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Abstract
In this article, for an elliptic equation with varying coefficients, we first derive an
interpolation fundamental estimate for the P2(x, y)⊗P2(z) pentahedral finite element
over uniform partitions of the domain. Then combined with the estimate for the
W2,1-seminorm of the discrete Green function, superconvergence of the function
value between the finite element approximation and the corresponding interpolant
to the true solution is given.
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1 Introduction and preliminaries
Superconvergence is a phenomenon in numerical methods that refers to faster than nor-
mal convergence for the approximate solutions arising from numerical procedures, and
it was first addressed in [1]. The term “superconvergence” was first used in [2]. Since
then, it has become an actively researched topic in the domain of finite element meth-
ods. So far, numerous studies on superconvergence have been published. For one- and
two-dimensions, superconvergence has been extensively investigated. For three and more
dimensions, studies on superconvergence are progressing at a slow rate. Recently, we fo-
cused on superconvergence of the finite element method for three-dimensional problems,
and we found that there have been some studies concerning it. Some books and survey
papers have also been published. We refer to [3–25] and the references therein. In gen-
eral, according to the domain partition, there usually exist three types of finite elements
for three-dimensional problems, namely tetrahedral elements, pentahedral elements, and
block elements. In this paper, we only consider the pentahedral elements. To the best of
our knowledge, superconvergence of pentahedral elements (or prismatic elements) has
been investigated in [7, 14, 15, 20, 24]. Of these studies, [7] considered superconvergence
of pentahedral elements for the elliptic equation with constant coefficients. The study [15]
is concerned with superconvergence for the Poisson equation, and demonstrated accu-
racy of the order O(h4| ln h| 2

3 ) in terms of L∞-norm for the value of the function between
the P2(x, y) ⊗P2(z) pentahedral finite element approximation and the corresponding in-
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terpolant. In this paper, we will generalize the results in [7] and [15] to general elliptic
equations with varying coefficients.

Additionally, we will use the symbol C to denote a generic constant, which is inde-
pendent of the discretization parameters hxy and hz and which may not be the same for
each occurrence. We will also use the standard notations for the Sobolev spaces and their
norms.

The model problem considered in the article is as follows:

Lu ≡ –
3∑

i,j=1

∂j(aij∂iu) +
3∑

i=1

ai∂iu + a0u = f in Ω , u = 0 on ∂Ω . (1.1)

Here, Ω = Ωxy ×Ωz ≡ (0, 1)2 × (0, 1) ⊂R3 is the unit cube with boundary, ∂Ω , comprising
faces parallel to the x-, y-, and z-axes. The diffusion coefficients aij satisfy the following
condition:

There exists a positive constant C such that, for all X ∈ Ω , we have

3∑

i,j=1

aij(X)ηiηj ≥ C
3∑

i=1

η2
i ∀η = (η1,η2,η3)	 ∈R3.

In addition, we also assume aij, ai ∈ W 1,∞(Ω), a0 ∈ L∞(Ω), f ∈ L2(Ω), a0 ≥ 0, and write
∂1u = ∂u

∂x , ∂2u = ∂u
∂y , and ∂3u = ∂u

∂z .
Thus, the weak formulation of (1.1) is as follows:

⎧
⎨

⎩
Find u ∈ H1

0 (Ω) satisfying

a(u, v) = (f , v) ∀v ∈ H1
0 (Ω),

(1.2)

where

a(u, v) =
∫

Ω

( 3∑

i,j=1

aij∂iu∂jv +
3∑

i=1

ai∂iuv + a0uv

)
dx dy dz

and

(f , v) =
∫

Ω

fv dx dy dz.

To provide the discrete formulation of (1.2), we should first partition the domain Ω . De-
note by {T h} a uniform family of pentahedral partitions, and thus, Ω̄ =

⋃
e∈T h ē. Therefore,

we can write ē = D × L (see Fig. 1), where D and L are closed, and denote an isosceles right
triangle with legs hxy parallel to the xy-plane and a one-dimensional interval with length
hz parallel to the z-axis, respectively. We assume that there exist two positive constants C1

and C2 such that C1 ≤ hz
hxy

≤ C2.
We introduce an P2(x, y) ⊗P2(z) polynomial space denoted by P , that is,

q(x, y, z) =
∑

(i,j,k)∈I
aijkxiyjzk , aijk ∈R, q ∈P ≡P2(x, y) ⊗P2(z),



Liu and Zhu Boundary Value Problems          (2020) 2020:7 Page 3 of 15

�
�
�

�
��

�

��
�
�
�

�
���

x

y

z

hxy

hxy

hz

L

D

�

�

�

�

� �

� �

�

�

�

��

�

�

�

��

Figure 1 An P2(x, y)⊗P2(z) pentahedral element and interpolation nodes

where P2(x, y) denotes the quadratic polynomial space with respect to (x, y), and P2(z) is
the quadratic polynomial space with respect to z. The indexing set I satisfies

I =
{

(i, j, k)|i, j, k ≥ 0, i + j ≤ 2, k ≤ 2
}

.

An P2(x, y) ⊗P2(z) interpolation operator is defined by Π e : H1(ē) ∩ C(ē) → P(ē). Ob-
viously,

Π e = Π e
xy ⊗ Π e

z ,

where Π e
xy stands for the Lagrange quadratic interpolation operator with respect to (x, y) ∈

D, and Π e
z stands for the Lagrange quadratic interpolation operator or the quadratic in-

terpolation operator of projection type with respect to z ∈ L.
Furthermore, the P2(x, y) ⊗P2(z) pentahedral finite element space is defined as follows:

Sh
0(Ω) =

{
v ∈ H1

0 (Ω) ∩ C(Ω) : v|e ∈P(e) ∀e ∈ T h}.

Thus, the finite element method of (1.2) is

⎧
⎨

⎩
Find uh ∈ Sh

0(Ω) satisfying

a(uh, v) = (f , v) ∀v ∈ Sh
0(Ω).

(1.3)
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From (1.2) and (1.3), the following Galerkin orthogonal relation holds:

a(u – uh, v) = 0 ∀v ∈ Sh
0(Ω). (1.4)

In addition, from the definitions of Π e and Sh
0(Ω), we can define a global P2(x, y) ⊗

P2(z) interpolation operator Π : H1
0 (Ω) ∩ C(Ω) → Sh

0(Ω) such that (Πu)|e = Π eu. In next
section, we will bound the term a(u – Πu, v).

2 An important interpolation fundamental estimate
Lemma 2.1 Let {T h} be a uniform family of pentahedral partitions of Ω , u ∈ W 5,∞(Ω) ∩
H1

0 (Ω), and v ∈ Sh
0(Ω). Subsequently, the interpolation operator Π satisfies the following

interpolation fundamental estimate:

∣∣a(u – Πu, v)
∣∣ ≤ C

(
h4

xy + h4
z
)‖u‖5,∞,Ω |v|h2,1,Ω , (2.1)

where |v|h2,1,Ω =
∑

e∈T h |v|2,1,e.

Proof Clearly, the interpolation remainder is

u – Πu = (u – Πxyu) + (u – Πzu) +
(
Πxy(u – Πzu) – (u – Πzu)

)

= Rxy + Rz + R∗, (2.2)

where (Πxyu)|e = Π e
xyu, (Πzu)|e = Π e

z u, and R∗ is a high-order term. Thus, it suffices to
analyze Rxy and Rz . We first have the bound

a(Rxy, v) =
∫

Ω

( 3∑

i,j=1

aij∂iRxy∂jv +
3∑

i=1

ai∂iRxyv + a0Rxyv

)
dx dy dz. (2.3)

We set

I1 =
∫

Ω

( 2∑

i,j=1

aij∂iRxy∂jv +
2∑

i=1

ai∂iRxyv + a0Rxyv

)
dx dy dz, (2.4)

I2 =
∫

Ω

( 2∑

j=1

a3j∂3Rxy∂jv + a3∂3Rxyv

)
dx dy dz, (2.5)

I3 =
∫

Ω

2∑

i=1

ai3∂iRxy∂3v dx dy dz, (2.6)

I4 =
∫

Ω

a33∂3Rxy∂3v dx dy dz. (2.7)

Clearly,

a(Rxy, v) = I1 + I2 + I3 + I4. (2.8)
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By the two-dimensional interpolation fundamental estimate of triangular quadratic ele-
ments [26], we have

|I1| ≤ Ch4
xy

∫

Ωz

‖u‖4,∞,Ωxy |v|h2,1,Ωxy dz ≤ Ch4
xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.9)

As for I2, by Green’s formula, we have

I2 =
∫

Ω

(
–

2∑

j=1

a3j∂j∂3Rxyv + (a3 – ∂1a31 – ∂2a32)∂3Rxyv

)
dx dy dz.

Obviously, ∂3Rxy = ∂3u –Πxy∂3u. Thus, by the two-dimensional interpolation fundamental
estimate of triangular quadratic elements [26], we have

|I2| ≤ Ch4
xy

∫

Ωz

‖∂3u‖4,∞,Ωxy |v|h2,1,Ωxy dz ≤ Ch4
xy‖u‖5,∞,Ω |v|h2,1,Ω . (2.10)

As for I3, we first bound the integral

∫

Ω

a13∂1Rxy∂3v dx dy dz.

By Green’s formula and v = 0 on ∂Ω , we get

∫

Ω

a13∂1Rxy∂3v dx dy dz

=
∫

Ωz

∑

D

(∫

D
a13∂1Rxy∂3v dx dy

)
dz

=
∫

Ωz

∑

D

(∫

∂D
a13Rxy∂3v dy

)
dz –

∫

Ωz

∑

D

(∫

D
Rxy∂1(a13∂3v) dx dy

)
dz

=
∫

Ωz×∂Ωxy

a13Rxy∂3v dy dz –
∫

Ω

Rxy∂1(a13∂3v) dx dy dz

= –
∫

Ω

∂1a13Rxy∂3v dx dy dz –
∫

Ω

a13Rxy∂1∂3v dx dy dz

= K1 + K2.

Let Sh
0,2(Ωxy) be the triangular quadratic finite element space in the domain Ωxy, and

{ψj} be the basis of this space. Obviously, the support Sj of ψj is a patch of elements that
share an internal edge or internal node. Moreover, because the partition of the domain is
uniform, each Sj is point-symmetric. Subsequently, for all cubic polynomials p3 on Sj, we
have

∫

Sj

(p3 – Πxyp3)ψj dx dy = 0. (2.11)

The proof of (2.11) is similar to Lemma 3.2 in [5].
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As v ∈ Sh
0(Ω), ∂3v ∈ Sh

0,2(Ωxy). Thus, ∂3v =
∑

j αj(z)ψj(x, y) ≡ ∑
j αjψj. To bound the term

K1, we also assume ∂1a13 ∈ W 1,∞(Ω). Then

∂1a13(Q) = ∂1a13(Q0) + O(hxy) ≡ a0
13 + O(hxy) ∀Q ∈ Sj, (2.12)

where Q0 is the center of Sj. Thus, by (2.11) and (2.12), we have

|K1| =
∣∣∣∣
∫

Ω

∂1a13(u – Πxyu)∂3v dx dy dz
∣∣∣∣

≤
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

(
a0

13 + O(hxy)
)
(u – Πxyu)ψj dx dy

∣∣∣∣dz

≤
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

a0
13

(
u – p3 – Πxy(u – p3)

)
ψj dx dy

∣∣∣∣dz

+
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

O(hxy)(u – Πxyu)ψj dx dy
∣∣∣∣dz

= K ′
1 + K ′′

1 .

Similar to the arguments in [15], we may obtain
∑

j |αj| ≤ C(z)h–2
xy |v|h2,1,Ωxy . Therefore, we

obtain

K ′
1 ≤ Ch4

xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.13)

Furthermore, we easily obtain

K ′′
1 ≤ Ch4

xy‖u‖3,∞,Ω |v|h2,1,Ω . (2.14)

From (2.13) and (2.14),

|K1| ≤ Ch4
xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.15)

Let Sh
0,2(Ωz) be the quadratic finite element space in Ωz , and {φi} be basis of this space.

Clearly, Sh
0(Ω) = Sh

0,2(Ωz)⊗Sh
0,2(Ωxy). Thus, for v ∈ Sh

0(Ω), we have v =
∑

i,j v(xj, yj, zi)φi(z)×
ψj(x, y) ≡ ∑

i,j vijφiψj, and ∂1∂3v =
∑

i,j vij∂3φi∂1ψj. Note that the support Sij of φiψj is a
patch of elements that share an internal node, an edge, or a face. Moreover, as the partition
of the domain is uniform, each Sij is point-symmetric. Thus, similar to (2.11), we have for
all cubic polynomials p̃3 on Sij

∫

Sij

(p̃3 – Πxyp̃3)∂3φi∂1ψj dx dy dz = 0. (2.16)

Similar to (2.12), we have

a13
(
Q∗) = a13

(
Q∗

0
)

+ O(hxy) ≡ a′
13 + O(hxy) ∀Q∗ ∈ Sij, (2.17)
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where Q∗
0 is the center of Sij. Hence, by (2.16) and (2.17), we get

|K2| =
∣∣∣∣
∫

Ω

a13(u – Πxyu)∂1∂3v dx dy dz
∣∣∣∣

≤
∑

i,j

|vij|
∣∣∣∣
∫

Sij

(
a′

13 + O(hxy)
)
(u – Πxyu)∂3φi∂1ψj dx dy dz

∣∣∣∣

≤
∑

i,j

|vij|
∣∣∣∣
∫

Sij

a′
13

(
u – p̃3 – Πxy(u – p̃3)

)
∂3φi∂1ψj dx dy dz

∣∣∣∣

+
∑

i,j

|vij|
∣∣∣∣
∫

Sij

O(hxy)(u – Πxyu)∂3φi∂1ψj dx dy dz
∣∣∣∣

= K ′
2 + K ′′

2 .

For simplicity, we write

Mij =
∣∣∣∣
∫

Sij

a′
13

(
u – p̃3 – Πxy(u – p̃3)

)
∂3φi∂1ψj dx dy dz

∣∣∣∣. (2.18)

Thus,

K ′
2 =

∑

i,j

|vij||∂3φi∂1ψj|0,1,ΩMij|∂3φi∂1ψj|–1
0,1,Ω . (2.19)

Clearly,

Mij ≤ Ch3
xy‖u – p̃3‖3,∞,Sij |∂3φi∂1ψj|0,1,Ω . (2.20)

Taking p̃3 a three-degree interpolant to u on Sij in (2.20), we have

Mij ≤ Ch4
xy‖u‖4,∞,Ω |∂3φi∂1ψj|0,1,Ω . (2.21)

To obtain the desired result, we need to introduce an affine transformation defined by
F : P̂ ∈ ê −→ P = BP̂ + b ∈ e such that e = F(ê), where B = (bij) is a matrix of order 3 × 3. For
all ϕ ∈ L2(e), we write ϕ̂(P̂) = ϕ(FP̂). The usual transformation rules between the element
e and the reference element ê (see [5, 26], and [27]) tell us that there exists a constant C
independent of the mesh parameters such that

|ϕ̂|0,1,ê ≤ C|det B|–1|ϕ|0,1,e and |ϕ|0,1,e ≤ C|det B||ϕ̂|0,1,ê, (2.22)

In addition, we set w = ∂1∂3v =
∑

i,j vij∂3φi∂1ψj. It is easy to prove that

3∑

i=1

6∑

j=1

|vij||∂3φi∂1ψj|0,1,e

is a seminorm of w on e. Using the rightmost rule from (2.22), we find that

3∑

i=1

6∑

j=1

|vij||∂3φi∂1ψj|0,1,e ≤ C|det B|
3∑

i=1

6∑

j=1

|vij|| ˆ∂3φi ˆ∂1ψj|0,1,ê. (2.23)
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By the equivalence of norms in the finite-dimensional space, there also exists a constant
C, depending only on the reference element ê, such that

3∑

i=1

6∑

j=1

|vij|| ˆ∂3φi ˆ∂1ψj|0,1,ê ≤ C|ŵ|0,1,ê. (2.24)

Using the left rule from (2.22), we get

|ŵ|0,1,ê ≤ C|det B|–1|w|0,1,e. (2.25)

Combining (2.23)–(2.25) yields

3∑

i=1

6∑

j=1

|vij||∂3φi∂1ψj|0,1,e ≤ C|w|0,1,e.

Summing over all e in T h results in

∑

i,j

|vij||∂3φi∂1ψj|0,1,Ω ≤ C|w|h0,1,Ω ≤ C|v|h2,1,Ω . (2.26)

Combining (2.19), (2.21), and (2.26) yields

K ′
2 ≤ Ch4

xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.27)

Similar to the arguments mentioned above, we also get

K ′′
2 ≤ Ch4

xy‖u‖3,∞,Ω |v|h2,1,Ω . (2.28)

From (2.27) and (2.28),

|K2| ≤ Ch4
xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.29)

Thus, by (2.15) and (2.29), we have

∣∣∣∣
∫

Ω

a13∂1Rxy∂3v dx dy dz
∣∣∣∣ ≤ |K1| + |K2| ≤ Ch4

xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.30)

Similar to the proof of (2.30), we have

∣∣∣∣
∫

Ω

a23∂2Rxy∂3v dx dy dz
∣∣∣∣ ≤ Ch4

xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.31)

Combining (2.6), (2.30), and (2.31), we get

|I3| ≤ Ch4
xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.32)
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As for I4, we write a33(Q) = a33(Q0) + O(hxy) ≡ a0
33 + O(hxy) ∀Q ∈ Sj, and ∂3v =

∑
j αjψj.

Thus,

|I4| =
∣∣∣∣
∫

Ω

a33∂3Rxy
∑

j

αjψj dx dy dz
∣∣∣∣

≤
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

a33∂3Rxyψj dx dy
∣∣∣∣dz

≤
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

a0
33

(
∂3u – p3 – Πxy(∂3u – p3)

)
ψj dx dy

∣∣∣∣dz

+
∫

Ωz

∑

j

|αj|
∣∣∣∣
∫

Sj

O(hxy)
(
∂3u – Πxy(∂3u)

)
ψj dx dy

∣∣∣∣dz

= K3 + K4.

Similar to the proof of (2.13), we have

K3 ≤ Ch4
xy‖u‖5,∞,Ω |v|h2,1,Ω . (2.33)

Clearly,

K4 ≤ Ch4
xy‖u‖4,∞,Ω |v|h2,1,Ω . (2.34)

Combining (2.33) and (2.34) yields

|I4| ≤ Ch4
xy‖u‖5,∞,Ω |v|h2,1,Ω . (2.35)

From (2.8)–(2.10), (2.32), and (2.35),

∣∣a(Rxy, v)
∣∣ ≤ Ch4

xy‖u‖5,∞,Ω |v|h2,1,Ω . (2.36)

Now, we can bound the term

a(Rz, v) =
∫

Ω

( 3∑

i,j=1

aij∂iRz∂jv +
3∑

i=1

ai∂iRzv + a0Rzv

)
dx dy dz. (2.37)

Additionally, we set

J1 =
∫

Ω

( 2∑

i,j=1

aij∂iRz∂jv +
2∑

i=1

ai∂iRzv + a0Rzv

)
dx dy dz, (2.38)

J2 =
∫

Ω

( 2∑

j=1

a3j∂3Rz∂jv + a3∂3Rzv

)
dx dy dz, (2.39)

J3 =
∫

Ω

2∑

i=1

ai3∂iRz∂3v dx dy dz, (2.40)
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J4 =
∫

Ω

a33∂3Rz∂3v dx dy dz. (2.41)

Clearly,

a(Rz, v) = J1 + J2 + J3 + J4. (2.42)

To simply bound the aforementioned terms, we may use the so-called interpolation oper-
ator of projection type (see [15]).

Let {lj(z)}∞j=0 be the normalized orthogonal Legendre polynomial system from the space
L2(L), and ∂zu ∈L2(L). For a fixed point (x, y) ∈ D, we have the following expansion:

u(x, y, z) =
∞∑

j=0

βj(x, y)ωj(z), (x, y, z) ∈ ē = D × L,

where

ω0(z) = 1, ωj+1(z) =
∫ z

zi–1

lj(ξ ) dξ = O
(
h

1
2
z
)
, lj(z) = O

(
h– 1

2
z

)
, j ≥ 0. (2.43)

The coefficients βj(x, y) satisfy β0(x, y) = u(x, y, zi–1), and for j ≥ 1,

βj(x, y) =
∫

L
∂zulj–1(z) dz = O

(
hj– 1

2
z

)
. (2.44)

Let Π e
z be the quadratic interpolation operator of projection type with respect to z defined

by

Π e
z u =

2∑

j=0

βj(x, y)ωj(z), (x, y, z) ∈ ē = D × L.

Thus, the interpolation remainder is

Rz = u – Π e
z u =

∞∑

j=3

βj(x, y)ωj(z), (x, y, z) ∈ ē. (2.45)

The above-mentioned statements are presented in [15]. Obviously, we only need to con-
sider the main term r3 = β3(x, y)ω3(z) in (2.45). As for J1, we first bound

∫

Ω

a11∂1r3∂1v dx dy dz.

By integration by parts, the Poincaré inequality, (2.43), and (2.44), we get

∣∣∣∣
∫

Ω

a11∂1r3∂1v dx dy dz
∣∣∣∣

≤
∑

e

∣∣∣∣
∫

e
a11∂1r3∂1v dx dy dz

∣∣∣∣
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≤
∑

e

∣∣∣∣
∫

e
a0

11∂1β3(x, y)ω3(z)∂1v dx dy dz
∣∣∣∣

+
∑

e

∣∣∣∣
∫

e
O(hz)∂1β3(x, y)ω3(z)∂1v dx dy dz

∣∣∣∣

≤
∑

e

∣∣∣∣
∫

e
a0

11∂1β3(x, y)D̃–1ω3(z)∂3∂1v dx dy dz
∣∣∣∣

+
∑

e

∣∣∣∣
∫

e
O(hz)∂1β3(x, y)ω3(z)∂1v dx dy dz

∣∣∣∣

≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω + Ch4

z‖u‖4,∞,Ω
∑

e

∫

e
|∂1v|dx dy dz

≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω + Ch4

z‖u‖4,∞,Ω

∫

Ωxy

|∂1v|1,1,Ωz dx dy

≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω ,

where d(D̃–1ω3(z))
dz = ω3(z), D̃–1ω3 = O(h1.5

z ), a11(N) = a11(N0) +O(hz) ≡ a0
11 +O(hz) for every

N ∈ ē, and N0 is the center of ē.
Similarly, for the rightmost term from (2.38), we can easily obtain

∣∣∣∣
∫

Ω

a0r3v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖3,∞,Ω |v|h2,1,Ω .

As for the other terms from (2.38), using arguments similar to the ones mentioned above,
we derive their bounds as follows:

Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω .

Thus, we have

|J1| ≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω . (2.46)

As for J2, we first analyze the case of j = 1. By Green’s formula, we get

∫

Ω

a31∂3r3∂1v dx dy dz = –
∑

e

∫

e
∂1

(
a31β3(x, y)

)
l2(z)v dx dy dz. (2.47)

For the right term from (2.47), integration by parts yields

∫

Ω

a31∂3r3∂1v dx dy dz = –
∑

e

∫

e
D̃–2l2

(
∂3∂3v∂1(a31β3)

+ 2∂3v∂3∂1(a31β3) + v∂3∂3∂1(a31β3)
)

dx dy dz,

where d2(D̃–2l2(z))
dz2 = l2(z). From (2.43) and (2.44),

D̃–2l2 = O
(
h1.5

z
)
, |β3| ≤ Ch2.5

z ‖u‖3,∞,Ω , |∂1β3| ≤ Ch2.5
z ‖u‖4,∞,Ω . (2.48)
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Hence,

∣∣∣∣
∫

Ω

a31∂3r3∂1v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖4,∞,Ω
∑

e

∫

e

(|∂3∂3v| + |∂3v| + |v|)dx dy dz. (2.49)

By the Poincaré inequality in (2.49), we get

∣∣∣∣
∫

Ω

a31∂3r3∂1v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖4,∞,Ω |v|h2,1,Ω . (2.50)

Similarly, in the case of j = 2, we also have

∣∣∣∣
∫

Ω

a32∂3r3∂2v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖4,∞,Ω |v|h2,1,Ω . (2.51)

For the right term from (2.39), integration by parts yields

∫

Ω

a3∂3r3v dx dy dz =
∑

e

∫

e
a3β3(x, y)l2(z)v dx dy dz

=
∑

e

∫

e
D̃–2l2(∂3∂3va3β3 + 2∂3v∂3a3β3 + v∂3∂3a3β3) dx dy dz.

Using (2.48) and the Poincaré inequality, we obtain

∣∣∣∣
∫

Ω

a3∂3r3v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖3,∞,Ω |v|h2,1,Ω . (2.52)

Combining (2.50)–(2.52) yields

|J2| ≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω . (2.53)

As for J3, we first consider the case of i = 1. Clearly, integration by parts yields

∫

Ω

a13∂1r3∂3v dx dy dz

=
∑

e

∫

e
a13∂1β3(x, y)ω3(z)∂3v dx dy dz

= –
∑

e

∫

e
∂1β3(x, y)D̃–1ω3(z)∂3(a13∂3v) dx dy dz.

Furthermore, by (2.48), the Poincaré inequality and D̃–1ω3 = O(h1.5
z ), we have

∣∣∣∣
∫

Ω

a13∂1r3∂3v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖4,∞,Ω |v|h2,1,Ω .

Similarly, when i = 2, we also get

∣∣∣∣
∫

Ω

a23∂2r3∂3v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖4,∞,Ω |v|h2,1,Ω .
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Thus, we have

|J3| ≤ Ch4
z‖u‖4,∞,Ω |v|h2,1,Ω . (2.54)

Finally, for J4, integration by parts yields

∫

Ω

a33∂3r3∂3v dx dy dz

=
∑

e

∫

e
a33β3(x, y)l2(z)∂3v dx dy dz

=
∑

e

∫

e
β3D̃–2l2(2∂3∂3v∂3a33 + ∂3v∂3∂3a33) dx dy dz.

Thus,

∣∣∣∣
∫

Ω

a33∂3r3∂3v dx dy dz
∣∣∣∣ ≤ Ch4

z‖u‖3,∞,Ω |v|h2,1,Ω .

Hence,

|J4| ≤ Ch4
z‖u‖3,∞,Ω |v|h2,1,Ω . (2.55)

Combining (2.42), (2.46), and (2.53)–(2.55) results in

∣∣a(Rz, v)
∣∣ ≤ Ch4

z‖u‖4,∞,Ω |v|h2,1,Ω . (2.56)

From (2.36) and (2.56), the desired result (2.1) is immediately obtained. The proof of
Lemma 2.1 is therefore completed. �

3 Pointwise superconvergence estimates
To analyze pointwise superconvergence, for each fixed Z ∈ Ω , we may introduce the dis-
crete Green function defined by

a
(
v, Gh

Z
)

= v(Z) ∀v ∈ Sh
0(Ω). (3.1)

As for Gh
Z , we have the following result.

Lemma 3.1 For Gh
Z ∈ Sh

0(Ω) the discrete Green function, we have the following estimate:

∣∣Gh
Z
∣∣h
2,1,Ω ≤ C| ln h| 2

3 . (3.2)

The proof of Lemma 3.1 can be found in [16].
From (1.4), (2.1), (3.1), and (3.2), we immediately obtain the following theorem.

Theorem 3.1 Let {T h} be a uniform family of pentahedral partitions of Ω , and u ∈
W 5,∞(Ω) ∩ H1

0 (Ω). For uh and Πu, the P2(x, y) ⊗ P2(z) pentahedral finite element ap-
proximation and the corresponding interpolant to u, respectively, we have the following
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pointwise superconvergence estimate:

|uh – Πu|0,∞,Ω ≤ C
(
h4

xy + h4
z
)| ln h| 2

3 ‖u‖5,∞,Ω .
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