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Abstract
This paper is concerned with a class of beam equations with a parameter. By using
the fixed point theorems of mixed monotone operator and the properties of cone,
we study the non-singular and singular case, respectively, and obtain the sufficient
conditions which guarantee the local existence and uniqueness of increasing positive
solutions. Also, we present an iterative algorithm that converges to the solution.
Moreover, we get some pleasant properties of the solutions for the boundary value
problem dependent parameter. At last, two examples are given to illustrate the main
results.
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1 Introduction
In this paper, we at first study the following non-singular boundary value problem with a
parameter:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = λf (t, u(t), (Hu)(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′(1) = 0, u′′′(1) = λg(u(1)),

(1.1)

where f : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) and g : [0, +∞) → (–∞, 0] are continuous,
λ is a positive parameter, H is a certain operator(not necessarily linear). Here, if we set H :
C([0, 1];R) → C([0, 1];R) is a linear operator defined by Hu = u for every u ∈ C([0, 1];R),
then the problem (1.1) reduces to the following beam equation:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = λf (t, u(t), u(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′(1) = 0, u′′′(1) = λg(u(1)).

(1.2)
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In this model, we suppose f : (0, 1) × [0, +∞) × (0, +∞) → [0, +∞) and g : [0, +∞) →
(–∞, 0] are continuous, f (t, x, y) may be singular at t = 0 or 1, and also may be singular
at y = 0. λ > 0 is a parameter.

The above fourth-order Eqs. (1.1) and (1.2) model an elastic beam of length 1 subject
to a nonlinear foundation given by the function f , where the boundary condition u(0) =
u′(0) = 0 means that the left end of the beam is fixed, the boundary condition u′(1) = 0,
u′′′(1) = λg(u(1)) means that the right end of the beam is sliding clamped and attached to
a bearing, given by the function g .

As is well known, the fourth-order boundary value problems for elastic beam equations
are widely applied to material mechanics and engineering, because it can characterise the
deformation of the equilibrium state. These equations with nonzero or nonlinear bound-
ary conditions can model beams resting on elastic bearings located in their extremities;
see for instance [1–6] and the references therein. Over the past several decades, some re-
searchers have extensively investigated the existence and multiplicity of positive solutions
for the elastic beam equations. In most studies, the results are obtained by using the Leray–
Schauder continuation method, the topological degree theory, the shooting method, fixed
point theorems on cones, the critical point theory, monotone iteration method, the lower
and upper solution method and so on; for examples refer to the literature [7–16]. However,
there are a few papers concerned with the existence and uniqueness of positive solutions
for the fourth-order boundary value problems with parameter including non-singular and
singular case; see [17–23].

In [17], Yao investigated the following fourth-order problem with a parameter:

⎧
⎨

⎩

u(4)(t) = λf (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0.
(1.3)

By application of the Krasnosel’skii fixed point theorem of cone expansion–compression
type, Yao obtain several existence and multiplicity results.

In [18], Wang et al. deal with the following problem:

⎧
⎨

⎩

u(4)(t) = λf (t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) + g(u(1)) = 0,
(1.4)

where f : [0, 1] × [0, +∞) → [0, +∞) and g : [0, +∞) → [0, +∞), λ ≥ 0 is a parameter.
From the fixed point theorem of cone expansion, they prove the existence, multiplicity
and nonexistence of solutions. Furthermore, by using cone theory, the authors establish
some uniqueness criteria of positive solutions and show such solution xλ depends contin-
uously on the parameter λ.

The following beam equation with a parameter is investigated by Zhai et al. in [19]:

⎧
⎨

⎩

u(4)(t) = λf (t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) + λg(u(1)) = 0,
(1.5)

where f : [0, 1] × [0, +∞) → [0, +∞) and g : [0, +∞) → [0, +∞), λ > 0 is a parameter. De-
pending on a fixed point theorem and some properties of eigenvalue problems for a class
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of general mixed monotone operators, the authors present two results on the existence
and uniqueness of convex monotone positive solutions and also present some pleasant
properties of solutions dependent on the parameter.

In [20], Yuan et al. study the following boundary value problem to nonlinear singular
fourth-order differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) – λq(t)f (u(t), u′′(t)) = 0, 0 < t < 1,

α1u(0) – β1u′(0) = 0,

γ1u(1) + δ1u′(1) = 0,

α2u′′(0) – β2u′′′(0) = 0,

γ2u′′(1) + δ2u′′′(1) = 0,

(1.6)

where λ > 0 and αi, βi, γi, δi ≥ 0 (i = 1, 2) are constants such that βiγi + αiγi + αiδi > 0
(i = 1, 2), q ∈ C1((0, 1), (0, +∞)) and q may be singular at t = 0 and/or 1, f (u, v) may be
singular at u = 0. By using the mixed monotone method, the authors establish the existence
and uniqueness of positive solutions for some fourth-order nonlinear singular continuous
and discrete boundary value problem.

Motivated by the above work, in this paper, by using the fixed point theorems of mixed
monotone operator, we intend to study the local existence and uniqueness of increasing
positive solutions for the non-singular beam Eq. (1.1) and singular beam Eq. (1.2). Fur-
thermore, we construct two sequences approximating the unique positive solution. The
main contributions of this paper are: (a) for the non-singular problem (1.1), the nonlinear
term f is changed with the choice of the operator H , here, the H is not necessarily linear,
which makes the nonlinear term more general. (b) For the singular problem (1.2), there is
no result on the uniqueness of positive solution in the existing literature, hence our results
are new. (c) After obtaining the unique existence results, we construct two sequences with
a parameter λ for approximating the unique solution u∗

λ, and also present some pleasant
properties of positive solution with respect to λ.

The content of this paper is organized as follows. In Sect. 2, we present some definition,
lemmas and basic results that will be used in the proofs of our theorems. In Sect. 3, by
using the fixed point theorems of mixed monotone operators, we prove the existence and
uniqueness of monotone positive solutions for the non-singular boundary value problem
(1.1). In Sect. 4, we research the existence and uniqueness of monotone positive solutions
for the singular boundary value problem (1.2). In Sect. 5, we give two concrete examples
to illustrate these results which can be used in practice.

2 Preliminaries
For the convenience of the reader, in this section we present some definitions in ordered
Banach spaces, lemmas and basic results that will be used in the proofs of our theorems
[24].

Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. Recall
that a non-empty closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(ii) x ∈ P, –x ∈ P ⇒ x = θ , where θ denotes the zero element of E.

A cone P is said to be solid if P̊ = {x ∈ P | x is an interior point of P} is nonempty. A cone
P is called normal if there exists a constant N > 0 such that ‖x‖ ≤ N‖y‖ for all x, y ∈ E



Wang and Zhang Boundary Value Problems         (2020) 2020:10 Page 4 of 16

with θ ≤ x ≤ y, where N is called the normality constant of P. Moreover, we say that an
operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay(Ax ≥ Ay).

Furthermore, for all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and μ > 0
such that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and
h �= θ ), we denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition 2.1 ([25]) A : P × P → P is said to be a mixed monotone operator if A(x, y) is
increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤
A(u2, v2). The element x ∈ P is called a fixed point of A if A(x, x) = x.

Lemma 2.1 (See Lemma 2.1 and Theorem 2.1 in [25]) Let P be a normal cone in E. Assume
that A : P × P → P is a mixed monotone operator and satisfies:

(A1) there exists h ∈ P with h �= θ such that A(h, h) ∈ Ph;
(A2) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that A(tu, t–1v) ≥

ϕ(t)A(u, v).
Then
(1) A : Ph × Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0,

u0 ≤ A(u0, v0) ≤ A(v0, u0) ≤ v0;
(3) A has a unique fixed point x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1), yn = A(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

If we suppose the operator A : Ph × Ph → Ph with P is a solid cone, then A(h, h) ∈ Ph is
automatically satisfied. Besides, when ϕ(t) = tα with α ∈ (0, 1) for t ∈ (0, 1), we see that the
following lemma still holds true.

Lemma 2.2 Let P be a normal, solid cone of E, and let A : Ph × Ph → Ph is a mixed mono-
tone operator. Suppose that: there exists α ∈ (0, 1) such that

A
(
tu, t–1v

) ≥ tαA(u, v), ∀u, v ∈ Ph, t ∈ (0, 1). (2.1)

Then operator A has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph,
constructing successively the sequences xn = A(xn–1, yn–1), yn = A(yn–1, xn–1), n = 1, 2, . . . , we
have ‖xn – x∗‖ → 0 and ‖yn – x∗‖ → 0 as n → ∞.

Lemma 2.3 (See Theorem 2.3 in [25]) Assume that the operator A satisfies the conditions
of Lemma 2.2 or Lemma 2.3. Let xλ(λ > 0) denote the unique solution of nonlinear eigen-
value equation A(x, x) = λx in Ph. Then we have the following conclusions:

(1) If ϕ(t) > t 1
2 for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies

xλ1 > xλ2 .
(2) If there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then xλ is continuous in λ,

that is, λ → λ0(λ0 > 0) implies ‖xλ – xλ0‖ → 0.
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(3) If there exists β ∈ (0, 1
2 ) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then limλ→∞ ‖xλ‖ = 0,

limλ→0+ ‖xλ‖ = ∞.

Lemma 2.4 Suppose f , g are continuous, then u is the solution of problem (1.1) if and only
if u is the solution for the following integral equation.

u(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – λg

(
u(1)

)
ψ(t), ∀t ∈ [0, 1], (2.2)

where

G(t, s) =
1

12

⎧
⎨

⎩

s2(6t – 3t2 – 2s), 0 ≤ s ≤ t ≤ 1;

t2(6s – 3s2 – 2t), 0 ≤ t ≤ s ≤ 1,
(2.3)

and

ψ(t) =
t2

4
–

t3

6
, ∀t ∈ [0, 1]. (2.4)

Proof At first, we prove the necessity. Assuming that u(t) is the solution of equation (1.1),
for u(4)(t) = λf (t, u(t), (Hu)(t)), combined with the boundary conditions u′′′(1) = λg(u(1)),
we integrate it from t to 1:

u′′′(t) = λg
(
u(1)

)
– λ

∫ 1

t
f
(
s, u(s), (Hu)(s)

)
ds, ∀t ∈ [0, 1].

Next, we continue to integrate u′′′(t) from t to 1:

u′′(t) = u′′(1) – λg
(
u(1)

)
(1 – t) + λ

∫ 1

t
(s – t)f

(
s, u(s), (Hu)(s)

)
ds, ∀t ∈ [0, 1].

Then, combined with u′(0) = u′(1) = 0, we integrate the above formula from 0 to t:

u′(t) = –λg
(
u(1)

)
(

t
2

–
t2

2

)

+ λ

∫ t

0

(
s2

2
–

s2t
2

)

f
(
s, u(s), (Hu)(s)

)
ds

+ λ

∫ 1

t

(

st –
s2t
2

–
t2

2

)

f
(
s, u(s), (Hu)(s)

)
ds, ∀t ∈ [0, 1].

At last, integrating u′(t) from 0 to t, and using u(0) = 0, we have

u(t) = –λg
(
u(1)

)
(

t2

4
–

t3

6

)

+ λ

∫ t

0

(
s2t
2

–
s2t2

4
–

s3

6

)

f
(
s, u(s), (Hu)(s)

)
ds

+ λ

∫ 1

t

(
st2

2
–

s2t2

4
–

t3

6

)

f
(
s, u(s), (Hu)(s)

)
ds

= λ

∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – λg

(
u(1)

)
ψ(t), ∀t ∈ [0, 1].

Here G(t, s) and ψ(t) are defined by (2.3) and (2.4).
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Next, we prove the sufficiency. Suppose that u(t) is the solution of the integral equation
(2.2), we differentiate the formula (2.2) directly, and obtain u(4)(t) = λf (t, u(t), (Hu)(t)). Be-
sides, we also get u(0) = u′(0) = 0, u′(1) = 0, u′′′(1) = λg(u(1)). The proof is completed. �

Lemma 2.5 The functions G(t, s) and ψ(t) satisfy the following properties:
(1) G(t, s) is a continuous on the unit square [0, 1] × [0, 1], ψ(t) is continuous for any

t ∈ [0, 1].
(2) G(t, s) ≥ 0, ψ(t) ≥ 0 for each t, s ∈ [0, 1].
(3) For any t, s ∈ [0, 1], we have

1
12

s2t2 ≤ G(t, s) ≤ 1
2

st2,
1

12
t2 ≤ ψ(t) ≤ 1

4
t2.

(4) For any t, s ∈ [0, 1], we get

Ht(t, s) ≥ 0, ψ ′(t) ≥ 0.

Proof The property (1) is simple, so we omit its proof. The properties (2) and (3) have
been deduced in [22], and by property (3) we can easily see that the property (2) holds
true. �

3 Existence of positive solutions for non-singular Eq. (1.1)
In this section, we will work in the Banach apace E = C[0, 1] equipped with the norm
‖x‖ = sup{|x(t)| : t ∈ [0, 1]} and a partial order given by x, y ∈ E, x ≤ y ⇔ x(t) ≤ y(t) for
t ∈ [0, 1]. The set P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a
normal cone in E and the normality constant is 1.

We first give a main result which is concerned with the non-singular elastic beam
Eqs. (1.1).

Theorem 3.1 Assume that
(L1) f : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) and g : [0, +∞) → (–∞, 0] are continuous

with g(1) < 0;
(L2) f (t, x, y) is increasing in x ∈ [0, +∞) for fixed t ∈ [0, 1], y ∈ [0, +∞), and decreasing in

y ∈ [0, +∞) for fixed t ∈ [0, 1], x ∈ [0, +∞), and g(x) is decreasing in x ∈ [0, +∞);
(L3) For η ∈ (0, 1), there exist ϕi(η) ∈ (η, 1) (i = 1, 2), such that for any t ∈ [0, 1], x, y ∈

[0, +∞)

f
(
t,ηx,η–1y

) ≥ ϕ1(η)f (t, x, y), g(ηx) ≤ ϕ2(η)g(x); (3.1)

(L4) The operator H : P → P is an increasing sub-homogeneous operator, i.e.
(a) for any u, v ∈ P with u ≤ v ⇒ Hu ≤ Hv;
(b) H(ηu) ≥ ηHu, ∀u ∈ P, η ∈ (0, 1).

Then:
(1) for any given λ > 0, problem (1.1) has a unique increasing positive solution u∗

λ

in Ph, where h(t) = t2, t ∈ [0, 1];
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(2) for any x0, y0 ∈ Ph, constructing successively the sequences

⎧
⎨

⎩

xn+1(t) = λ
∫ 1

0 G(t, s)f (s, xn(s), yn(s)) ds – λg(xn(1))ψ(t), n = 0, 1, 2, . . . ,

yn+1(t) = λ
∫ 1

0 G(t, s)f (s, yn(s), xn(s)) ds – λg(yn(1))ψ(t), n = 0, 1, 2, . . . ,

we have ‖xn – u∗
λ‖ → 0 and ‖yn – u∗

λ‖ → 0 as n → ∞;
(3) if ϕi(t) > t 1

2 (i = 1, 2) for t ∈ (0, 1), then u∗
λ is strictly increasing in λ, that is,

0 < λ1 < λ2 implies u∗
λ1

< u∗
λ2

;
(4) if there exists β ∈ (0, 1) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then u∗

λ is
continuous in λ, that is, ‖u∗

λ – u∗
λ0

‖ → 0 (λ → λ0(λ0 > 0));
(5) if there exists β ∈ (0, 1

2 ) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then
limλ→∞ ‖uλ‖ = ∞, limλ→0+ ‖uλ‖ = 0.

Proof For any u, v ∈ P, we define an operator Aλ : P × P → E by

Aλ(u, v)(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – λg

(
u(1)

)
ψ(t).

It is easy to prove that u is the solution of problem (1.1) if and only if u = Aλ(u, u). Next, we
will divide the proof into several steps to ensure the operator Aλ satisfies all the conditions
of Lemma 2.1.

Step 1: We show that Aλ : P × P → P.
From the assumptions (L1), (L4) and the nonnegative character, continuity of G(t, s) in

Lemma 2.5, it can be easily seen that Aλ : P × P → P is a well-defined operator.
Step 2: We show that Aλ is a mixed monotone operator.
In fact, for ui, vi ∈ P, i = 1, 2 with u1 ≥ u2, v1 ≤ v2, we know that u1(t) ≥ u2(t), v1(t) ≤

v2(t), t ∈ [0, 1]. It follows from (L4) that (Hv1)(t) ≤ (Hv2)(t). By (L2) and property (2) in
Lemma 2.5, we get

Aλ(u1, v1)(t) = λ

∫ 1

0
G(t, s)f

(
s, u1(s), (Hv1)(s)

)
ds – λg

(
u1(1)

)
ψ(t)

≥ λ

∫ 1

0
G(t, s)f

(
s, u2(s), (Hv2)(s)

)
ds – λg

(
u2(1)

)
ψ(t) = Aλ(u2, v2)(t).

Hence, Aλ(u1, v1) ≥ Aλ(u2, v2), which implies Aλ is a mixed monotone operator.
Step 3: We prove Aλ(h, h) ∈ Ph. Here we consider the Ph defined by

Ph = {x ∈ P|x �= θ , there exist μ, ξ > 0 such that ξh ≤ x ≤ μh},

in which we take the function h(t) = t2, t ∈ [0, 1]. So we have 0 ≤ h(t) ≤ 1. It follows from
(L4) that 0 ≤ (Hh)(t) ≤ (H1)(t). According to (L1), (L2) and property (3) in Lemma 2.5, we
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deduce

Aλ(h, h)(t) = λ

∫ 1

0
G(t, s)f

(
s, h(s), (Hh)(s)

)
ds – λg

(
h(1)

)
ψ(t)

≥ λ

∫ 1

0

1
12

s2t2f
(
s, 0, (H1)(s)

)
ds – λg(0) · 1

12
t2

=
[

λ

12

∫ 1

0
s2f

(
s, 0, (H1)(s)

)
ds –

λ

12
g(0)

]

· t2

≥ λ

12

[∫ 1

0
s2f

(
s, 0, (H1)(s)

)
ds – g(0)

]

· t2, ∀t ∈ [0, 1], (3.2)

and

Aλ(h, h)(t) ≤ λ

∫ 1

0

1
2

st2f (s, 1, 0) ds – λg(1) · 1
4

t2

=
[

λ

2

∫ 1

0
sf (s, 1, 0) ds –

λ

4
g(1)

]

· t2

≤ λ

2

[∫ 1

0
sf (s, 1, 0) ds – g(1)

]

· t2, ∀t ∈ [0, 1]. (3.3)

Let

r1 =
λ

12

[∫ 1

0
s2f

(
s, 0, (H1)(s)

)
ds – g(0)

]

, r2 =
λ

2

[∫ 1

0
sf (s, 1, 0) ds – g(1)

]

.

Combining (3.2) with (3.3), we have

r1h ≤ Aλ(h, h) ≤ r2h.

Since we have the monotonicity property of f (t, x, y) and g(1) < 0, we have

0 < r1 =
λ

12

[∫ 1

0
s2f

(
s, 0, (H1)(s)

)
ds – g(0)

]

≤ λ

2

[∫ 1

0
sf (s, 1, 0) ds – g(1)

]

= r2.

As a result, Aλ(h, h) ∈ Ph. So the operator Aλ satisfies condition (A1) in Lemma 2.1.
Step 4: We check that the operator Aλ satisfies condition (A2).
Let ϕ(t) = min{ϕ1(t),ϕ2(t)}, t ∈ (0, 1), then ϕ(t) ∈ (t, 1). Using assumptions (L3), (L4), for

η ∈ (0, 1), u, v ∈ P, we obtain

Aλ

(
ηu,η–1v

)
(t) = λ

∫ 1

0
G(t, s)f

(
s,ηu(s), H

(
η–1v

)
(s)

)
ds – λg

(
ηu(1)

)
ψ(t)

≥ λ

∫ 1

0
G(t, s)f

(
s,ηu(s),η–1(Hv)(s)

)
ds – λg

(
ηu(1)

)
ψ(t)

≥ ϕ1(η)λ
∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – ϕ2(η)λg

(
u(1)

)
ψ(t)

≥ ϕ(η)
[

λ

∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – λg

(
u(1)

)
ψ(t)

]

= ϕ(η)Aλ(u, v)(t), ∀t ∈ [0, 1].

Consequently, Aλ(ηu,η–1v) ≥ ϕ(η)Aλ(u, v), ∀u, v ∈ P, η ∈ (0, 1).
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Therefore, Aλ satisfies all the conditions of Lemma 2.1. By applying Lemma 2.1, there
exists a unique u∗

λ ∈ Ph, such that Aλ(u∗
λ, u∗

λ) = u∗
λ.

Hence u∗
λ ia a unique positive solution of the problem (1.1) for fixed λ > 0. Furthermore,

on the basis of Lemma 2.1, for any initial values x0, y0 ∈ Ph, constructing successively the
sequences

⎧
⎨

⎩

xn+1(t) = λ
∫ 1

0 G(t, s)f (s, xn(s), (Hyn)(s)) ds – λg(xn(1))ψ(t), n = 0, 1, 2, . . . ,

yn+1(t) = λ
∫ 1

0 G(t, s)f (s, yn(s), (Hxn)(s)) ds – λg(yn(1))ψ(t), n = 0, 1, 2, . . . ,

we have ‖xn – u∗
λ‖ → 0 and ‖yn – u∗

λ‖ → 0 as n → ∞. In addition, we can show that u∗
λ is

an increasing solution. In fact, by

u∗
λ(t) = λ

∫ 1

0
G(t, s)f

(
s, u∗

λ(s),
(
Hu∗

λ

)
(s)

)
ds – λg

(
u∗

λ(1)
)
ψ(t), ∀t ∈ [0, 1],

we can compute

u′ ∗
λ (t) = λ

∫ 1

0
Gt(t, s)f

(
s, u∗

λ(s),
(
Hu∗

λ

)
(s)

)
ds – λg

(
u∗

λ(1)
)
ψ ′(t), ∀t ∈ [0, 1].

By property (4) in Lemma 2.5 and (L1), we obtain u′ ∗
λ (t) ≥ 0, ∀t ∈ [0, 1], which means u∗

λ(t)
is increasing in [0, 1].

Next, if we set A = 1
λ

Aλ, then A also satisfies all the conditions of Lemma 2.1. So we have
Aλ(u∗

λ(t), u∗
λ(t)) = λA(u∗

λ(t), u∗
λ(t)) = u∗

λ, that is, A(u∗
λ(t), u∗

λ(t)) = 1
λ

u∗
λ(t). If ϕi(t) > t 1

2 (i = 1, 2)
for t ∈ (0, 1), then ϕ(t) > t 1

2 , Lemma 2.3 (1) implies u∗
λ is strictly decreasing in 1

λ
, that is,

u∗
λ is strictly increasing in λ, i.e., 0 < λ1 < λ2 implies u∗

λ1
≤ u∗

λ2
, u∗

λ1
�= u∗

λ2
; if there exists

β ∈ (0, 1) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1), Lemma 2.3
(2) implies u∗

λ is continuous in λ, that is, ‖u∗
λ – u∗

λ0
‖ → 0 (λ → λ0(λ0 > 0)); if there exist

β ∈ (0, 1
2 ) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1), Lemma 2.3

(3) implies limλ→∞ ‖u∗
λ‖ = ∞, limλ→0+ ‖u∗

λ‖ = 0. The proof is completed. �

Remark 3.1 When λ = 1, H is a null operator, the similar type of beam equation has been
studied by Zhai in [22], in which the existence and uniqueness results are obtained by
two fixed point theorems of a sum operator. Note that the functions f , g in [22] only have
stationary monotonicity, while in our study they have two different types of monotonicity.
Therefore, our study is more general.

4 Existence of positive solutions for singular Eq. (1.2)
In this section, we will present another result which is deal with the singular elastic beam
Eqs. (1.2).

Theorem 4.1 Assume that
(L5) f : (0, 1) × [0, +∞) × (0, +∞) → [0, +∞) is continuous, f (t, x, y) may be singular at

t = 0 or 1 and y = 0. g : [0, +∞) → (–∞, 0] is continuous;
(L6) f (t, x, y) is increasing in x ∈ [0, +∞) for fixed t ∈ (0, 1), y ∈ (0, +∞) and decreasing in

y ∈ (0, +∞) for fixed t ∈ (0, 1), x ∈ [0, +∞); g(x) is decreasing in x ∈ [0, +∞);
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(L7) for η ∈ (0, 1), there exist αi ∈ (0, 1) (i = 1, 2), such that

f
(
t,ηx,η–1y

) ≥ ηα1 f (t, x, y), ∀t ∈ (0, 1), x ∈ [0, +∞), y ∈ (0, +∞). (4.1)

g(ηx) ≤ ηα2 g(x), ∀t ∈ (0, 1), x ∈ [0, +∞); (4.2)

(L8) let α = max{α1,α2}, α ∈ (0, 1), then

∫ 1

0
s1–2αf (s, 1, 1) ds < +∞

with f (t, 1, 1) �≡ 0. Then the results (1)–(5) in Theorem 3.1 are still true.

Proof For any u, v ∈ P, we define an operator Aλ : P × P → E by

Aλ(u, v)(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – λg

(
u(1)

)
ψ(t).

Evidently, u is the solution of problem (1.2) if and only if u = Aλ(u, u). In the sequel we
check that Aλ satisfies all the conditions of Lemma 2.2.

At first, we will prove operator Aλ : Ph × Ph → Ph is a mixed monotone operator. Here
we consider the Ph defined by

Ph =
{

x ∈ P
∣
∣
∣ ∃ρ > 1 :

1
ρ

h ≤ x ≤ ρh,∀t ∈ [0, 1]
}

,

with h(t) = t2, t ∈ [0, 1]. By (L7), for all η ∈ (0, 1), t ∈ (0, 1), x ∈ [0, +∞), y ∈ (0, +∞), there
exist α1, α2 ∈ (0, 1), one has

f (t, x, y) = f
(
t,ηη–1x,η–1ηy

) ≥ ηα1 f
(
t,η–1x,ηy

)
,

g(x) = g
(
ηη–1x

) ≤ ηα2 g
(
η–1x

)
.

From the above inequalities and the fact that α = max{α1,α2} we have

f
(
t,η–1x,ηy

) ≤ 1
ηα1

f (t, x, y) ≤ 1
ηα

f (t, x, y), (4.3)

g
(
η–1x

) ≥ 1
ηα2

g(x) ≥ 1
ηα

g(x). (4.4)

Set x = 1, y = 1 in (4.1)–(4.4), we can easily obtain

f
(
t,η,η–1) ≥ ηαf (t, 1, 1), g(η) ≤ ηαg(1), (4.5)

f
(
t,η–1,η

) ≤ 1
ηα

f (t, 1, 1), g
(
η–1) ≥ 1

ηα
g(1). (4.6)
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For any u, v ∈ Ph, we can choose a constant ρ ≥ 1 to satisfy 1
ρ

t2 ≤ u(t), v(t) ≤ ρt2, ∀t ∈ [0, 1].
From (L6) and (4.1)–(4.6), we obtain

f
(
t, u(t), v(t)

) ≤ f
(

t,ρt2,
1
ρ

t2
)

≤ f
(

t,ρ
1
t2 ,

1
ρ

t2
)

≤ 1
t2α

f
(

t,ρ,
1
ρ

)

≤ ρα

t2α
f (t, 1, 1), ∀t ∈ (0, 1), (4.7)

g
(
u(t)

) ≤ g
(

1
ρ

t2
)

≤ t2αg
(

1
ρ

)

≤ t2α

ρα
g(1), ∀t ∈ (0, 1), (4.8)

f
(
t, u(t), v(t)

) ≥ f
(

t,
1
ρ

t2,ρt2
)

≥ f
(

t,
1
ρ

t2,ρ
1
t2

)

≥ t2αf
(

t,
1
ρ

,ρ
)

≥ t2α

ρα
f (t, 1, 1), ∀t ∈ (0, 1), (4.9)

g
(
u(t)

) ≥ g
(
ρt2) ≥ g

(

ρ
1
t2

)

≥ 1
t2α

g(ρ) =
ρα

t2α
g(1), ∀t ∈ (0, 1). (4.10)

It follows from Lemma 2.5, (4.7), (4.10) and (L8) that

Aλ(u, v)(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – λg

(
u(1)

)
ψ(t)

≤ λ

∫ 1

0

1
2

st2 ρα

s2α
f (s, 1, 1) ds – λ

1
4

t2ραg(1)

= ρα

[
λ

2

∫ 1

0
s1–2αf (s, 1, 1) ds –

λg(1)
4

]

t2 < +∞, ∀t ∈ [0, 1]. (4.11)

Then Lemma 2.4 implies that A : Ph × Ph → P is well defined. By Lemma 2.4, (4.8) and
(4.9), we also have

Aλ(u, v)(t) ≥ λ

∫ 1

0

1
12

s2t2 s2α

ρα
f (s, 1, 1) ds – λ

t2

12
1
ρα

g(1)

=
1
ρα

[
λ

12

∫ 1

0
s2+2αf (s, 1, 1) ds –

λg(1)
12

]

t2, ∀t ∈ [0, 1]. (4.12)

Let ρ be a positive constant defined by

ρ > max

{

1,
(

λ

2

∫ 1

0
s1–2αf (s, 1, 1) ds –

λg(1)
4

) 1
1–α

,

×
(

λ

12

∫ 1

0
s2+2αf (s, 1, 1) ds –

λg(1)
12

) 1
α–1

}

. (4.13)

It follows from (4.11) and (4.12) that

1
ρ

h(t) =
1
ρ

t2 ≤ Aλ(u, v)(t) ≤ ρt2 = ρh(t), ∀t ∈ [0, 1],

which means Aλ(u, v) ∈ Ph, we prove Aλ : Ph × Ph → Ph.
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Next, similar to the proof of Theorem 3.1, from Lemma 2.5 and (L5), (L6), we see that
Aλ : Ph × Ph → Ph is a mixed monotone operator.

At last, we show that Aλ satisfies (2.1) in Lemma 2.1. It follows from (L7) that

Aλ

(
ηu,η–1v

)
(t) = λ

∫ 1

0
G(t, s)f

(
s,ηu(s),η–1v(s)

)
ds – λg

(
ηu(1)

)
ψ(t)

≥ ηα1λ

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – ηα2λg

(
u(1)

)
ψ(t)

≥ ηα

[

λ

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – λg

(
u(1)

)
ψ(t)

]

= ηαAλ(u, v)(t) ∀u, v ∈ Ph,η ∈ (0, 1), t ∈ [0, 1]. (4.14)

Consequently, Aλ(ηu,η–1v) ≥ ηαAλ(u, v), ∀u, v ∈ Ph, η ∈ (0, 1).
Therefore, Aλ satisfies all the conditions of Lemma 2.2. By Lemma 2.2, there exists a

unique u∗
λ ∈ Ph such that Aλ(u∗

λ, u∗
λ) = u∗

λ. It is easy to check that u∗
λ ia a unique positive so-

lution of the problem (1.1) for fixed λ > 0. Similar to the proof in Theorem 3.1, by (L5) and
property (4) in Lemma 2.5, we can illustrate the unique positive solution u∗

λ(t) is increasing
on (0, 1). Also, for any initial values x0, y0 ∈ Ph, constructing successively the sequences

⎧
⎨

⎩

xn+1(t) = λ
∫ 1

0 G(t, s)f (s, xn(s), yn(s)) ds + λg(xn(1))ψ(t), n = 0, 1, 2, . . . ,

yn+1(t) = λ
∫ 1

0 G(t, s)f (s, yn(s), xn(s)) ds + λg(yn(1))ψ(t), n = 0, 1, 2, . . . ,

we have ‖xn – u∗
λ‖ → 0 and ‖yn – u∗

λ‖ → 0 as n → ∞. Furthermore, if we set Aλ = λA,
on the basis of Lemma 2.3, if ϕi(t) > t 1

2 (i = 1, 2) for t ∈ (0, 1), then ϕ(t) > t 1
2 , u∗

λ is strictly
decreasing in 1

λ
, that is, 0 < λ1 < λ2 implies u∗

λ1
> u∗

λ2
; and if there exists β ∈ (0, 1) such

that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1), so u∗
λ is continuous in λ,

that is, ‖u∗
λ – u∗

λ0
‖ → 0 (λ → λ0(λ0 > 0)). And if there exists β ∈ (0, 1

2 ) such that ϕi(t) ≥ tβ

(i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1), so limλ→∞ ‖u∗
λ‖ = ∞, limλ→0+ ‖u∗

λ‖ = 0.
The proof is completed. �

Remark 4.1 According to the proof, when g ≡ 0 in the problem (1.1) and (1.2), our The-
orems 3.1 and 4.1 still hold true. In this case, set λ = 1, this model is the classical sliding
clamped beam. So our study is relevant in the field of engineering.

5 Example
In this section, we will give two concrete examples to illustrate those results can be used
in practice.

Example 5.1 Consider the following fourth-order boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(4)(t) = u 1
4 (t) + 1

1+(u
1
2 (t))

1
3

+ cos2(t) 0 < t < 1;

u(0) = u′(0) = 0,

u′(1) = 0, u′′′(1) = –u 1
3 (1) – 1.

(5.1)
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Obviously, problem (5.1) fits the framework of problem (1.1) with λ = 1, and H : E → E
an operator defined by

(Hu)(t) = u
1
2 (t), f (t, x, y) = x

1
4 +

1
1 + y 1

3
+ cos2 t, g(x) = –

(
x

1
3 + 1

)
.

It is easy to see that f : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous, f (t, x, y) is
increasing in x ∈ [0, +∞) for fixed t ∈ [0, 1], y ∈ [0, +∞) and decreasing in y ∈ [0, +∞)
for fixed t ∈ [0, 1], x ∈ [0, +∞). Besides, g : [0, +∞) → (–∞, 0] is continuous and g(x) is
decreasing in x ∈ [0, +∞), g(1) = –2 < 0. So the conditions (L1), (L2) hold.

Next, we show the operator H satisfies condition (L4). In fact, (1) ∀u ∈ P, we have
(Hu)(t) = u 1

2 (t) ≥ 0, which implies Hu ∈ P, so H : P → P. (2) ∀u, v ∈ P with u ≤ v, we
have (Hu)(t) = u 1

2 (t) ≤ v 1
2 (t) = (Hv)(t), ∀t ∈ [0, 1], which means Hu ≤ Hv, and H is an in-

creasing operator. (3) ∀u ∈ P, η ∈ (0, 1), t ∈ [0, 1], we deduce that H(ηu)(t) = (ηu) 1
2 (t) ≥

ηu 1
2 (t) = η(Hu)(t), by which we get H(ηu) ≥ ηHu, so H is a sub-homogeneous operator.

Furthermore, if we set ϕ1(η) = η
1
3 , ϕ2(η) = η

1
3 , η ∈ (0, 1), then ϕ1(η),ϕ2(η) ∈ (η, 1) and

f
(
t,ηx,η–1y

)
= (ηx)

1
4 +

1
1 + (η–1y) 1

3
+ cos2 t ≥ η

1
4 x

1
4 +

η
1
3

1 + y 1
3

+ cos2 t

≥ η
1
3

(

x
1
2 +

1
1 + y 1

3
+ cos2 t

)

= ϕ1(η)f (t, x, y),

g(ηx) = –
(
(ηx)

1
3 + 1

) ≤ –η
1
3
(
x

1
3 + 1

)
= ϕ2(η)g(x),

for t ∈ [0, 1], x, y ∈ [0, +∞). As a result, condition (L3) holds. Hence all the conditions of
Theorem 3.1 are satisfied. By the application of Theorem 3.1, we can see that the problem
(5.1) has a unique increasing positive solution u∗

λ ∈ Ph. And for any initial values x0, y0 ∈ Ph,
constructing two sequences

⎧
⎨

⎩

xn+1(t) = λ
∫ 1

0 G(t, s)( 4√xn + 1
1+ 3√yn

+ cos2 s) ds – λ( 3√xn + 1)ψ(t), n = 0, 1, 2, . . . ,

yn+1(t) = λ
∫ 1

0 G(t, s)( 4√yn + 1
1+ 3√xn

+ cos2 s) ds – λ( 3√yn + 1)ψ(t), n = 0, 1, 2, . . . ,

we have ‖xn – u∗
λ‖ → 0 and ‖yn – u∗

λ‖ → 0 as n → ∞. Moreover, we have ϕ1(t) = ϕ2(t) > t 1
2

for t ∈ (0, 1), then u∗
λ is increasing in λ. Also, setting β = 1

3 , we easily obtain u∗
λ is continuous

in λ and limλ→∞ ‖u∗
λ‖ = ∞, limλ→0+ ‖u∗

λ‖ = 0.

Remark 5.1 The operator H : E → E which satisfies the assumption (L4) of Theorem 3.1
includes the linear or the nonlinear cases. For example, we may set a composition operator
defined by

(Hu)(t) = u
(
ϕ(t)

)
, ∀t ∈ [0, 1], u ∈ E,

and a multiplication operator defined by

(Hu)(t) = ϕ(t)u(t), ∀t ∈ [0, 1], u ∈ E,
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where ϕ : [0, 1] → [0, +∞) is a continuous function. We use an integral operator defined
by

(Hu)(t) =
∫ t

0
u(s) ds, ∀t ∈ [0, 1], u ∈ E.

It is easy to see that the above three operators are linear and satisfy the required assump-
tion. Besides, we may present some nonlinear operators that meet the conditions (L4). An
example is the operator defined by

(Hu)(t) = max
{∣
∣u(s)

∣
∣ : 0 ≤ s ≤ t

}
, ∀t ∈ [0, 1], u ∈ E.

We can define another nonlinear operator by

(Hu)(t) = uγ (t), ∀t ∈ [0, 1], u ∈ E,γ ∈ (0, 1).

Example 5.2 Consider the following fourth-order boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(4)(t) = 3
√

u(t)+1
t(1–t)u(t) 0 < t < 1;

u(0) = u′(0) = 0,

u′(1) = 0, u′′′(1) = –u 1
2 (1),

(5.2)

where λ = 1,

f (t, x, y) = 3

√
x + 1

t(1 – t)y
, g(x) = –x

1
2 .

It is easy to see that f : (0, 1)× [0, +∞)× (0, +∞) → [0, +∞) is continuous with f (t, 1, 1) =√
2

t(1–t) �≡ 0. f (t, x, y) is singular at t = 0, 1 and y = 0. f (t, x, y) is increasing in x ∈ [0, +∞) for
fixed t ∈ (0, 1), y ∈ (0, +∞) and decreasing in y ∈ (0, +∞) for fixed t ∈ (0, 1), x ∈ [0, +∞).
Besides, g : [0, +∞) → (–∞, 0] is continuous and g(x) is decreasing in x ∈ [0, +∞).

Set α1 = 2
3 , α2 = 1

2 , then α = 2
3 , and

f
(
t,ηx,η–1y

)
= 3

√
ηx + 1

t(1 – t)η–1y
≥ η

2
3 3

√
x + 1

t(1 – t)y
= ηα1 f (t, x, y),

g(ηx) = –(ηx)
1
2 ≤ –η

1
2 x

1
2 = ηα2 g(x),

for η ∈ (0, 1), t ∈ (0, 1), x ∈ [0, +∞), y ∈ (0, +∞). Also we have

∫ 1

0
s1–2αf (s, 1, 1) ds =

∫ 1

0
s– 1

3 3

√
2

s(1 – s)
ds = 4.57 < +∞,

(
λ

2

∫ 1

0
s1–2αf (s, 1, 1) ds –

λg(1)
12

) 1
1–α

=
(

1
2

× 4.57 +
1
4

)3

= 16.29,

(
λ

12

∫ 1

0
s2+2αf (s, 1, 1) ds –

λg(1)
4

) 1
α–1

=
(

1
12

∫ 1

0
s

10
3 3

√
2

s(1 – s)
ds +

1
12

)–3

= 354.33.
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Hence

ρ > {1, 16.29, 354.33}.

As a result, all the conditions of Theorem 4.1 are satisfied. By the application of Theorem
4.1, we can see that the problem (5.2) has a unique positive solution u∗

λ ∈ Ph. Here if we
set ρ = 355, we get u∗

λ(t) ∈ ( 1
355 t2, 355t2), then the property of the unique positive solution

is clearer.
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