∣u(t)
∣∣p–2u(t) + ∇W

(
t, u(t)

)
= 0, (1)

where t ∈ R, u ∈ R
N , p > 1, a ∈ C(R, [a0, +∞)) with a0 > 0 and W ∈ C1(R × R

N ,R). As
usual, we say that u is a nontrivial homoclinic solution (to 0) if u �≡ 0, u(t) and u̇(t) → 0 as
|t| → +∞.

If p ≡ 2 and a(t) = L(t), (1) reduces to the second order Hamiltonian system

ü(t) – L(t)u(t) + ∇W
(
t, u(t)

)
= 0,

where L ∈ C(R,RN2 ) is a symmetric and positive definite matrix for all t ∈ R. In the last
30 years, the existence and multiplicity of solutions for Hamiltonian systems or other dif-
ferential systems have been investigated in many papers via variational methods (see [1–
4, 9, 11, 14–18, 23]). It is well-known that homoclinic orbits play an important role in
analyzing the chaos of dynamical systems. Since the problem is considered on the whole
space, one of the difficulties to find the solutions of Hamiltonian systems is the lack of
compactness of the Sobolev embedding. To overcome this difficulty, L(t) and W (t, x) were
assumed to be periodic in t. Without periodicity, Rabinowitz and Tanaka [9] introduced
the following coercive condition:
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(L) there exists a continuous function α : R →R
+ satisfying

(
L(t)x, x

) ≥ α(t)|x|2 and α(t) → +∞ as |t| → +∞.

The operator d
dt (|u̇(t)|p–2u̇(t)) in (1) is said to be p-Laplacian. In the last decade there has

been an increasing interest in the study of ordinary differential systems driven by the p-
Laplacian. The existence and multiplicity of homoclinic orbits for the p-Laplacian Hamil-
tonian system were studied in recent papers [5–7, 10, 12, 13, 19, 20, 22] and the references
therein. Similarly, to overcome the lack of compactness of the Sobolev embedding, the
following coercive assumption on a was assumed in [5]:

(A) a is a positive continuous function such that

a(t) → +∞ as |t| → +∞.

It is clear that the coercive conditions are much restrictive. In a recent paper, Zhang et al.
[22] proved the existence of two nontrivial homoclinic solutions of problem (1) without
coercive conditions. They assumed that a is bounded, that is,

(A′) there are two constants τ1 and τ2 such that

0 < τ1 ≤ a(t) ≤ τ2 < +∞ for all t ∈R.

Besides, they considered the concave–convex nonlinearity, which is of the form

W (t, x) = W1(t, x) + W2(t, x),

where W1 is of super-p growth at infinity and W2 is of sub-p growth at infinity. Explicitly,
the authors supposed the following conditions:

(V1) there exists a constant ϑ > p such that

0 < ϑW1(t, x) ≤ (∇W1(t, x), x
)
, ∀(t, x) ∈R×R

N \ {0};

(V2) there exists a continuous function w : R →R
+ such that

lim|t|→+∞ w(t) = 0

and

∣
∣∇W1(t, x)

∣
∣ ≤ w(t)|x|ϑ–1 for all (t, x) ∈ R×R

N ;

(V3) W2(t, 0) = 0 for all t ∈ R, W2 ∈ C1(R × R
N ,R) and there exist a constant 1 < � < 2

and a continuous function b : R →R
+ such that

W2(t, x) ≥ b(t)|x|�

for all (t, x) ∈R×R
N ;
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(V4) for all t ∈R and x ∈R
N ,

∣
∣∇W2(t, x)

∣
∣ ≤ c(t)|u|�–1,

where c : R→ R
+ is a continuous function such that c ∈ Lξ (R,R) for some constant

1 ≤ ξ ≤ 2;
(V5)

(p‖c‖ξ C�

�ξ∗

�

ϑ – �

ϑ – p

)ϑ–p

<
(

ϑ

p‖ω‖∞Cϑ
ϑ

p – �

ϑ – �

)�–p

,

where ξ ∗ is the conjugate component of ξ .
Obviously, we can deduce from the conditions (V1) and (V2) that

(W0) there exist constants c1, c2 > 0 and μ > p such that

∣
∣∇W1(t, x)

∣
∣ ≤ c1|x|μ–1 + c2 for all (t, x) ∈R×R

N ;

(W1) ∇W1(t, x) = o(|x|p–1) as |x| → 0 uniformly in t;
(W2) W1(t, x)/|x|p → +∞ as |x| → +∞ uniformly in t;
(W3) there exists d1 > 0 such that W1(t, x) ≥ –d1|x|p for all (t, x) ∈R×R

N ;
(W4) there are constants ν > p and ρ0, d2 > 0 such that

(∇W1(t, x), x
)

– νW1(t, x) ≥ –d2|x|p, ∀t ∈R,∀|x| ≥ ρ0.

Motivated by the above facts, in this note, we try to drop both conditions (A) and (A′)
and consider the following conditions:

(A1)
∫
R

a(t)– q
p dt < +∞, where q is the conjugate component of p, that is, 1

p + 1
q = 1;

(A2) there exists a constant λ > q–1 such that

meas
(
t ∈R| |t|–λpa(t) < M

)
< +∞, ∀M > 0,

where meas(·) denotes the Lebesgue measure and q is the conjugate component of p.
Using conditions (A1) and (A2) separately, we prove some new compact embedding the-
orems and discuss the multiplicity of homoclinic solutions for problem (1) with weaker
combined nonlinearities. Now we state our main results.

Theorem 1 Suppose that W (t, x) = W1(t, x) + W2(t, x). Assume (A1), (W0)–(W4) and the
following conditions hold:

(W5) W2(t, 0) = 0 for all t ∈ R and there exist a constant 1 < θ < p and a continuous
function b : R →R

+ such that

W2(t, x) ≥ b(t)|x|θ

for all (t, x) ∈R×R
N ;

(W6) W2 ∈ C1(R×R
N ,R) and there exists a continuous function c : R →R

+ such that

∣
∣∇W2(t, x)

∣
∣ ≤ c(t)|x|θ–1,

where c ∈ Lζ (R,R) for some constant ζ > 1 and ‖c‖ζ is small enough;
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(W7) ζ ∗(θ – 1) ≥ p, where ζ ∗ is the conjugate component of ζ .
Then problem (1) possesses at least two nontrivial homoclinic solutions.

Remark 1 From Theorem 1, we see that the conditions related to the sup-p term W1 are
weaker than that in [22]. There are functions satisfying the conditions (W0)–(W4) but not
(V1) and (V2). Moreover, we can also give some examples of a not satisfying the conditions
(A) and (A′). For example, let

W1(t, x) =

⎧
⎨

⎩

–|x|4 + |x|3, |x| ≤ 4
5

(|x| – 4+4
1
3

5 )4 + 64–4
4
3

625 , |x| ≥ 4
5 ,

W2(t, x) =
ε

(1 + t2) 3
4

2|x| 3
2

3
,

and

a(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(n2 + 1)2(|t| – n) + c0, n ≤ |t| < n + 1
n2+1 ,

(n2 + 1) + c0, n + 1
n2+1 ≤ |t| < n + n2

n2+1 ,

(n2 + 1)2(n + 1 – |t|) + c0, n + n2

n2+1 ≤ |t| < n + 1,

where n ∈ N, c0 ∈ R. A straightforward computation shows that W1, W2 and a satisfy the
assumptions of Theorem 1 with p = 2, μ = 5, θ = 3

2 , ζ = 4
3 and ε > 0 small enough.

By replacing the condition (A1), we have the following theorem.

Theorem 2 Assume that W (t, x) = W1(t, x) + W2(t, x). Suppose that (A2) and (W0)–(W7)
hold, then problem (1) possesses at least two nontrivial homoclinic solutions.

Remark 2 There exist functions that satisfy the condition (A2) but do not satisfy the con-
ditions (A) and (A′), such as a(t) = t4sin2t + 1 with p = 2 and λ = 1. Thus Theorem 2 is
different from the previous results.

2 Proof of Theorem 1
First, we introduce the space in which we can construct the variational framework. Let

E =
{

u ∈ W 1,p(
R,RN)

:
∫

R

(∣∣u̇(t)
∣∣p + a(t)

∣∣u(t)
∣∣p)dt < +∞

}

with the norm

‖u‖ =
(∫

R

(∣∣u̇(t)
∣∣p + a(t)

∣∣u(t)
∣∣p)dt

) 1
p

.

Then E is a uniform convex Banach space. Denote by Lγ (R,RN ) (1 ≤ γ < +∞) the Banach
spaces of functions with the norms

‖u‖γ =
(∫

R

∣∣u(t)
∣∣γ dt

) 1
γ

,

and L∞(R,RN ) is the Banach space of essentially bounded functions under the norm

‖u‖∞ = ess sup
{∣∣u(t)

∣
∣ : t ∈ R

}
.
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Lemma 1 ([22]) The embedding E ↪→ Lγ (R,RN ) (p ≤ γ ≤ +∞) is continuous.

Lemma 2 Under the condition (A1), the embedding E ↪→ L1(R,RN ) is continuous and com-
pact.

Proof By (A1) and Hölder’s inequality, for all u ∈ E one has

∫

R

∣∣u(t)
∣∣dt =

∫

R

a(t)– 1
p a(t)

1
p
∣∣u(t)

∣∣dt

≤
(∫

R

a(t)– q
p dt

) 1
q
(∫

R

a(t)
∣
∣u(t)

∣
∣p dt

) 1
p

≤
(∫

R

a(t)– q
p dt

) 1
q
‖u‖,

which implies that the embedding is continuous.
Let {un} ⊂ E be a sequence such that un ⇀ 0 in E. By Banach–Steinhaus Theorem, there

exists M0 > 0 such that

sup
n∈N

‖un‖ ≤ M0.

Since the embedding is compact on bounded domain, it suffices to show that, for any ε > 0,
there exists r > 0 such that

∫

|t|>r

∣
∣un(t)

∣
∣dt < ε.

In fact, we have
∫

|t|>r

∣
∣un(t)

∣
∣dt ≤

∫

|t|>r
a(t)– 1

p a(t)
1
p
∣
∣un(t)

∣
∣dt

≤
(∫

|t|>r
a(t)– q

p dt
) 1

q
(∫

|t|>r
a(t)

∣
∣un(t)

∣
∣p dt

) 1
p

≤
(∫

|t|>r
a(t)– q

p dt
) 1

q
‖un‖

≤
(∫

|t|>r
a(t)– q

p dt
) 1

q
M0.

It follows from (A1) that this can be made arbitrarily small by choosing r large. Hence, we
get un → 0 in L1(R,RN ). �

Remark 3 From Lemma 1 and Lemma 2, for γ = 1 or p ≤ γ ≤ +∞, there exists Cγ > 0
such that

‖u‖γ ≤ Cγ ‖u‖, ∀u ∈ E. (2)

Lemma 3 Suppose that the conditions (A1) and (W1) hold, then we have ∇W1(t, un) →
∇W1(t, u) in Lq(R,RN ) if un ⇀ u in E.
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Proof Assume that un ⇀ u in E. By the Banach–Steinhaus theorem and (2), there exists
M1 > 0 such that

sup
n∈N

‖un‖∞ ≤ M1 and ‖u‖∞ ≤ M1. (3)

We can deduce from (W0), (W1) and (3) that there exists M2 > 0 such that

∣∣∇W1(t, un)
∣∣ ≤ M2

∣∣un(t)
∣∣p–1 and

∣∣∇W1(t, u)
∣∣ ≤ M2

∣∣u(t)
∣∣p–1,

which implies that

∣∣∇W1(t, un) – ∇W1(t, u)
∣∣ ≤ M2

(∣∣un(t)
∣∣p–1 +

∣∣u(t)
∣∣p–1)

≤ M2
[
2p–1(∣∣un(t) – u(t)

∣
∣p–1 +

∣
∣u(t)

∣
∣p–1) +

∣
∣u(t)

∣
∣p–1]

≤ M3
(∣∣un(t) – u(t)

∣∣p–1 +
∣∣u(t)

∣∣p–1), (4)

where M3 is a positive constant. By (2), (3), (4) and Lemma 2 one gets

∫

R

∣
∣∇W1(t, un) – ∇W1(t, u)

∣
∣q dt

≤ Mq
3

∫

R

(∣∣un(t) – u(t)
∣∣p–1 +

∣∣u(t)
∣∣p–1)q dt

≤ 2q–1Mq
3

∫

R

(∣∣un(t) – u(t)
∣∣p +

∣∣u(t)
∣∣p)dt

≤ 2q–1Mq
3‖un – u‖p–1

∞

∫

R

∣
∣un(t) – u(t)

∣
∣dt + 2q–1Mq

3‖u‖p
p

≤ 2q–1Mq
3(2M1)p–1

∫

R

∣∣un(t) – u(t)
∣∣dt + 2q–1Mq

3Cp
p‖u‖p

< +∞.

Using Lebesgue’s dominated convergence theorem, we can get the conclusion. �

The corresponding functional of (1) is defined by

I(u) =
∫

R

1
p
(∣∣u̇(t)

∣∣p + a(t)
∣∣u(t)

∣∣p)dt –
∫

R

W
(
t, u(t)

)
dt

=
1
p
‖u‖p –

∫

R

W
(
t, u(t)

)
dt. (5)

For convenience, let

J(u) =
∫

R

1
p
(∣∣u̇(t)

∣
∣p + a(t)

∣
∣u(t)

∣
∣p)dt,

Φ(u) =
∫

R

W1
(
t, u(t)

)
dt,

Ψ (u) =
∫

R

W2
(
t, u(t)

)
dt.
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Lemma 4
(i) J ∈ C1(E,R) and

〈
J ′(u), v

〉
=

∫

R

[∣∣u̇(t)
∣∣p–2(u̇(t), v̇(t)

)
+ a(t)

∣∣u(t)
∣∣p–2(u(t), v(t)

)]
dt, ∀u, v ∈ E.

(ii) Under the conditions of Theorem 1, I ∈ C1(E,R). Moreover, one has

〈
I ′(u), v

〉
=

∫

R

[∣∣u̇(t)
∣∣p–2(u̇(t), v̇(t)

)
+ a(t)

∣∣u(t)
∣∣p–2(u(t), v(t)

)

–
(∇W

(
t, u(t)

)
, v(t)

)]
dt, ∀u, v ∈ E. (6)

(iii) The critical points of I in E are homoclinic solutions of (1) with u(±∞) = u̇(±∞) = 0.

Proof Since it is routine to prove that (i) holds, we just need to prove (ii) and (iii). First, we
show I in (5) is well defined. By (W0) and (W1), for any ε > 0, there is Cε > 0 such that

∣
∣W1(t, x)

∣
∣ ≤ ε|x|p + Cε|x|μ, ∀(t, x) ∈R×R

N . (7)

Then by (2) and (7) one gets

∫

R

∣∣W1
(
t, u(t)

)∣∣dt ≤ ε

∫

R

∣∣u(t)
∣∣p dt + Cε

∫

R

∣∣u(t)
∣∣μ dt ≤ εCp

p‖u‖p + CεCμ
μ‖u‖μ < +∞.

Besides, by (2), (W6), (W7) and Hölder’s inequality we have

∫

R

∣
∣W2

(
t, u(t)

)∣∣dt ≤ 1
θ

∫

R

c(t)
∣
∣u(t)

∣
∣θ dt

≤ 1
θ
‖c‖ζ‖u‖θ

θζ∗

≤ Cθ
θζ∗

θ
‖c‖ζ ‖u‖θ < +∞. (8)

Therefore I is well defined. Next, we show that I ∈ C1(E,R). In view of (i), it is sufficient
to show that Φ ∈ C1(E,R) and Ψ ∈ C1(E,R). Let φ(u) be as follows:

φ(u)v =
∫

R

(∇W1
(
t, u(t)

)
, v(t)

)
dt, ∀v ∈ E. (9)

Obviously, φ(u) is linear. We show φ(u) is bounded in the following proof. By (2), (9), (W0)
and Hölder’s inequality, one has

∣∣φ(u)v
∣∣ ≤ c1

∫

R

∣∣u(t)
∣∣μ–1∣∣v(t)

∣∣dt + c2

∫

R

∣∣v(t)
∣∣dt

≤ c1

(∫

R

∣
∣u(t)

∣
∣(μ–1)μ∗

dt
) 1

μ∗ (∫ ∣
∣v(t)

∣
∣μ dt

) 1
μ

+ c2‖v‖1

≤ c1‖u‖
μ
μ∗
μ ‖v‖μ + c2C1‖v‖

≤ (
c1C

μ
μ∗ +1
μ ‖u‖ μ

μ∗ + c2C1
)‖v‖, (10)
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where μ∗ is the conjugate component of μ. It follows from (10) that φ(u) is bounded.
Subsequently, we show that Φ is of C1 class. For any u, v ∈ E, by the mean value theorem,
(W0) and Hölder’s inequality, one gets

∣∣
∣∣

∫

R

W1
(
t, u(t) + v(t)

)
dt –

∫

R

(W1
(
t, u(t)

)
dt

∣∣
∣∣

=
∣
∣∣∣

∫

R

(∇W1
(
t, u(t) + h(t)v(t), v(t)

)
dt

∣
∣∣∣

≤ c1

∫

R

∣
∣u(t) + h(t)v(t)

∣
∣μ–1∣∣v(t)

∣
∣dt + c2

∫

R

∣
∣v(t)

∣
∣dt

≤ c1‖u + hv‖
μ
μ∗
μ ‖v‖μ + c2C1‖v‖

≤ (
c1C

μ
μ∗ +1
μ ‖u + hv‖ μ

μ∗ + c2C1
)‖v‖, (11)

where h(t) ∈ (0, 1). Combining (10) and (11), we get

∫

R

W1
(
t, u(t) + v(t)

)
dt –

∫

R

W1
(
t, u(t)

)
dt –

∫

R

(∇W1
(
t, u(t)

)
, v(t)

)
dt → 0

as v → 0 in E, which shows

〈
Φ ′(u), v

〉
=

∫

R

(∇W1
(
u(t)

)
, v(t)

)
dt

for any u, v ∈ E. It remains to prove that Φ ′ is continuous. Assume that u → u0 in E and
note that

sup
‖v‖=1

∣
∣〈Φ ′(u), v

〉
–

〈
Φ ′(u0), v

〉∣∣

= sup
‖v‖=1

∣∣
∣∣

∫

R

(∇W1
(
t, u(t)

)
– ∇W1

(
t, u0(t)

)
, v(t)

)
dt

∣∣
∣∣

≤ sup
‖v‖=1

∥∥∇W1(t, u) – ∇W1(t, u0)
∥∥

q

(∫

R

∣∣v(t)
∣∣p dt

) 1
p

≤ sup
‖v‖=1

∥∥∇W1(t, u) – ∇W1(t, u0)
∥∥

q

(∫

R

∣∣v(t)
∣∣p dt

) 1
p

≤ Cp sup
‖v‖=1

∥∥∇W1(t, u) – ∇W1(t, u0)
∥∥

q.

Then, by Lemma 3, we have 〈Φ ′(u), v〉 → 〈Φ ′(u0), v〉 as ‖u‖ → ‖u0‖ uniformly with respect
to v, which shows that Φ ′ is continuous. Moreover, by (W6) and (W7) one has

∣
∣∣
∣

∫

R

(∇W2
(
t, u(t)

)
, v(t)

)
dt

∣
∣∣
∣ ≤

∫

R

c(t)
∣∣u(t)

∣∣θ–1∣∣v(t)
∣∣dt

≤ ‖u‖θ–1
ζ∗(θ–1)

(∫

R

cζ (t) dt
) 1

ζ ‖v‖∞
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for any u, v ∈ E. Similar to the above proof, we can see that

〈
Ψ ′(u), v

〉
=

∫

R

(∇W2
(
u(t)

)
, v(t)

)
dt

for any u, v ∈ E. Now we prove that Ψ ′ is continuous. Suppose that u → u0 in E. By (W6),
for any ε > 0, there exists T > 0 such that

(∫

|t|>T
cζ (t) dt

) 1
ζ

< ε. (12)

On account of the continuity of ∇W2(t, x) and u → u0 in L∞
loc(R,RN ), it follows that

∫

|t|≤T

(∇W2
(
t, u(t)

)
– ∇W2

(
t, u0(t)

)
, v(t)

)
dt < ε. (13)

By (12), (13), (W6), (W7) and Hölder’s inequality, one gets

sup
‖v‖=1

∣∣〈Ψ ′(u), v
〉
–

〈
Ψ ′(u0), v

〉∣∣

= sup
‖v‖=1

∣
∣∣∣

∫

R

(∇W2
(
t, u(t)

)
– ∇W2

(
t, u0(t)

)
, v(t)

)
dt

∣
∣∣∣

≤ sup
‖v‖=1

∣
∣∣∣

∫

|t|≤T

(∇W2
(
t, u(t)

)
– ∇W2

(
t, u0(t)

)
, v(t)

)
dt

∣
∣∣∣

+ sup
‖v‖=1

∣
∣∣∣

∫

|t|>T

(∇W2
(
t, u(t)

)
– ∇W2

(
t, u0(t)

)
, v(t)

)
dt

∣
∣∣∣

≤ ε + sup
‖v‖=1

∣∣
∣∣

∫

|t|>T
c(t)

(∣∣u(t)
∣
∣θ–1 +

∣
∣u0(t)

∣
∣θ–1)∣∣v(t)

∣
∣dt

∣∣
∣∣

≤ ε + C∞
(∫

|t|>T
cζ (t) dt

) 1
ζ (‖u‖θ–1

(θ–1)ζ∗ + ‖u0‖θ–1
(θ–1)ζ∗

)

≤ ε + εC∞
(‖u‖θ–1

(θ–1)ζ∗ + ‖u0‖θ–1
(θ–1)ζ∗

)
,

which shows that Ψ ′ is continuous. Thus (ii) holds.
Finally, similar to the proof of Lemma 3.1 in [21], one can check that (iii) holds. �

Subsequently, we display the useful critical points theorem.

Lemma 5 ([8]) Let E a real Banach space and I : E → R be a C1-smooth functional and
satisfy the (C) condition, that is, {un} has a convergent subsequence in E whenever {I(un)} is
bounded and ‖I ′(un)‖E∗ (1 + ‖un‖) → 0 as n → +∞. If I satisfies the following conditions:

(i) I(0) = 0;
(ii) there exist constants �,α > 0 such that I|∂B�(0) ≥ α;

(iii) there exists e ∈ E \ B̄�(0) such that I(e) ≤ 0,
where B�(0) is an open ball in E of radius � centered at 0, then I possesses a critical value
c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)

)
,
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where

Γ =
{

g ∈ C
(
[0, 1], E

)
: g(0) = 0, g(1) = e

}
.

Lemma 6 Assume that the conditions of Theorem 1 hold, then I satisfies the (C) condition.

Proof Suppose that {un} ⊂ E is a sequence such that {I(un)} is bounded and ‖I ′(un)‖E∗ (1 +
‖un‖) → 0 as n → +∞. Then there exists a constant M4 > 0 such that

∣
∣I(un)

∣
∣ ≤ M4,

∥
∥I ′(un)

∥
∥

E∗
(
1 + ‖un‖

) ≤ M4. (14)

Now we prove that {un} is bounded in E. Arguing in an indirect way, we assume that
‖un‖ → +∞ as n → +∞. Set zn = un

‖un‖ , then ‖zn‖ = 1, which implies that there exists a
subsequence of {zn}, still denoted by {zn}, such that zn ⇀ z0 in E. By (2), (5), (8) and (14),
we obtain

∣∣∣
∣

∫

R

W1(t, un)
‖un‖p dt –

1
p

∣∣∣
∣ =

∣∣∣
∣

I(un)
‖un‖p +

∫

R

W2(t, un)
‖un‖p dt

∣∣∣
∣

≤ M4

‖un‖p +
‖c‖ζ Cθ

θζ∗‖un‖θ

θ‖un‖p

→ 0 as n → +∞. (15)

In the following, we consider two opposite cases.
Case 1: z0 �≡ 0. Let Ω = {t ∈R||z0(t)| > 0}. Then we can see that meas(Ω) > 0, where meas

denotes the Lebesgue measure. Then there exists χ > 0 such that meas(Λ) > 0, where Λ =
Ω ∩ Pχ and Pχ = {t ∈R||t| ≤ χ}. Since ‖un‖ → +∞ as n → +∞, we have |un(t)| → +∞ as
n → +∞ for a.e. t ∈ Λ. By (W2), (W3) and Fatou’s lemma, one can get

lim
n→+∞

∫

R

W1(t, un(t))
‖un‖p dt

= lim
n→+∞

∫

Λ

W1(t, un(t))
‖un‖p dt + lim

n→+∞

∫

R\Λ
W1(t, un(t))

‖un‖p dt

≥ lim
n→+∞

∫

Λ

W1(t, un(t))
|un(t)|p

∣∣zn(t)
∣∣p dt – d1

∫

R\Λ

∣∣zn(t)
∣∣p dt

≥ lim
n→+∞

∫

Λ

W1(t, un(t))
|un(t)|p

∣∣zn(t)
∣∣p dt – d1Cp

p‖zn‖p

= +∞,

which contradicts (15). So ‖un‖ is bounded in this case.
Case 2: z0 ≡ 0. Set

W̃1(t, x) =
(∇W1(t, x), x

)
– νW1(t, x),

where ν is defined in (W4). From (W1), we can deduce that W̃1(t, x) = o(|x|p) as |x| → 0,
then there exists ρ1 ∈ (0,ρ0) such that

∣∣W̃1(t, x)
∣∣ ≤ |x|p (16)
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for all |x| ≤ ρ1, where ρ0 is defined in (W4). It follows from (6), (8), (14), (16), (W4) and
(W6) that

o(1) =
νM4 + M4

‖un‖p

≥ νI(un) – 〈I ′(un), un〉
‖un‖p

≥
(

ν

p
– 1

)
+

1
‖un‖p

∫

R

W̃1
(
t, un(t)

)
dt –

ν + θ

θ‖un‖p ‖c‖ζ Cθ
θζ∗‖un‖θ

≥
(

ν

p
– 1

)
+

1
‖un‖p

∫

|un|≤ρ1

W̃1
(
t, un(t)

)
dt +

1
‖un‖p

∫

ρ1<|un|≤ρ0

W̃1
(
t, un(t)

)
dt

+
1

‖un‖p

∫

|un|>ρ0

W̃1
(
t, un(t)

)
dt – o(1)

≥
(

ν

p
– 1

)
–

1
‖un‖p

(∫

|un|≤ρ1

∣∣un(t)
∣∣p dt + d2

∫

|un|>ρ0

∣∣un(t)
∣∣p dt

)

–
maxρ1<|x|≤ρ0 |W̃1(t, x)|

ρ
p
1

∫

ρ1<|un|≤ρ0

|un(t)|p
‖un‖p dt – o(1)

≥
(

ν

p
– 1

)
–

(
1 + d2 +

maxρ1<|x|≤ρ0 |W̃1(t, x)|
ρ

p
1

)∫

R

∣∣zn(t)
∣∣p dt – o(1)

→ ν

p
– 1 as n → +∞,

which is a contradiction. Therefore, ‖un‖ is bounded.
Going if necessary to a subsequence, we can assume that un ⇀ u in E, which yields

〈
I ′(un) – I ′(u), un – u

〉
= ‖un – u‖p

–
∫

R

(∇W1
(
t, un(t)

)
– ∇W1

(
t, u(t)

)
, un(t) – u(t)

)
dt

–
∫

R

(∇W2
(
t, un(t)

)
– ∇W2

(
t, u(t)

)
, un(t) – u(t)

)
dt

→ 0 as n → +∞. (17)

It follows from (2), (W0) and Lemma 2 that
∫

R

(∇W1
(
t, un(t)

)
– ∇W1

(
t, u(t)

)
, un(t) – u(t)

)
dt

≤
∫

R

(
c1

∣
∣un(t)

∣
∣μ–1 + c1

∣
∣u(t)

∣
∣μ–1 + 2c2

)∣∣un(t) – u(t)
∣
∣dt

≤ (
c1Cμ–1

∞ ‖un‖μ–1 + c1Cμ–1
∞ ‖u‖μ–1 + 2c2

)‖un – u‖1

→ 0 as n → +∞. (18)

On account of the continuity of ∇W2(t, x) and un → u in L∞
loc(R,RN ), there exists n0 ∈ N

such that
∫

|t|≤T

(∇W2
(
t, un(t)

)
– ∇W2

(
t, u(t)

)
, un(t) – u(t)

)
dt < ε, ∀n ≥ n0, (19)
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where T is defined in (12). In addition, by (12), (W7) and Hölder’s inequality, we have

∫

|t|>T

(∇W2
(
t, un(t)

)
– ∇W2

(
t, u(t)

)
, un(t) – u(t)

)
dt

≤
∫

|t|>T
c(t)

(∣∣un(t)
∣∣θ–1 +

∣∣u(t)
∣∣θ–1)∣∣un(t) – u(t)

∣∣dt

≤ ‖un – u‖∞
(∫

|t|>T
cζ (t) dt

) 1
ζ (‖un‖θ–1

ζ∗(θ–1) + ‖u‖θ–1
ζ∗(θ–1)

)

≤ ε‖un – u‖∞
(‖un‖θ–1

ζ∗(θ–1) + ‖u‖θ–1
ζ∗(θ–1)

)
. (20)

Hence, by (17)–(20) we conclude that ‖un – u‖ → 0 as n → +∞, which means that the (C)
condition is fulfilled. �

Lemma 7 Suppose that the conditions of Theorem 1 hold, then there exist �1, α1 > 0 such
that I|∂B�1

≥ α1, where B�1 = {u ∈ E : ‖u‖ ≤ �1}.

Proof In view of (7) and (8), for any u ∈ E and 0 < ε < (pCp
p)–1, we have

I(u) =
1
p
‖u‖p –

∫

R

W1(t, u) dt –
∫

R

W2(t, u) dt

≥ 1
p
‖u‖p – ε

∫

R

|u|p dt – Cε

∫

R

|u|μ dt –
Cθ

θζ∗

θ
‖c‖ζ ‖u‖θ

≥ 1
p
‖u‖p – εCp

p‖u‖p – CεCμ
μ‖u‖μ –

Cθ
θζ∗

θ
‖c‖ζ ‖u‖θ

≥
(

1
p

– εCp
p

)
‖u‖p – CεCμ

μ‖u‖μ –
Cθ

θζ∗

θ
‖c‖ζ ‖u‖θ ,

which combined with (W6) implies that there exist positive constants �1 and α1 such that
I|∂B�1

≥ α1. �

Lemma 8 Assume that the conditions of Theorem 1 hold, then there exists v1 ∈ E such that
‖v1‖ > �1 and I(v1) ≤ 0, where �1 is defined in Lemma 7.

Proof We choose v0 ∈ C∞
0 ([–1, 1],RN ) such that ‖v0‖ = 1. For β > (p

∫ 1
–1 |v0(t)|p dt)–1, it

follows from (W2) that there exists τ > 0 such that

W (t, x) ≥ β|x|p

for all |x| ≥ τ . By (W3), we get

W (t, x) ≥ β
(|x|p – τ p) – d1τ

p (21)
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for all (t, x) ∈R×R
N . For η > 0, by (21) and (W5) we have

I(ηv0) =
ηp

p
–

∫ 1

–1
W1

(
t,ηv0(t)

)
dt –

∫ 1

–1
W2

(
t,ηv0(t)

)
dt

≤ ηp

p
–

∫ 1

–1
W1

(
t,ηv0(t)

)
dt

≤ ηp

p
–

∫ 1

–1
β
∣
∣ηv0(t)

∣
∣p dt + β

∫ 1

–1
τ p dt + d1

∫ 1

–1
τ p dt

≤
(

1
p

– β

∫ 1

–1

∣∣v0(t)
∣∣p dt

)
ηp + 2βτ p + 2d1τ

p,

which implies that

I(ηv0) → –∞ as η → +∞.

Therefore, there exists η0 > 0 such that I(η0v0) < 0. Let v1 = η0v0, we can see I(v1) < 0,
which proves this lemma. �

Proof of Theorem 1 By Lemmas 4–8, we can see that I possesses at least one nontrivial
critical point. Then the critical point is the first homoclinic solution to (1). To get the sec-
ond solution, we just need to prove that infu∈B�1

I(u) < 0, where B�1 is defined in Lemma 7.
We choose v2 ∈ C∞

0 ([–1, 1],RN ) \ {0}. Then, by (W3) and (W5), for any l > 0 we get

I(lv2) =
lp

p
‖v2‖p –

∫ 1

–1
W1

(
t, lv2(t)

)
dt –

∫ 1

–1
W2

(
t, lv2(t)

)
dt

≤ lp

p
‖v2‖p + d1lp

∫ 1

–1

∣
∣v2(t)

∣
∣p dt – lθ

∫ 1

–1
b(t)

∣
∣v2(t)

∣
∣θ dt

≤ lp

p
‖v2‖p + d1lp

∫ 1

–1

∣∣v2(t)
∣∣p dt – lθ

(
min

t∈[–1,1]
b(t)

)∫ 1

–1

∣∣v2(t)
∣∣θ dt

< 0

for l small enough, which implies that δ1 = infu∈B�1
I(u) < 0. Then it follows from Ekeland’s

variational principle that there exists a minimizing sequence {vn} ⊂ B�1 such that

δ1 ≤ I(vn) < δ1 +
1
n

and I(u) ≥ I(vn) –
1
n

‖u – vn‖ for u ∈ B�1 .

Thus, {vn} is a bounded (PS) sequence, which means that it is also a (C) sequence. Then
from Lemma 6, there exists u1 ∈ E such that I ′(u1) = 0 and I(u1) < 0. In conclusion, prob-
lem (1) possesses at least two nontrivial homoclinic solutions. �

3 Proof of Theorem 2
In this section, we still work in the Banach space

E =
{

u ∈ W 1,p(
R,RN)

:
∫

R

(∣∣u̇(t)
∣
∣p + a(t)

∣
∣u(t)

∣
∣p)dt < +∞

}
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with the norm

‖u‖ =
(∫

R

(∣∣u̇(t)
∣∣p + a(t)

∣∣u(t)
∣∣p)dt

) 1
p

.

Lemma 9 Suppose that the condition (A2) holds, the embedding E ↪→ L1(R,RN ) is contin-
uous and compact.

Proof Assume that {un} ⊂ E such that un ⇀ 0 in E. We will show that un → 0 in L1(R,RN ).
By the Banach–Steinhaus theorem, there exists M5 > 0 such that

sup
n∈N

‖un‖ ≤ M5.

For any ε > 0, by condition (A2) there is r0 > 0 such that

meas Bε < ε,

where

Bε =
{

t ∈ R \ (–r0, r0)| |t|–λpa(t) < ε–1}.

Let

Dε = R \ (
(–r0, r0) ∪ Bε

)
,

με = inf
t∈Dε

|t|–λpa(t),

then 1
με

≤ ε. On the one hand, one has

∫

|t|≥r0

|un|dt =
∫

Bε

|un|dt +
∫

Dε

|un|dt

≤ ‖un‖∞ · meas Bε +
∫

Dε

|t|λ|un||t|–λ dt

≤ εC∞M5 +
(∫

Dε

|t|λp|un|p dt
) 1

p
(∫

|t|≥r0

|t|–λq dt
) 1

q

≤ εC∞M5 + δ2μ
– 1

p
ε

(∫

Dε

a(t)|un|p dt
) 1

p

≤ εC∞M5 + ε
1
p δ2M5, (22)

where δ2 = (
∫
|t|≥r0

|t|–λq dt)
1
q . On the other hand, it follows from the Sobolev compact

embedding theorem that un → 0 in L1((–r0, r0),RN ). Therefore, the embedding E ↪→
L1(R,RN ) is compact.

Now for ε = 1, by (22) we have
∫

|t|≥r0

|u|dt ≤ C∞‖u‖ + δ2‖u‖ = (C∞ + δ2)‖u‖, ∀u ∈ E,

which implies that the embedding is also continuous. �
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Proof of Theorem 2 By similar steps to the proof of Theorem 1, we can obtain the conclu-
sion of Theorem 2. �
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