
Zhang et al. Boundary Value Problems         (2019) 2019:14 
https://doi.org/10.1186/s13661-019-1120-5

R E S E A R C H Open Access

Difference numerical solutions for
time-space fractional advection diffusion
equation
Fangfang Zhang1*, Xiaoyang Gao1 and Zhaokun Xie1

*Correspondence:
zhangff1986@163.com
1School of Electrical Engineering,
Zhengzhou University, Zhengzhou,
China

Abstract
In this paper, a time-space fractional advection diffusion equation is considered for
the natural extension of the convection diffusion equation. An explicit difference
scheme and an implicit difference scheme are presented. The stability and
convergence of the two difference schemes are discussed. It is shown that the explicit
difference scheme is conditionally stable and convergent, and the implicit difference
scheme is unconditionally stable and convergent. The convergence order of the two
methods is O(τ + h).
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1 Introduction
The research and application of fractional differential equations have attracted the atten-
tion of many scholars in the last few decades. Fractional order differential equations are
generalizations of classical differential equations. They are used to describe the models
and phenomena in some natural physical processes, chemical reactions, water pollution,
financial markets, and so on [1–3]. In order to get the solutions of these equations, many
methods had been developed and used, such as analytical methods, approximation meth-
ods, difference methods, etc. [4–10].

The fractional order convection diffusion equations are the generalization of the in-
tegral order convection diffusion equations. They are produced in the process of some
anomalous diffusion. For general fractional advection diffusion equation, it is hard to get
the accurate result. And the numerical method is important and useful in dealing with
fractional differential equations. Yu studied the implicit difference approximation of the
time fractional reaction diffusion equation in [11]. Zhuang [12] and Tan [13] separatively
studied the explicit and implicit difference schemes for time-space fractional reaction-
diffusion equations, and the stability and convergence were discussed. Based on the in-
tegral transform method, Povstenko [14] and Zhang [15] obtained the analytical results
of time-fractional diffusion-wave equation with a source term in cylindrical coordinates.
The Jacobi collocation method for solving a special kind of the fractional advection dif-
fusion equation with a nonlinear source term was used in [16]. Finite element multigrid
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method for multi-term time fractional advection diffusion equations was given in [17].
Two approximate results in two different generalizations of the space-time-fractional ad-
vection diffusion equation were discussed in [18]. The fundamental solutions were ob-
tained by the Laplace transform and Fourier transform, and the numerical results were
also obtained. A fully implicit finite difference scheme based on extended cubic B-splines
for time fractional advection diffusion equation was obtained in [19]. This study [20] was
concerned with the mixed initial boundary value problem for a dipolar body in the con-
text of the thermoelastic theory, and the Hölder-type stability was also discussed. It is well
known that fractional operators are nonlocal and hence independent of the used numeri-
cal methods. In order to have an acceptable computational cost, the structure of Toeplitz
or Toeplitz-times-diagonal type were exploited and discussed in [21, 22].

In this paper, based on the finite difference method, we discuss a time-space fractional
advection diffusion equation, where the time term, the advection term, and the diffusion
term are all fractional order derivatives. An explicit difference scheme and an implicit dif-
ference scheme are obtained. Then the stability and convergence of the two difference
schemes are discussed. The paper is organized as follows. The time-space fractional ad-
vection diffusion model is given in Sect. 2. The explicit difference scheme is presented in
Sect. 3. In Sect. 4, the implicit difference scheme is discussed. The conclusions are pre-
sented in Sect. 5.

2 Problem formulation
In this paper, the following time-space fractional advection diffusion equation is consid-
ered:

∂αu(x, t)
∂tα

= –b(x)
∂γ u(x, t)

∂xγ
+ a(x)

∂βu(x, t)
∂xβ

+ s(x, t), (2.1)

where 0 ≤ x ≤ L, 0 ≤ t ≤ T , and L, T are any given finite constants. And the initial value
condition and the boundary value condition are as follows:

u(x, 0) = f (x), 0 ≤ x ≤ L, (2.2)

u(0, t) = u(L, t) = 0, t > 0, (2.3)

in which a(x) > 0, b(x) > 0, 0 < α ≤ 1, 1 < β ≤ 2, 0 < γ ≤ 1 and f (x) is one given function.
∂αu(x,t)

∂tα and ∂γ u(x,t)
∂xγ are defined as the Caputo fractional derivative

∂αu(x, t)
∂tα

=
1

Γ (1 – α)

∫ t

0
(t – η)–α ∂u(x,η)

∂η
dη, (2.4)

∂γ u(x, t)
∂xγ

=
1

Γ (1 – γ )

∫ x

0
(x – ζ )–γ ∂u(ζ , t)

∂ζ
dζ . (2.5)

∂β u(x,t)
∂xβ is defined as the Riemann–Liouville fractional derivative

∂βu(x, t)
∂xβ

=
1

Γ (2 – β)
∂2

∂x2

∫ x

0

u(ξ , t)
(x – ξ )β–1 dξ . (2.6)
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For the normal situation, it is very difficult to get an analytical solution of equations
(2.1)–(2.3). Let us consider the numerical solution of the equations based on the difference
method in the following sections.

3 Explicit difference scheme
Let tk = kτ , k = 0, 1, 2, . . . , n; xi = ih, i = 0, 1, 2, . . . , m, where τ = T

n and h = L
m represent

the time step and space step, respectively. Based on the difference method, we obtain the
following difference approximation:

∂αu(x, t)
∂tα

∣∣∣∣
xi ,tk+1

=
1

Γ (1 – α)

k∑
j=0

u(xi, tj+1) – u(xi, tj)
τ

∫ (j+1)τ

jτ

dξ

(tk+1 – η)α
+ O(τ )

=
τ 1–α

Γ (2 – α)

k∑
j=0

u(xi, tk+1–j) – u(xi, tk–j)
τ

[
(j + 1)1–α – j1–α

]
+ O(τ ), (3.1)

∂γ u(x, t)
∂xγ

∣∣∣∣
xi ,tk

=
1

Γ (1 – γ )

i–1∑
j=0

u(xj+1, tk) – u(xj, tk)
h

∫ (j+1)h

jh

dη

(xi – ζ )γ
+ O(h)

=
h1–γ

Γ (2 – γ )

i–1∑
j=0

u(xi–j, tk) – u(xi–j–1, tk)
h

[
(j + 1)1–γ – j1–γ

]
+ O(h). (3.2)

∂β u(x,t)
∂xβ uses the following improved Grünwald difference formula:

∂βu(x, t)
∂xβ

=
1

hβ

i+1∑
j=0

gju(xi+1–j, tk) + O(h), (3.3)

where g0 = 1, g1 = –β , gj–1 = (–1)j β(β–1)···(β–j+1)
j! .

In the following, we will use the symbol regulation. Let

u(xi, tk) = uk
i , s(xi, tk) = sk

i , a(xi) = ai, b(xi) = bi,

ϕj = (j + 1)1–α – j1–α , ωj = (j + 1)1–γ – j1–γ ,

Ai =
aiτ

αΓ (2 – α)
hβ

, Bi =
biτ

αΓ (2 – α)
Γ (2 – γ )hγ

.

Substituting the difference scheme (3.1)–(3.3) into the original equation (2.1) and the
initial boundary conditions (2.2)–(2.3), we can obtain

k∑
j=0

ϕj
(
uk+1–j

i – uk–j
i

)
= –Bi

i–1∑
j=0

ωj
(
uk

i–j – uk
i–j–1

)
+ Ai

i+1∑
j=0

uk
i+1–j

+ ταΓ (2 – α)sk
i + O(τ + h). (3.4)
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When k = 0,

u1
i = (1 – Bi + g1Ai)u0

i – Bi

i–2∑
j=0

(ωj+1 – ωj)u0
i–j–1

+ Ai

i+1∑
j=0, �=1

gju0
i–j+1 + ταΓ (2 – α)s0

i . (3.5)

When k ≥ 1,

uk+1
i = (1 – ϕ1 – Bi + g1Ai)uk

i + Ai

i+1∑
j=0, �=1

gjuk
i–j+1 – Bi

i–2∑
j=0

(ωj+1 – ωj)uk
i–j–1

–
k–1∑
j=1

(ϕj+1 – ϕj)u
k–j
i + ϕku0

i + ταΓ (2 – α)sk
i . (3.6)

3.1 Stability analysis
Let ũk

i , uk
i (i = 1, 2, . . . , m – 1; k = 1, 2, . . . , n – 1) be the solutions of difference equation (3.4)

which satisfy the initial conditions f1(x), f2(x), respectively. Suppose that sk
i is accurate, the

errors of the two solutions are defined as

εk
i = ũk

i – uk
i . (3.7)

If k = 0, based on equation (3.5), we can get

ε1
i = (1 – Bi + g1Ai)ε0

i – Bi

i–2∑
j=0

(ωj+1 – ωj)ε0
i–j–1 + Ai

i+1∑
j=0, �=1

gjε
0
i–j+1, (3.8)

where i = 1, 2, . . . , m – 1.
If k ≥ 1, based on equation (3.6), it follows that

εk+1
i = (1 – ϕ1 – Bi + g1Ai)εk

i + Ai

i+1∑
j=0, �=1

gjε
k
i–j+1 – Bi

i–2∑
j=0

(ωj+1 – ωj)

∗ εk
i–j–1 –

k–1∑
j=1

(ϕj+1 – ϕj)ε
k–j
i + ϕkε

0
i , (3.9)

where i = 1, 2, . . . , m – 1; k = 1, . . . , n – 1.
Let Ek = [εk

1 , εk
2 , . . . , εk

m–1]T , |εk
L| = max1≤j≤m–1 |εk

j |, aq = max0≤i≤m a(xi), bq =
max0≤i≤m b(xi), then we can get the following theorem.

Theorem 3.1 If 0 < bqτα

hγ Γ (2–γ ) + aqβτα

hβ ≤ 2–21–α

Γ (2–α) , then ‖Ek‖∞ ≤ ‖E0‖∞, that is, the explicit
difference schemes (3.8)–(3.9) are stable.

Proof Because
∑N

j=0 gj < 0,
∑N

j=0,j �=1 gj > 0, ϕj+1 – ϕj < 0, ωj+1 – ωj < 0, when k = 0

∥∥E1∥∥∞ =
∣∣ε1

L
∣∣ ≤

[
1 – Bi – Bi

i–2∑
j=0

(ωj+1 – ωj) + Ai

i+1∑
j=0

gj

]∥∥E0∥∥∞ ≤ ∥∥E0∥∥∞.
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We use mathematical induction to prove it when k ≥ 1. Suppose ‖Ej‖∞ ≤ ‖E0‖∞, j =
1, 2, . . . , k, then

∥∥Ek+1∥∥∞ =
∣∣εk+1

L
∣∣

≤
[

1 – ϕ1 – Bi + Ai

i+1∑
j=0

gj – Bi

i–2∑
j=0

(ωj+1 – ωj)

]∥∥Ek∥∥∞

–
k–1∑
j=1

(ϕj+1 – ϕj)
∥∥Ek–j∥∥∞ + ϕk

∥∥E0∥∥∞

≤
[

1 + Ai

i+1∑
j=0

gj

]∥∥E0∥∥∞ ≤ ∥∥E0∥∥∞.

So the difference scheme is stable. The theorem is proved. �

3.2 Convergence analysis
Suppose that u(xi, tk) is the exact solution of the differential equations (2.1)–(2.3) in
the grid point (xi, tk). Let ek

i = u(xi, tk) – uk
i and ek = (ek

1, ek
2, . . . , ek

m–1)T . Then we have
uk

i = u(xi, tk) – ek
i , i = 1, 2, . . . , m – 1.

Substituting difference equation and using e0 = 0, we can the error iterative scheme.
When k = 1,

e1
i = Ri,1, i = 1, 2, . . . , m – 1. (3.10)

When k ≥ 1,

ek+1
i = (1 – ϕ1 – Bi – g1Ai)ek

i + Ai

i+1∑
j=0, �=1

gj – Bi

i–2∑
j=0

(ωj+1 – ωj)

∗ ek
i–j–1 –

k–1∑
j=1

(ϕj+1 – ϕj)e
k–j
i + Ri,k+1, (3.11)

where we use the solution |Ri,k+1| ≤ C(τ 1+α + ταh), and i = 1, 2, . . . , m – 1; k = 2, . . . ,
n – 1.

Based on mathematical induction, we can get the following theorem.

Theorem 3.2 If 0 < bqτα

hγ Γ (2–γ ) + aqβτα

hβ ≤ 2–21–α

Γ (2–α) , then

∥∥ek∥∥∞ ≤ ϕ–1
k–1C

(
τ 1+α + ταh

)
, k = 1, 2, . . . , n. (3.12)

Proof Let |ek
L| = max1≤i≤m–1 |ek

i |, k = 1, 2, . . . , n, we can get

∥∥e1∥∥∞ =
∣∣e1

L
∣∣ ≤ |Ri,1| ≤ b–1

0 C
(
τ 1+α + ταh

)
.
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Suppose ‖ej‖∞ ≤ b–1
j–1C(τ 1+α + ταh), j = 1, 2, . . . , k, because gj > gj+1, ϕj > ϕj+1, j =

0, 1, 2, . . . , n – 1, so we can obtain

∥∥ek+1∥∥∞ =
∣∣ek+1

L
∣∣

≤
[

1 – ϕ1 – Bi + Ai

i+1∑
j=0

gj – Bi

i–2∑
j=0

(ωj+1 – ωj)

]∥∥ek∥∥∞

–
k–1∑
j=1

(ϕj+1 – ϕj)
∥∥ek–j∥∥∞ + Ri,k+1

≤
(

1 – ϕ1 –
k–1∑
j=1

(ϕj+1 – ϕj) + ϕk

)

∗ ϕ–1
k C

(
τ 1+α + ταh

)
= ϕ–1

k C
(
τ 1+α + ταh

)
.

So the theorem is proved. �

Because limk→∞
ϕ–1

k
kα = limk→∞ k–α

(k+1)1–α–k1–α = 1
α

, then there is a constant C > 0 that makes

∥∥ek∥∥∞ ≤ Ckα
(
τ 1+α + ταh

)
= C(kτ )α(τ + h). (3.13)

If kτ < T is limited, we can get the following proposition easily.

Proposition 3.3 There is a constant C1 = CTα such that

∥∥uk
i – u(xi, tk)

∥∥∞ ≤ C1(τ + h), i = 1, 2, . . . , m – 1; k = 1, 2, . . . , n. (3.14)

By Theorems 3.1 and 3.2, we know that the explicit difference scheme has some strict
conditions for the equation parameters and the time step and space step of the difference.
To reduce this limit, we will discuss the implicit difference scheme.

4 Implicit difference scheme
Do the same mesh segmentation as the differential scheme shown above, and the following
differential approximation for the equation is obtained:

∂αu(x, t)
∂tα

∣∣∣∣
xi ,tk+1

=
1

Γ (1 – α)

k∑
j=0

u(xi, tj+1) – u(xi, tj)
τ

∫ (j+1)τ

jτ

dξ

(tk+1 – ξ )α
+ O(τ )

=
τ 1–α

Γ (2 – α)

k∑
j=0

u(xi, tk+1–j) – u(xi, tk–j)
τ

[
(j + 1)1–α – j1–α

]
+ O(τ ),

∂γ u(x, t)
∂xγ

∣∣∣∣
xi ,tk+1

=
h1–γ

Γ (2 – γ )

i–1∑
j=0

u(xi–j, tk+1) – u(xi–j–1, tk+1)
h

∗ [
(j + 1)1–γ – j1–γ

]
+ O(h).
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For ∂β u(x,t)
∂xβ term, we replace it with the following Grünwald improved formula:

∂βu(xi, tk+1)
∂xβ

=
1

hβ

i+1∑
j=0

gju(xi+1–j, tk+1) + O(h),

in which g0 = 1, g1 = –β , gj = (–1)j β(β–1)···(β–j+1)
j! , j = 1, 2, 3, . . . .

Substituting the above difference equations into the original equation (2.1), we can ob-
tain

τ 1–α

Γ (2 – α)

k∑
j=0

u(xi, tk+1–j) – u(xi, tk–j)
τ

[
(j + 1)1–α – j1–α

]

= –b(xi)
h1–γ

Γ (2 – γ )

i–1∑
j=0

u(xi–j, tk+1) – u(xi–j–1, tk+1)
h

[
(j + 1)1–γ – j1–γ

]

+
a(xi)
hβ

i+1∑
j=0

gju(xi–j+1, tk+1) + s(xi, tk) + O(τ + h). (4.1)

Using the same symbol mark as that in the last section, the difference equation (4.1) can
be rewritten as

k∑
j=0

ϕj
(
uk+1–j

i – uk–j
i

)
= –Bi

i–1∑
j=0

ωj
(
uk+1

i–j – uk+1
i–j–1

)
+ Ai

i+1∑
j=0

gjuk+1
i+1–j

+ ταΓ (2 – α)sk
i , k = 0, 1, 2, . . . , n. (4.2)

When k = 0, by equation (4.2), we can get

(1 + Bid0 – Aig1)u1
i – Ai

i+1∑
j=0, �=1

gju1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)u1
i–j–1 – Biu1

0

= u0
i + ταΓ (2 – α)s0

i . (4.3)

When k ≥ 1,

(1 + Bid0 – Aig1)uk+1
i – Ai

i+1∑
j=0, �=1

gjuk+1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)uk+1
i–j–1 – Biuk+1

0

= ϕku0
i –

k–1∑
j=0

(ϕj+1 – ϕj)u
k–j
i + ταΓ (2 – α)sk

i . (4.4)

In the following, we will discuss the stability and convergence of the difference equations
(4.3) and (4.4).

4.1 Stability analysis
Let ũk

i , uk
i (i = 1, 2, . . . , m – 1; k = 1, 2, . . . , n – 1) be the solutions of equation (4.1), which

satisfy the initial conditions f̃ (x), f (x), respectively. Suppose that the calculation of sk
i is
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accurate and the error εk
i = ũk

i – uk
i . By equations (4.3) and (4.4), the following equations

are easy to get.
For k = 0,

(1 + Bid0 – Aig1)ε1
i – Ai

i+1∑
j=0, �=1

gjε
1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)ε1
i–j–1 – Biε

1
0 = ε0

i . (4.5)

For k ≥ 1,

(1 + Bid0 – Aig1)εk+1
i – Ai

i+1∑
j=0, �=1

gjε
k+1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)εk+1
i–j–1 – Biε

k+1
0

= ϕkε
0 –

k–1∑
j=0

(ϕj+1 – ϕj)ε
k–j
i , (4.6)

where i = 1, 2, . . . , m – 1; k = 1, . . . , n – 1.
Let Ek = [εk

1 , εk
2 , . . . , εk

m–1]T , |εk
L| = max1≤j≤m–1 |εk

j |, k = 0, 1, 2, . . . , n – 1. By mathematical
induction, we can get the following theorem.

Theorem 4.1 For any k ≥ 0, ‖Ek‖∞ ≤ ‖E0‖∞, i.e., the implicit difference approximation
defined is unconditionally stable.

Proof For k = 0, by equation (4.5), we can get

∥∥E1∥∥∞ =
∣∣ε1

L
∣∣ ≤

∣∣∣∣∣(1 + Bid0 – Aig1) – Ai

i+1∑
j=0, �=1

gj + Bi

i–2∑
j=0

(ωj+1 – ωj) – Bi

∣∣∣∣∣
=

∣∣ε0
l
∣∣ =

∥∥E0∥∥∞, (4.7)

where we use the result
∑N

j=0 gj < 0. Therefore, ‖E1‖∞ ≤ ‖E0‖∞.
Suppose k ≤ s, we have ‖Ek‖∞ ≤ ‖E0‖∞, k = 1, 2, . . . , s. If k = s + 1,

∥∥Es+1∥∥∞ =
∣∣εs+1

L
∣∣

≤ (1 + Bid0 – Aig1)
∣∣εs+1

i
∣∣ – Ai

i+1∑
j=0, �=1

gj
∣∣εs+1

i+1–j
∣∣

+ Bi

i–2∑
j=0

(ωj+1 – ωj)
∣∣εs+1

i–j–1
∣∣ – Bi

∣∣εs+1
0

∣∣

≤
∣∣∣∣∣(1 + Bid0 – Aig1)εs+1

i – Ai

i+1∑
j=0, �=1

gjε
s+1
i+1–j

+ Bi

i–2∑
j=0

(ωj+1 – ωj)εs+1
i–j–1 – Biε

s+1
0

∣∣∣∣∣
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≤
∣∣∣∣∣ϕkε

0 –
k–1∑
j=0

(ϕj+1 – ϕj)ε
k–j
i

∣∣∣∣∣

≤
∣∣∣∣∣ϕk –

k–1∑
j=0

(ϕj+1 – ϕj)

∣∣∣∣∣
∥∥E0∥∥∞ ≤ ∥∥E0∥∥∞. (4.8)

So, for any k ≥ 0, we have ‖Ek‖∞ ≤ ‖E0‖∞. Therefore, the implicit difference approxima-
tion is unconditionally stable. The proof is finished. �

Compared to the explicit difference scheme, the implicit difference scheme for the orig-
inal equation is unconditionally stable.

4.2 Convergence analysis
Suppose that u(xi, tk) is the exact solution of the original equation at the grid point (xi, tk).
Let ek

i = u(xi, tk) – uk
i and ek = (ek

1, ek
2, . . . , ek

m–1). Substituting the difference equations (4.3),
(4.4) and using e0 = 0, we can get, if k = 0,

(1 + Bid0 – Aig1)e1
i – Ai

i+1∑
j=0, �=1

gje1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)e1
i–j–1 – Bie1

0 = R1
i . (4.9)

If k ≥ 1, we can get

(1 + Bid0 – Aig1)ek+1
i – Ai

i+1∑
j=0, �=1

gjek+1
i+1–j + Bi

i–2∑
j=0

(ωj+1 – ωj)ek+1
i–j–1 – Biek+1

0

= ϕke0
i –

k–1∑
j=0

(ϕj+1 – ϕj)e
k–j
i + Rk+1

i , (4.10)

where we use the solution |Rk+1
i | ≤ C(τ 1+α + ταh), where C is a constant independent of τ

and h, i = 1, 2, . . . , m–1; k = 0, 1, 2, . . . , n–1. Below, by the mathematical induction method,
we can prove the following theorem.

Theorem 4.2 For any k = 0, 1, 2, . . . , n – 1, the error ‖ek‖∞ ≤ ϕ–1
k–1C(τ 1+α + ταh), where

‖ek‖∞ = max1≤i≤m–1 |ek
i | and C is constant.

Proof If k = 1, suppose |e1
L| = max1≤i≤m–1 |e1

i |, then

∥∥el∥∥∞ =
∣∣e1

L
∣∣

≤ (1 + BLd0 – ALg1)
∣∣e1

L
∣∣ – AL

L+1∑
j=0, �=1

gj
∣∣e1

L+1–j
∣∣

+BL

L–2∑
j=0

(ωj+1 – ωj)
∣∣e1

L–j–1
∣∣ – BL

∣∣e1
0
∣∣

≤
∣∣∣∣∣(1 + BLd0 – ALg1)e1

L – AL

L+1∑
j=0, �=1

gje1
L+1–j
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+ BL

L–2∑
j=0

(ωj+1 – ωj)e1
L–j–1 – BLe1

0

∣∣∣∣∣
=

∣∣R1
L
∣∣ ≤ C

(
τ 1+α + ταh

)
= ϕ–1

0 C
(
τ 1+α + ταh

)
, (4.11)

where ϕ0 = 1.
Suppose k ≤ s, we have ‖ek‖∞ ≤ ϕ–1

k–1C(τ 1+α + ταh), k = 1, 2, . . . , s. When k = s + 1, sup-
pose |es+1

L | = max1≤i≤m–1 |es+1
i |, then

∥∥es+1∥∥∞ =
∣∣es+1

L
∣∣

≤ ϕs
∥∥e0∥∥∞ –

s–1∑
j=0

(ϕj+1 – ϕj)
∥∥es–j∥∥∞ + C

(
τ 1+α + ταh

)

≤ 0 + (ϕ0 – ϕ1)ϕ–1
s–1C

(
τ 1+α + ταh

)
+ (ϕ1 – ϕ2)ϕ–1

s–2

∗ C
(
τ 1+α + ταh

)
+ · · ·

+ (ϕs–1 – ϕs)ϕ–1
0 C

(
τ 1+α + ταh

)
+ C

(
τ 1+α + ταh

)

≤ [
(ϕ0 – ϕ1) + (ϕ1 – ϕ2) + · · · + (ϕs – ϕs)

]
ϕ–1

s C

∗ (
τ 1+α + ταh

)
+ C

(
τ 1+α + ταh

)

= ϕ–1
s C

(
τ 1+α + ταh

)
, (4.12)

where we use the solutions that 1 > ϕj > ϕi > 0 for any i > j and ϕ–1
j ≤ ϕ–1

s for j = 0, 1, 2, . . . , s.
Therefore, the theorem is proved. �

Because limk→∞
ϕ–1

k
kα = limk→∞ k–α

(k+1)1–α–k1–α = 1
α

, then there is a constant C > 0 such that

∥∥ek∥∥∞ ≤ Ckα
(
τ 1+α + ταh

)
. (4.13)

If kτ < T is limited, we can get the following proposition easily.

Proposition 4.3 There is a constant C2 = CTα such that

∥∥uk
i – u(xi, tk)

∥∥∞ ≤ C2(τ + h), i = 1, 2, . . . , m – 1; k = 1, 2, . . . , n. (4.14)

5 Conclusions
A time-space fractional advection diffusion equation is studied in this paper. Based on the
difference method, an explicit difference scheme and an implicit difference scheme are
obtained. Then we prove that the explicit difference scheme is conditionally stable and
convergent and the implicit difference scheme is unconditionally stable and convergent.
It is also obtained that the convergence order of the two methods is O(τ + h). The results
obtained are a natural extension and generalization of the previous results, which can be
used for reference in solving some fractional wave diffusion equations.
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