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Abstract
In this paper, we study the following fractional Schrödinger–Poisson system with
superlinear terms

{
(–�)su + V(x)u + K (x)φu = f (x,u), x ∈R

3,

(–�)tφ = K (x)u2, x ∈R
3,

where s, t ∈ (0, 1), 4s + 2t > 3. Under certain assumptions of external potential V(x),
nonnegative density charge K (x) and superlinear term f (x,u), using the symmetric
mountain pass theorem, we obtain the existence and multiplicity of non-trivial
solutions.

Keywords: Fractional Schrödinger–Poisson system; Symmetric Mountain Pass
Theorem

1 Introduction and main results
In this paper, we are concerned with the fractional Schrödinger–Poisson system

⎧⎨
⎩(–�)su + V (x)u + K(x)φu = f (x, u), x ∈R

3,

(–�)tφ = K(x)u2, x ∈R
3,

(1.1)

where (–�)s is fractional Laplacian operator, s, t ∈ (0, 1), 4s + 2t > 3.
On the potential V (x), we make the following assumptions:
(V1) V (x) ∈ C(R3,R), infx∈R3 V (x) > 0.
(V2) For any b > 0 such that the set {x ∈ R

3 : V (x) < b} is nonempty and has finite
Lebesgue measure. In some previous papers, except for (V1)–(V2), the following,
(V3), is needed.

(V3) Ω = int V –1(0) is nonempty and has smooth boundary and Ω = V –1(0).
The potential V (x) with assumptions (V1)–(V3) are usually referred as the steep well po-
tential. It was firstly proposed by Bartsch and Wang [2] to study a nonlinear Schrödinger
equation. Especially, (V1)–(V2) are used to guarantee the compactness of the space.
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When φ = 0, the system (1.1) reduces to a fractional Schrödinger equation, which is
a fundamental equation of fractional quantum mechanics. It was firstly introduced by
Laskin [9, 10] as a result of extending the Feynman path integral, from the Brownian-
like to the Lévy-like quantum mechanical paths, where the classical Schrödinger equation
changes into the fractional Schrödinger equation. Recently, nonlocal fractional problems
have attracted much attention, we refer to [12].

When s = t = 1, K(x) = 1, the system (1.1) reduces to the following Schrödinger–Poisson
system (or Schrödinger–Maxwell system):

⎧⎨
⎩–�u + V (x)u + φu = f (x, u), x ∈R

3,

–�φ = u2, x ∈R
3.

(1.2)

Due to the real physical meaning, it has been extensively investigated. Benci and For-
tunato [4] firstly proposed the system like (1.2) to describe solitary waves for nonlin-
ear Schrödinger type equations and look for the existence of standing waves interacting
with unknown electrostatic field. Kristály and Repovš [8] studied a coupled Schrödinger–
Maxwell system with the nonlinear term f : R→ R being superlinear at zero and sublinear
at infinity. Under different conditions, they proved a non-existence result and obtained the
existence of at least two non-trivial solutions.

There are plenty of results for system (1.2), we refer the interested reader to [3, 5, 13, 17,
19, 25] and the references therein, the main tool is the mountain pass theory [15]. However,
to the best of our knowledge, similar results on the fractional Schrödinger–Poisson sys-
tems are not so rich as the Schrödinger–Poisson systems (1.2). Zhang, do Ó and Squassina
[24] studied the fractional Schrödinger–Poisson system with a general nonlinearity in the
subcritical and critical case,

⎧⎨
⎩(–�)su + λφu = f (u), x ∈ R

3,

(–�)tφ = λu2, x ∈ R
3,

where λ > 0, s, t ∈ [0, 1], 4s + 2t ≥ 3. With some hypotheses, a non-trivial positive radial
solution is admitted. Very recently, Teng [21] considered the following nonlinear fractional
Schrödinger–Poisson system with critical Sobolev exponent:

⎧⎨
⎩(–�)su + V (x)u + φu = μ|u|q–1 + |u|2∗

s –2u, x ∈ R
3,

(–�)tφ = u2, x ∈ R
3,

(1.3)

under some appropriate conditions on V (x), where μ ∈ R
+ is a parameter, 1 < q < 2∗

s –
1 = 3+2s

3–2s , s, t ∈ (0, 1) and 2s + 2t > 3, the existence of a non-trivial ground state solution
of system (1) can be proved. Later, Li [11] studied the nonlinear fractional Schrödinger–
Poisson equation

⎧⎨
⎩(–�)su + u + φu = f (x, u), x ∈R

3,

(–�)tφ = u2, x ∈R
3,

where s, t ∈ (0, 1], 4s + 2t > 3. Under some assumptions on f , the existence of non-trivial
solutions for this system is obtained.
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Motivated by all the works just described above, we want to find the existence and mul-
tiplicity of non-trivial solutions for the fractional Schrödinger–Poisson with superlinear
terms, the following assumptions are needed:

(K ) K(x) ∈ L
6

4s+2t–3 (R3)
⋃

L∞(R3), s, t ∈ (0, 1), 4s + 2t > 3, K ≥ 0, ∀x ∈ R
3.

(f1) lim|t|→∞ F(x, t)/t4 = +∞ a.e. x ∈R
3, and there exists r1 > 0 such that

F(x, t) ≥ 0, ∀x ∈R
3, |t| ≥ r1,

where F(x, t) =
∫ x

0 f (x, t) dx.
(f2) There exist constant a > 0, p ∈ (2, 2∗

2) such that

∣∣f (x, t)
∣∣ ≤ a

(
t + |t|p–1), ∀(x, t) ∈R

3 ×R,

where 2∗
s = 6

3–2s .
(f3) There exists L > 0 such that

1
4

f (x, t) – F(x, t) ≥ 0, ∀x ∈R, |t| ≥ L.

(f4) f (x, t) = f (x, –t), ∀(x, t) ∈ R
3 ×R.

Now we are ready to state the main result of this paper as follows.

Theorem 1.1 Suppose that system (1.1) satisfies (V1)–(V2), (K), and (f1)–(f4), then (1.1)
admits infinitely many non-trivial solutions {(uk ,φt

k)} such that

1
2

∫
R3

(∣∣(–�)
s
2 uk

∣∣2
+ V (x)u2

k
)

dx +
1
4

∫
R3

K(x)φt
ku2

k dx –
∫
R3

F(x, uk) dx

→ +∞, k → ∞.

2 Variational settings and preliminaries
Let Lr(R3)(0 ≤ r < ∞) be the usual Lebesgue space with the standard norm ‖u‖r and û
as the Fourier transform of u. Firstly let us introduce some necessary variational settings
for system (1.1). A complete introduction to fractional Sobolev spaces can be found in [1].
Recall that the fractional Sobolev spaces Hs(R3) can be described by the Fourier transform,
that is,

Hs(
R

3) =
{

u ∈ L2(
R

3) :
∫
R3

|ξ |2s∣∣ ˆu(ξ )
∣∣2 +

∣∣ ˆu(ξ )
∣∣2 dξ < ∞

}

equipped with the norm

‖u‖2
Hs(R3) :=

(∫
R3

|ξ |2s∣∣ ˆu(ξ )
∣∣2 +

∣∣ ˆu(ξ )
∣∣2 dξ

) 1
2

.

According to Plancherel’s theorem [7], we have ‖u‖2 = ‖û‖2, ‖(–�) s
2 u‖2 = ‖ξ sû‖2. Thus

‖u‖2
Hs(R3) :=

∫
R3

(∣∣(–�)
1
2 u

∣∣2 + u2)dx.
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Following [14], the fractional Laplacian (–�)s can be viewed as

(–�)su(x) = C(s)P.V .
∫
R3

u(x) – u(y)
|x – y|3+2s dy,

where P.V . is the principal value and C(s) > 0 is a normalization constant.
For s ∈ (0, 1), Ds,2(R3) is a homogeneous fractional Sobolev space defined as

Ds,2(
R

3) = u ∈ L2∗
s
(
R

3) : |ξ |sû(ξ ) ∈ L2∗
s
(
R

3),

which is the completion of C∞
0 (R3) with respect to the norm

‖u‖Ds,2(R3) =
(∫

R3
|ξ |2s∣∣û(ξ )

∣∣2 dξ

) 1
2

=
(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
) 1

2
.

We use “→” and “⇀” to denote strong and weak convergence in the related function
spaces, respectively. The symbol “↪→” means that a function space is continuously em-
bedded into another function space.

Let

E :=
{

u ∈ Hs(
R

3) :
∫
R3

(∣∣(–�)
s
2 u

∣∣2 + V (x)u2)dx < ∞
}

.

E is endowed with the following inner product and norm:

(u, v) =
∫
R3

(
(–�)

s
2 u(–�)

s
2 v + V (x)uv

)
dx, ‖u‖ = (u, u)

1
2 .

Lemma 2.1 (Lemma 2.3 in [20]) Suppose that V (x) satisfies (V1)–(V2), the Hilbert space
E is compactly embedded in Lr(R3) (2 ≤ r < 2∗

s ).

As a consequence of Lemma 2.1, there is constant Cr > 0 such that

‖u‖r ≤ Cr‖u‖, ∀u ∈ E, r ∈ [2, 2∗
s ).

For any u ∈ Hs(R3), one can use the Lax–Milgram theorem [6] to find that there exists
a unique φt

u ∈ Dt,2(R3) such that

∫
R3

(–�)
t
2 φt

u(–�)
t
2 v dx =

∫
R3

K(x)u2v dx, ∀v ∈ Dt,2(
R

3). (2.1)

In other words, φt
u is the weak solution of the fractional Poisson equation

(–�)tφt
u = K(x)u2, x ∈R

3,

and the representation formula holds, that is,

φt
u(x) = ct

∫
R3

K(y)u2(y)
|x – y|3–2t dy, x ∈R

3,
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which is called the t-Riesz potential (Chap. 5.1 in [18]), where

ct = π– 3
2 2–2t Γ ( 3–2t

2 )
Γ (t)

.

Lemma 2.2 ∀u ∈ Hs(R3), there exists C0 > 0 such that

∥∥φt
u
∥∥2

Dt,2 =
∫
R3

K(x)φt
uu2 dx ≤ C0‖u‖4.

Proof In (2.1), let v = φt
u, using the Hölder inequality,

∥∥φt
u
∥∥2

Dt,2(R3) =
∫
R3

K(x)u2φt
u dx

≤ ∥∥K(x)
∥∥ 6

4s+2t–3

(∫
R3

|u| 6
3–2s dx

) 3–2s
3

(∫
R3

∣∣φt
u
∣∣ 6

3–2t dx
) 3–2t

6

=
∥∥K(x)

∥∥ 6
4s+2t–3

‖u‖2
3

3–2s

∥∥φt
u
∥∥ 6

3–2t

≤ C‖u‖2∥∥φt
u
∥∥

Dt,2(R3).

The result follows. �

The energy functional associated to problem (1.1) is given by

I(u) =
1
2

∫
R3

(∣∣(–�)
s
2 u

∣∣2 + V (x)u2)dx +
1
4

∫
R3

K(x)φt
uu2 dx –

∫
R3

F(x, u) dx.

Moreover, its differential is

〈
I ′(u), v

〉
=

∫
R3

(
(–�)

s
2 φt

u(–�)
s
2 v + K(x)φt

uuv – f (x, u)v
)

dx, ∀v ∈ E. (2.2)

It is clear that the pair (u,φt
u) is a solution to the system (1.1) if and only if u is a critical

point of I(u).
To prove Theorem 1.1, we need the following lemma (Theorem 9.12 in [16]).

Lemma 2.3 (Symmetric mountain pass theorem) Let E be a real infinite dimensional
Banach space such that E = Y ⊕ Z, where Y is finite dimensional subspace. Suppose
Φ ∈ C1(E,R) is an even functional satisfying the Palais–Smale condition, Φ(0) = 0; if

(i) there exist constant ρ , α such that Φ|∂Bρ
⋂

Z≥α , where Bρ denotes the open ball in E of
radius ρ about 0 and ∂Bρ denotes its boundary;

(ii) for arbitrary finite dimensional subspace Ẽ ⊂ E, there exists constant R = R(Ẽ) > 0
such that Φ(u) ≤ 0 if u ∈ Ẽ/BR;

then the functional Φ possesses an unbounded sequence of critical values.

3 Proof of Theorem 1.1
Lemma 3.1 Under the assumptions (V1)–(V2) and (f1)–(f3), I(u) satisfies the Palais–Smale
condition.
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Proof Let {un} ⊂ E be the Palais–Smale sequence of I , we assert that {un} is bounded.
Otherwise, there exists a subsequence (for the sake of convenience, we still write it as {un})
such that ‖un‖ → ∞(n → ∞). Define ωn := un/‖un‖, there exists a subsequence such that

wn ⇀ w in E,

w → w in Lr(
R

3)(2 ≤ r ≤ 2∗
s
)
.

wn(x) → w a.e. x ∈ R
3.

Case 1. ω = 0. The proof of this case is almost the same as the one of Lemma 2.3 in [23],
so we omit it.

Case 2. ω 
= 0. We have

∣∣F(x, t)
∣∣ ≤

∫ 1

0

∣∣f (x, st)t
∣∣ds ≤ a

(
t2 + |t|p), ∀(x, t) ∈R

3 ×R, (3.1)

then

∣∣F(x, t)
∣∣ ≤ a

(
1 + rp–2

1
)
t2 := c2t2, ∀x ∈ R

3, |t| ≤ r1.

By (f1),

∣∣F(x, t)
∣∣ ≥ –c2t2, ∀(x, t) ∈ R

3 ×R.

Let Ωn(a, b) = {x ∈R
3 : a ≤ |un(x)| < b, 0 ≤ a < b}; we have

∫
Ωn(0,r1)

F(x, un)
‖un‖4 dx ≥ –

c2
∫
Ωn(0,r1) u2

n dx
‖u2

n‖4 ≥ –
c2‖un‖2

2
‖un‖4 .

Take the infimum of the inequality, then

lim inf
n→∞

∫
Ω(0,r1)

F(x, un)
‖un‖4 dx ≥ 0. (3.2)

�

If ω 
= 0, |un(x)| → ∞ (n → ∞), then, for n sufficiently large, {x ∈ R
3 : ω(x) 
= 0} ⊂

Ωn(r1, +∞). By (f1) and the Fatou lemma,

lim inf
n→∞

∫
Ω(r1,∞)

F(x, un)
‖un‖4 dx = lim inf

n→∞

∫
R3

|F(x, un)|
u4

n
χΩn(r1,∞)ω

4
n dx

≥
∫
R3

lim inf
n→∞

|F(x, un)|
u4

n
χΩn(r1,∞)ω

4
n dx

= +∞.
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Combined with (3.2) and Lemma 2.2, we have

0 = lim
n→∞

J(un)
‖un‖4

≤ lim
n→∞

1
‖un‖4

(‖un‖2

2
+ C0‖un‖4 –

∫
R3

F(x, un) dx
)

≤ C0 – lim inf
n→∞

∫
Ωn(0,r1)

+
∫

Ωn(r1,+∞)

F(x, un)
‖un‖4 dx

= –∞, (3.3)

a contradiction, so the sequence un is bounded.
Since the sequence {un} is bounded, there exists a subsequence (we still write it as un)

such that

un ⇀ u in E,

un → u in Lr(
R

3) (
2 ≤ r < 2∗

s
)
,

un(x) → u a.e. x ∈ R
3.

(3.4)

To prove un → u in E, we need to prove ‖un‖ → ‖u‖ (this is because E is a Hilbert space).
By (2.2)

o(1) =
〈
J ′(un) – J ′(u), un – u

〉
= (un, un – u) +

∫
R3

K(x)φt
un un(un – u) dx –

∫
R3

f (x, un)(un – u) dx

=
∥∥un|2| – ‖u

∥∥2 +
∫
R3

K(x)φt
un un(un – u) dx –

∫
R3

f (x, un)(un – u) dx. (3.5)

With (f1) and the second limit of (3.4),∣∣∣∣
∫
R3

f (x, un)(un – u) dx
∣∣∣∣

≤ a
∫
R3

(|un‖un – u| + |un|p–1|un – u|)dx

≤ a
(‖un‖2‖un – u‖2 + ‖un‖p–1

p ‖un – u‖p
) n→∞−→ 0. (3.6)

For K ∈ L∞, by (K), we have∣∣∣∣
∫
R3

K(x)φt
un un(un – u) dx

∣∣∣∣
≤ ‖K‖∞

∥∥φt
un

∥∥ 6
3–2t

‖un‖ 12
3+2t

‖un – u‖ 12
3+2t

n→∞−→ 0. (3.7)

For K ∈ L
6

4s+2t–3 , we have∣∣∣∣
∫
R3

K(x)φt
un un(un – u) dx

∣∣∣∣
≤ ‖K‖| 6

4s+2t–3

∥∥φt
un

∥∥ 6
3–2t

‖un‖ 6
3–2s

‖un – u‖ 6
3–2s

n→∞−→ 0. (3.8)

Combined with (3.5)–(3.8), we can conclude ‖un‖ → ‖u‖.
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Lemma 3.2 Suppose that (V1)–(V2) and (f1)–(f2) hold, then, for every finite subspace Ẽ ⊂
E, it follows that

J(u) → –∞, ‖u‖ → ∞, x ∈ Ẽ.

Proof Suppose there exists {un} ⊂ E such that ‖un‖ → ∞ and infn→∞ J(un) > ∞. Let wn :=
un/‖un‖, ‖wn‖ = 1 and there exists w ∈ E\{0} such that

wn ⇀ w in E,

wn → w in Lr(
R

3)(2 ≤ r ≤ 2∗
s
)
.

wn(x) → w a.e. x ∈ R
3.

Similarly to the proof of (3.3), we can get a contradiction. �

Corollary 3.3 Suppose that (V1)–(V2) and (f1)–(f2) hold, then, for every finite subspace
Ẽ ⊂ E, there exists R = R(Ẽ) > 0 such that

J(u) ≤ 0, ∀u ∈ Ẽ,‖u‖ ≥ R.

Let {ei}∞i=1 be orthogonal bases of space E, let Xi = Rei := {αei : α ∈R},

Yk =
k⊕

i=1

Xi, Zk =
∞⊕

i=k+1

Xi, ∀k ∈ Z.

Lemma 3.4 (Lemma 3.8 in [22]) Suppose that (V1)–(V2) hold, if 2 ≤ r < 2∗, we have

βk(r) := sup
u∈Zk ,‖u‖=1

‖u‖r → 0 (k → ∞).

Proof It is obvious that 0 < βk+1 ≤ βk , so that βk → β ≥ 0, k → ∞. For every k ≥ 0, there
exists uk ∈ Zk such that ‖u‖ = 1 and ‖uk‖r ≥ βk/2. By definition of Zk , uk → 0 in Hs(R3).
The Sobolev embedding theorem implies that uk → 0 in Lr(R3). Thus we have proved that
β = 0. �

Lemma 3.4 shows there exists positive constant k1, k2 ≥ 1 such that

βk(2) ≤ (2
√

2a)–1, ∀k ≥ k1,

βk(p) ≤ a– 1
p , ∀k ≥ k2.

(3.9)

Lemma 3.5 Suppose that (V1)–(V2) and (f2) hold, let k3 = max{k1, k2}, there exists constant
β ,α > 0 such that Φ|∂Bρ

⋂
Zk3 ≥α .

Proof According to (3.1) and (3.9), we have

J(u) ≥ 1
2
‖u‖2 –

∫
R3

∣∣F(x, u)
∣∣dx

≥
(

1
2

– aβ2
k (2)

)
‖u‖2 – aβ

p
k (p)‖u‖p
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≥ 3
8
‖u‖2 – aβ

p
k (p)‖u‖p

≥ ‖u‖2
(

3
8

– ‖u‖p–2
)

.

As a result, let ρ := 8
1

(2–p) , we can conclude

J(u) ≥ ρ2

4
, ∀u ∈ Zk3 ,‖u‖ = ρ. �

Proof of Theorem 1.1 According to Lemma 3.1, Lemma 3.4, Corollary 3.3 and the sin-
gularity of f , the functional I(u) satisfies all assumptions of Lemma 2.3, and the result
follows. �
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