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Abstract
Existence results for the three-point fractional boundary value problem

Dαx(t) = f (t, x(t),Dα–1x(t)), 0 < t < 1,

x(0) = A, x(η) – x(1) = (η – 1)B,

are presented, where A,B ∈R, 0 < η < 1, 1 < α ≤ 2. Dαx(t) is the conformable
fractional derivative, and f : [0, 1]×R

2 → R is continuous. The analysis is based on
the nonlinear alternative of Leray–Schauder.
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1 Introduction
In recent years, due to the wide application in many engineering and scientific disciplines
as the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, etc., the frac-
tional differential equations have been widely studied. An extensive literature related to
the existence of solutions of boundary value problems for fractional differential equations
addressed by the use of various nonlinear functional analysis method. For example, fixed
point theory [5, 7, 9–11, 19, 21, 25–28, 32, 33, 39, 50, 52, 56], the Mawhin continuation
method [3, 6, 54, 57], the Green function method [5, 44, 45], the integral operator method
[4, 8, 13, 14, 17, 22, 30, 31, 35, 36, 38, 49, 51, 53], the upper and lower solution method
[12, 15, 18, 29], the numerical method [40–43, 46, 55], and the technique of barrier strips
[4, 16, 20, 24, 34, 37].

In [24], Kelevedjiev got the existence of the solution by using the technique of barrier
strips. Then some researchers studied the solvability of vary boundary value problems
under the barrier strip conditions. For example, in [32], by using a nonlinear alternative
of Leray–Schauder, the existence results for the second-order three-point boundary value
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problem are obtained,

x′′(t) = f
(
t, x(t), x′(t)

)
, 0 < t < 1,

x(0) = A, x(η) – x(1) = (η – 1)B,

where η ∈ (0, 1), f : [0, 1]×R
2 →R is continuous, and A, B ∈R. After that, the barrier strip

technique was used to research the solvability of the difference problem [16] and the time
scale problem [34]. Recently, in [20, 37], the author obtained the existence of solutions for
the fractional Dirichlet boundary value problem

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1,

x(0) = A, x(1) = B,

under barrier strip conditions, where 1 < α ≤ 2 is a real number, Dαx(t) is the conformable
fractional derivative, and f : [0, 1] ×R

2 →R is continuous.
To the best of the authors’ knowledge, there were few papers discussing the solvability of

the multi-point fractional boundary value problems with the technique of barrier strips.
Our effort is to use the nonlinear alternative of Leray–Schauder to the unreached areas.
In this paper, we consider the following fractional boundary value problem:

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1, (1.1)

x(0) = A, x(η) – x(1) = (η – 1)B, (1.2)

where 1 < α ≤ 2 is a real number, Dαx(t) is the conformable fractional derivative, η ∈ (0, 1),
f : [0, 1]×R

2 →R is continuous, and A, B ∈R. We note that if x is a solution of (1.1), (1.2),
then there exists ξ ∈ (η, 1), such that x′(ξ ) = B. Accordingly, the boundary value problem

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1, (1.3)

x(0) = A, x′(1) = B, 0 < η < 1, (1.4)

can be considered as a limiting case of the problem (1.1), (1.2) when η = 1. Consequently,
our result for problem (1.1), (1.2) gives an existence result for problem (1.3), (1.4).

It is true that the conformable derivative has some controversy. Some researchers
think that the conformable derivative does not contribute “new mathematics”. The con-
formable derivative for differentiable functions is equivalent to a simple change of variable
Dα[f (x)] = x1–αf ′(x). It was noted that a criticism of the conformable derivative is that, al-
though conformable at the limit α → 1 (limα→1 Dαf = f ′), it is not conformable at the other
limit, α → 0 (limα→0 Dαf �= f ) because xα/α is undefined at α = 0.

However, some other researchers think that the conformable derivative and its gener-
alizations can still be interesting and valuable, specially leading to some physical insight
with use in the applied settings. We refer the reader to [1, 2, 47, 48] for details as regards
the conformable fractional derivative.

The main results of the paper is based on the following nonlinear alternative of Leray–
Schauder.



Bai et al. Boundary Value Problems         (2020) 2020:11 Page 3 of 12

Theorem 1.1 ([32] (Nonlinear alternative)) Assume that U is a relatively open subset of a
convex set K in a Banach space E. Let N : U → K be a compact map and assume p ∈ U .
Then either

(1) N has a fixed point in U ; or
(2) there is a u ∈ ∂U and λ ∈ (0, 1) such that u = λNu + (1 – λ)p.

The paper is organized as follows. In Sect. 2, the definitions of the conformable fractional
order derivative and integral are given. In Sect. 3, by the use of the technique of nonlinear
alternative of Leray–Schauder and barrier strips, the existence of the solution is obtained.
In Sect. 4, some examples are presented to illustrate the main results.

2 Conformable fractional order calculus
Definition 2.1 ([23]) Suppose α ∈ (n, n + 1], u : [0,∞) → R, and u is nth-order differen-
tiable for t > 0. Then the αth-order fractional derivative of u is defined as

Dαu(t) = lim
ε→0

u(n)(t + eεtn+1–α ) – u(n)(t)
ε

provided the limit of the right side exists.
If u is αth-order differentiable on (0, a), a > 0, and limt→0+ Dαu(t) exists, then define

Dαu(0) = limt→0+ Dαu(t).

Lemma 2.1 ([13]) Let t > 0, α ∈ (n, n + 1]. Function u(t) is αth-order differentiable if and
only if u is (n + 1)th-order differentiable, moreover,

Dαu(t) = tn+1–αu(n+1)(t).

Definition 2.2 ([23]) Let α ∈ (n, n + 1], αth-order fractional integral is defined as

Jα
0+u(t) = In+1[tα–n–1u(t)

]
=

1
n!

∫ t

0
(t – s)nsα–n–1u(s) ds,

where In+1 is the (n + 1)th-order integral.

Remark 2.1 With Lemma 2.1 and Definition 2.2, for α ∈ (n, n + 1], i = 0, 1, . . . , n, there hold

Dα–i[Jα
0+u(t)

]
= tn+1–αDn+1–i[In+1(tα–n–1u(t)

)]

= tn+1–αIi[tα–n–1u(t)
]
.

Lemma 2.2 ([23]) Let a ≥ 0, f : [a, b] →R satisfy,
(i) f is continuous on [a, b],

(ii) f is αth-order differentiable on (a, b).
Then there exists c ∈ (a, b) such that

Dαf (c) =
f (b) – f (a)
1
α

bα – 1
α

aα
.
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Given α ∈ (n, n + 1]. Define

Cα[0, 1] =
{

u | u(t) = Jα
0+ x(t) + Cntn + · · · + C1t + C0,

x(t) ∈ C[0, 1], Ci ∈R, i = 0, 1, . . . , n
}

.

By the linearity of integral operator Jα
0+ , the space Cα[0, 1] is a linear space. For u ∈ Cα[0, 1],

according to Remark 2.1, there are Dα–iu(t) ∈ C[0, 1], i = 0, 1, . . . , n. Let

‖u‖α =
∥∥Dαu

∥∥
0 +

∥∥Dα–1u
∥∥

0 + · · · +
∥∥Dα–nu

∥∥
0 + ‖u‖0,

where ‖u‖0 = maxt∈[0,1] |u(t)|. The following lemmas obtained in [13] are fundamental to
our main results.

Lemma 2.3 ([13]) The space (Cα[0, 1],‖ · ‖α) is a Banach space.

Lemma 2.4 ([13]) The set F ⊂ Cα[0, 1] is sequentially compact if and only if F is uni-
formly bounded and equicontinuous, i.e., for ∀ε > 0, ∃δ > 0, s.t. for any |t1 – t2| < δ, ∀u ∈ F ,
i = 0, 1, . . . , N – 1, we have

∣
∣Dα–iu(t1) – Dα–iu(t2)

∣
∣ < ε,

∣
∣u(t1) – u(t2)

∣
∣ < ε.

Lemma 2.5 ([13]) Assume that u ∈ C[0, 1] with a fractional derivative of order α ∈
(n, n + 1] that belongs to C(0, 1) ∩ L(0, 1). Then

IαDαu(t) = u(t) + c0 + c1t + · · · + cntn,

for some ck ∈R, k = 0, 1, . . . , n.

Now, we present the Green function.

Lemma 2.6 Given y ∈ C[0, 1] and 1 < α ≤ 2, 1 < η < 2, the unique solution of

Dαw(t) + y(t) = 0, 0 < t < 1, (2.1)

w(0) = 0, w(η) – w(1) = 0 (2.2)

is

w(t) =
∫ 1

0
G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sα–1, 0 ≤ s ≤ t ≤ 1, s ≤ η;

sα–1 – tsα–2 – sα–2t(1–s)
η–1 , 0 ≤ η ≤ s ≤ t ≤ 1;

tsα–2, 0 ≤ t ≤ s ≤ η ≤ 1;
tsα–2(s–1)

η–1 , 0 ≤ t ≤ s ≤ 1,η ≤ s.

(2.3)
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Proof Applying Lemma 2.5, we reduce Eq. (2.1) to an equivalent integral equation,

w(t) = –Iαy(t) + c0 + c1t

= –
∫ t

0
(t – s)sα–2y(s) ds + c0 + c1t,

for some c0, c1 ∈R. By the boundary condition (2.2), we have

c0 = 0,

c1 =
∫ η

0

η – s
η – 1

sα–2y(s) ds –
∫ 1

0

1 – s
η – 1

sα–2y(s) ds.

Therefore, the unique solution of problem (2.1), (2.2) is

w(t) = –
∫ t

0
(t – s)sα–2y(s) ds +

∫ η

0

t(η – s)
η – 1

sα–2y(s) ds –
∫ 1

0

t(1 – s)
η – 1

sα–2y(s) ds.

For 0 ≤ η ≤ t ≤ 1, one has

w(t) = –
(∫ η

0
+

∫ t

η

)
(t – s)sα–2y(s) ds +

∫ η

0

t(η – s)
η – 1

sα–2y(s) ds

–
(∫ η

0
+

∫ t

η

+
∫ 1

t

)
t(1 – s)
η – 1

sα–2y(s) ds

=
∫ η

0
sα–1y(s) ds +

∫ t

η

(
sα–1 – tsα–2 –

sα–2t(1 – s)
η – 1

)
y(s) ds

+
∫ 1

t

tsα–2(s – 1)
η – 1

y(s) ds

=
∫ 1

0
G(t, s)y(s) ds.

For 0 ≤ t ≤ η ≤ 1, one has

w(t) = –
∫ t

0
(t – s)sα–2y(s) ds +

(∫ t

0
+

∫ η

t

)
t(η – s)
η – 1

sα–2y(s) ds

–
(∫ t

0
+

∫ η

t
+

∫ 1

η

)
t(1 – s)
η – 1

sα–2y(s) ds

=
∫ t

0
sα–1y(s) ds +

∫ η

t
tsα–2y(s) ds +

∫ 1

η

tsα–2(s – 1)
η – 1

y(s) ds

=
∫ 1

0
G(t, s)y(s) ds.

The proof is complete. �

3 Existence results
Theorem 3.1 Let f : [0, 1] ×R

2 → R be continuous, A ∈ R, B ≥ 0. Suppose there are con-
stants L2 ≤ L1 such that L2 – B < 0 ≤ L1 and
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(1) f (t, x, p) ≥ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L1, L1 + B];
(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B

α–1 , A + B + L1
α–1 ] × [L2 – B, L2];

(3) L2–B
1–η

≤ f (t, x, p) ≤ L1
1–η

, for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L2 – B, L1 + B].
Then the problem (1.1), (1.2) has at least one solution x such that

L2 – B ≤ (
Dα–1x

)
(t) ≤ L1 + B, A +

L2 – B
α – 1

≤ x(t) ≤ A + B +
L1

α – 1
.

Proof By the use of the Tietze–Uryshon lemma there exists a continuous function g :
R

2 → [–1, 1] such that

g(x, p) = 1, on
[

A +
L2 – B
α – 1

, A + B +
L1

α – 1

]
× [L1, L1 + B];

g(x, p) = –1, on
[

A +
L2 – B
α – 1

, A + B +
L1

α – 1

]
× [L2 – B, L2].

For each integer n ≥ 1, set

fn(t, x, p) = f (t, x, p) +
1
n

g(x, p).

Then

fn(t, x, p) > 0, (3.1)

for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L1, L1 + B];

fn(t, x, p) < 0, (3.2)

for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L2 – B, L2].
Consider the boundary value problems

Dαx(t) = fn
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1, (3.3)

x(0) = A, x(η) – x(1) = (η – 1)B. (3.4)

Making the change of variables w(t) = x(t) – μ(t), where μ(t) = Bt + A. It is clear that x(t)
is a solution of (3.3), (3.4) if and only if w(t) satisfies

Dαw(t) = fn
(
t, w(t) + μ(t), Dα–1w(t) + Dα–1μ(t)

)
, (3.5)

w(0) = 0, w(η) – w(1) = 0. (3.6)

Define Tn : Cα[0, 1] → Cα[0, 1] as

(Tnw)(t) =
∫ 1

0
G(t, s)fn

(
s, w(s) + μ(s), Dα–1w(s) + Dα–1μ(s)

)
ds, (3.7)

where G(t, s) is the Green function defined in Eq. (2.3). The standard arguments show
that Tn : Cα[0, 1] → Cα[0, 1] is completely continuous. Furthermore, the solvability of the
problem (3.3), (3.4) is changed as the existence of the fixed point of the operator Tn.
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Now, we are in the position to show that the operator Tn has a fixed point wn that satisfies

L2 – B ≤ (
Dα–1wn

)
(t) ≤ L1, t ∈ [0, 1], (3.8)

L2 – B
α – 1

≤ wn(t) ≤ L1

α – 1
, t ∈ [0, 1], (3.9)

for all n ∈ N . Once this is achieved, then, by combining (3.7), (3.8), (3.9) and Lemmas
2.3, 2.4, the sequence {wn} has a subsequence which converges in Cα-topology to w0, and
then x(t) := w0(t) + μ(t) is a solution of (1.1), (1.2) such that

L2 – B ≤ (
Dα–1x

)
(t) ≤ L1 + B,

A +
L2 – B
α – 1

≤ x(t) ≤ A + B +
L1

α – 1
.

Define U as the open and bounded neighborhood of 0 ∈ Cα–1[0, 1] such that

U =
{

v ∈ Cα–1[0, 1]
∣
∣∣

L2 – B
α – 1

< v(t) <
L1

α – 1
, L2 – B < Dα–1v(t) < L1

}
.

To prove that Tn has a solution wn ∈ U such that (3.8) holds, it suffices to verify, in view
of Theorem 1.1, that if w ∈ U satisfies Eq. (3.6) such that

w(t) = λ(Tnw)(t) (3.10)

for some λ ∈ (0, 1), then w ∈ U , i.e., for 0 < t < 1,

L2 – B
α – 1

< w(t) <
L1

α – 1
, and L2 – B <

(
Dα–1w

)
(t) < L1. (3.11)

Now let w ∈ U satisfies Eq. (3.6) for some λ ∈ (0, 1). Since L2 – B ≤ (Dα–1wn)(t) ≤ L1, by
Lemma 2.2, there exists c ∈ (0, t) ⊂ (0, 1) such that

w(t) – w(0) =
(
Dα–1w

)
(c) · tα–1

α – 1

and

(L2 – B) · tα–1

α – 1
≤ w(t) ≤ L1 · tα–1

α – 1
.

Let x(t) = w(t) + μ(t), then x(t) satisfies

L2 – B ≤ (
Dα–1x

)
(t) ≤ L1 + B (3.12)

and

(L2 – B) · tα–1

α – 1
+ Bt + A ≤ x(t) ≤ L1 · tα–1

α – 1
+ Bt + A.

In particular

A +
L2 – B
α – 1

≤ x(t) ≤ A + B +
L1

α – 1
. (3.13)



Bai et al. Boundary Value Problems         (2020) 2020:11 Page 8 of 12

Suppose that Dα–1w(t0) = L1 for some t0 ∈ [0, 1]. We claim that t0 < 1. In fact, due to
w ∈ Cα–1[0, 1] and w(η) = w(1), by the use of the Lemma 2.2, there exists ξ ∈ (η, 1) such
that Dα–1(ξ ) = 0. Taking into account the condition (3), integrating Eq. (3.5) from ξ to 1
yields

Dα–1w(1) = Dα–1w(ξ ) +
∫ 1

ξ

(
Dαw

)
(s) ds

=
∫ 1

ξ

fn
(
s, w(s) + μ(s), Dα–1w(s) + Dα–1μ(s)

)
ds

≤ (1 – ξ )
L1

1 – η
< L1.

Hence Dαw(t0) ≤ 0 because Dα–1w(t) attains its maximum at t0.
On the other hand, by (3.13) we get

Dαw(t0) = λfn
(
t0, w(t0) + μ(t0), Dα–1w(t0) + Dα–1μ(t0)

)

= λfn
(
t0, w(t0) + A + Bt0, L1 + t2–α

0 B
)

> 0.

This contradiction proves that Dα–1w(t0) < L1. Analogously, we have Dα–1w(t0) > L2 – B.
Thus we get

L2 – B < Dα–1w(t) < L1. (3.14)

Inequality (3.14) together with the relation w(t) = w(0) + Dα–1w(d) · tα–1

α–1 implies that

L2 – B
α – 1

< w(t) <
L1

α – 1
. (3.15)

This completes the proof. �

Analogously, we can obtain the following result.

Theorem 3.2 Let f : [0, 1] ×R
2 → R be continuous, A ∈ R, B < 0. Suppose there are con-

stants L1, L2 such that L2 ≤ L1 + 2B, L2 ≤ B < 0 ≤ L1 and
(1) f (t, x, p) ≥ 0, for (t, x, p) ∈ [0, 1] × [A + B + L2–B

α–1 , A + L1
α–1 ] × [L1 + B, L1];

(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L2, L2 – B];
(3) L2–B

1–η
≤ f (t, x, p) ≤ L1

1–η
, for (t, x, p) ∈ [0, 1] × [A + B + L2–B

α–1 , A + L1
α–1 ] × [L2, L1].

Then the problem (1.1), (1.2) has at least one solution x such that

L2 ≤ (
Dα–1x

)
(t) ≤ L1, A + B +

L2 – B
α – 1

≤ x(t) ≤ A +
L1

α – 1
.

Accordingly, we get the following corollaries as consequences of Theorems 3.1 and 3.2
for the boundary value problem (1.3), (1.4).

Corollary 3.1 Let f : [0, 1] ×R
2 → R be continuous, A ∈R, B ≥ 0. Suppose there are con-

stants L2 ≤ L1 such that L2 – B ≤ 0 ≤ L1 and
(1) f (t, x, p) ≥ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B

α–1 , A + B + L1
α–1 ] × [L1, L1 + B];

(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L2 – B, L2].
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Then the problem (1.3), (1.4) has at least one solution x such that

L2 – B ≤ (
Dα–1x

)
(t) ≤ L1 + B, A +

L2 – B
α – 1

≤ x(t) ≤ A + B +
L1

α – 1
.

Proof It suffices to note in the case η = 1 that the boundary condition x′(1) = B implies
that L2 – B < w′(1) = 0 < L1 which is what is required in applying the condition (3) to show
t0 < 1 in the proof of Theorem 3.1. �

Corollary 3.2 Let f : [0, 1] ×R
2 → R be continuous, A ∈ R, B < 0. Suppose there are con-

stants L1, L2 such that L2 ≤ L1 + 2B, L2 ≤ B < 0 ≤ L1 and
(1) f (t, x, p) ≥ 0, for (t, x, p) ∈ [0, 1] × [A + B + L2–B

α–1 , A + L1
α–1 ] × [L1 + B, L1];

(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [A + L2–B
α–1 , A + B + L1

α–1 ] × [L2, L2 – B].
Then the problem (1.3), (1.4) has at least one solution x such that

L2 ≤ (
Dα–1x

)
(t) ≤ L1, A + B +

L2 – B
α – 1

≤ x(t) ≤ A +
L1

α – 1
.

4 Some examples
Example 4.1 Let α = 3

2 , A = 0, B = 1
2 , η = 1

5 , consider the following problem:

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1, (4.1)

x(0) = 0, x
(

1
5

)
– x(1) = –

2
5

, (4.2)

where f (t, x, p) = t2

8 sin(x2 + t2) + p3.
Choose L1 = 1 and L2 = – 1

2 , then L1 + B = 3
2 , L2 – B = –1 and

[
A +

L2 – B
α – 1

, A + B +
L1

α – 1

]
=

[
–2,

5
2

]
,

[
L2 – B
1 – η

,
L1

1 – η

]
=

[
–

5
4

,
5
4

]
.

After a simple computation, we have
(1) f (t, x, p) ≥ 1 ≥ 0, for (t, x, p) ∈ [0, 1] × [–2, 5

2 ] × [1, 3
2 ],

(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [–2, 5
2 ] × [–1, – 1

2 ],
(3) – 5

4 < –1 ≤ f (t, x, p) ≤ 5
4 , for (t, x, p) ∈ [0, 1] × [–2, 5

2 ] × [–1, 3
2 ].

That is to say that all the conditions of Theorem 3.1 are satisfied, so the problem (4.1),
(4.2) has at least one solution x such that

–1 ≤ D
1
2 x(t) ≤ 3

2
, –2 ≤ x(t) ≤ 5

2
, for 0 ≤ t ≤ 1.

Example 4.2 Consider the following problem:

Dαx(t) = f
(
t, x(t), Dα–1x(t)

)
, 0 < t < 1, (4.3)

x(0) = 0, x′(1) = –1, (4.4)

where α = 3
2 , A = 0, B = –1, f (t, x, p) = t2 sin(x2 + t2) + p3.
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Choose L1 = 2 and L2 = –2, then L1 + B = 1, L2 – B = –1, L2 ≤ 0 = L1 + 2B, L2 ≤ B < 0 ≤ L1

and
[

A + B +
L2 – B
α – 1

, A +
L1

α – 1

]
= [–3, 4];

[
A +

L2 – B
α – 1

, A + B +
L1

α – 1

]
= [–2, –3].

After a simple computation, we have
(1) f (t, x, p) ≥ 0, for (t, x, p) ∈ [0, 1] × [–3, 4] × [1, 2],
(2) f (t, x, p) ≤ 0, for (t, x, p) ∈ [0, 1] × [–2, –3] × [–2, –1].

All the conditions of Corollary 3.2 are satisfied, so the problem (4.3), (4.4) has at least one
solution x such that

–2 ≤ D
1
2 x(t) ≤ 2, –3 ≤ x(t) ≤ 4, for 0 ≤ t ≤ 1.
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