
de Sousa and Minhós Boundary Value Problems          (2019) 2019:7 
https://doi.org/10.1186/s13661-019-1122-3

R E S E A R C H Open Access

On coupled systems of Hammerstein
integral equations
Robert de Sousa1* and Feliz Minhós2

*Correspondence:
robert.sousa@docente.unicv.edu.cv
1Faculdade de Ciências e
Tecnologia, Núcleo de Matemática
e Aplicações (NUMAT), Universidade
de Cabo Verde, Praia, Cabo Verde
Full list of author information is
available at the end of the article

Abstract
In this paper we deal with generalized coupled systems of integral equations of
Hammerstein type with nonlinearities depending on several derivatives of both
variables and we underline that both equations and both variables can have a
different regularity. This detail is very important as it allows for the application to, for
example, boundary value problems with coupled systems composed of differential
equations of different orders and distinct boundary conditions. This issue will open a
new field of applications to phenomena modeled by coupled systems requiring
different types of regularity for the unknown functions.
The arguments follow Guo–Krasnosel’skĭı compression–expansion theory on cones

and the kernel functions are nonnegative and verifying adequate sign and growth
assumptions.
The dependence of the derivatives is overcome by the construction of suitable

cones taking into account certain conditions of sublinearity/superlinearity at the
origin and at +∞.
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1 Introduction
In this paper we deal with generalized coupled systems of integral equations of Hammer-
stein type,

⎧
⎨

⎩

u1(t) =
∫ 1

0 k1(t, s)g1(s)f1(s, u1(s), . . . , u(m1)
1 (s), u2(s), . . . , u(n1)

2 (s)) ds,

u2(t) =
∫ 1

0 k2(t, s)g2(s)f2(s, u1(s), . . . , u(m2)
1 (s), u2(s), . . . , u(n2)

2 (s)) ds,
(1)

where kι : [0, 1]2 → R, ι = 1, 2, are the kernel functions such that kι ∈ W rι ,1([0, 1]2), rι =
max{mι, nι}, with mι, nι ≥ 0 positive integers, gι ∈ L1([0, 1]) with gι(t) ≥ 0 for a.e. t ∈ [0, 1],
and fι : [0, 1] ×R

mι+nι+2 → [0,∞) are L∞-Carathéodory functions.
The theory of integral equations has been and continues to be a field of many research

and applications. These equations are especially relevant in physics and are often used to
reformulate or rewrite mathematical problems.
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Hammerstein integral equations are special subclasses of nonlinear integral equations
of Fredholm-type

u(x) = g(x) +
∫ b

a
k
(
x, y, u(x), u(y)

)
f
(
x, u(y)

)
dy, x ∈ [a, b],

and their study was initiated by Hammerstein (see [4, 17]).
Hammerstein family of integral equations appears in some mathematical models, such

as electrostatic drift waves and low-frequency electromagnetic perturbation (see [14]) and
signal theory (see [19]). Other applications and very successful results can be found on [2,
10, 21] and the references therein.

The existence, uniqueness, multiplicity, positivity and location of solutions are the most
studied and predominant elements as regards Hammerstein integral equations. Citing just
a few examples in the literature, we mention [24], where the authors use fixed point index
theory to establish their main result, based on a priori estimates achieved by nonnega-
tive matrices; in [11], Coclite studies the existence of a positive measurable solution of the
Hammerstein equation of the first kind with a singular nonlinear term at the origin; in
[8], the authors contribute, by monotone iterative methods, combined with the classical
fixed point index, proving two results concerning non-decreasing and non-increasing op-
erators in a shell, in the presence of an upper or a lower solution; in [9], Cardinali et al.,
examine multivalued Hammerstein integral equations defined in a separable reflexive Ba-
nach space, obtaining existence results for convex and nonconvex problems; in [13], the re-
searchers study solutions of the nonlinear Hammerstein integral equation with changing-
sign kernels by using a variational principle of Ricceri and critical points theory techniques
(they combine the effects of a sublinear and superlinear nonlinear terms to establish new
existence and multiplicity results); in [26], the authors study the existence and the unique-
ness of iterative positive solutions for a class of nonlinear singular integral equations in
which the nonlinear terms may be singular in both time and space variables. By using the
fixed point theorem of mixed monotone operators in cones, they establish the conditions
for the existence and uniqueness of positive solutions to the problem.

In addition, several discretization and numerical methods were also considered on in-
tegral equations (see, for instance, [1, 3, 5–7, 22, 25]).

More specifically, about Hammerstein-type coupled systems of integral equations, we
refer [12], where, by a special cone and using fixed point index theory, Cui and Sun, inves-
tigate the existence of positive solutions of singular superlinear coupled integral boundary
value problems for differential systems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′(t) = f1(t, x(t), y(t)),

–y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0,

x(1) = α[y],

y(1) = β[x],

(2)
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where f1, f2 : (0, 1) × [0, +∞)2 → [0, +∞) are continuous and may be singular at t = 0, 1,
and α[x], β[x] are bounded linear functionals on C[0, 1] given by

α[y] =
∫ 1

0
y(t) dA(t), β[x] =

∫ 1

0
x(t) dB(t),

involving Stieltjes integrals, and A, B are functions of bounded variation with positive
measures. Note that (2) can be reformulated by

⎧
⎨

⎩

x(t) =
∫ 1

0 G1(t, s)u(s) ds +
∫ 1

0 H1(t, s)v(s) ds,

y(t) =
∫ 1

0 G2(t, s)v(s) ds +
∫ 1

0 H2(t, s)u(s) ds,

where

G1(t, s) =
α[t]t

κ

∫ 1

0
K(s, τ ) dB(τ ), H1(t, s) =

t
κ

∫ 1

0
K(s, τ ) dA(τ ),

G2(t, s) =
β[t]t

κ

∫ 1

0
K(s, τ ) dA(τ ), H2(t, s) =

t
κ

∫ 1

0
K(s, τ ) dB(τ ),

K(t, s) =

⎧
⎨

⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.

In [23], the authors study the existence and multiplicity of positive solutions for the
system of nonlinear Hammerstein integral equations

u(x) =
∫ 1

0
k1(x, y)f1

(
y, u(y), v(y), w(y)

)
dy,

v(x) =
∫ 1

0
k2(x, y)f2

(
y, u(y), v(y), w(y)

)
dy,

w(x) =
∫ 1

0
k2(x, y)f3

(
y, u(y), v(y), w(y)

)
dy,

where ki ∈ C([0, 1] × [0, 1],R+) and fi ∈ C([0, 1] × R
3
+,R+), for i = 1, 2, 3. The authors use

concave functions to characterize the growth and the behaviors of nonlinearities f1, f2, f3,
considering three cases: assuming firstly that all are superlinear; secondly, with all sub-
linear and the last case with two superlinear ones and the other one sublinear. Based on
a priori estimates obtained by Jensen’s integral inequality for concave functions, the au-
thors use the fixed point index theory to establish the main result.

Recently, in [18], Infante and Minhós, extending the results on [20], to prove the exis-
tence, multiplicity, non-existence and localization results for nontrivial solutions of the
system

⎧
⎨

⎩

u(t) =
∫ 1

0 k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

v(t) =
∫ 1

0 k2(t, s)g2(s)f2(s, u(s), u′(s), v(s), v′(s)) ds.

To obtain their results, it is assumed some adequate assumptions in order to apply a fixed
index theorem and cone theory.
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Motivated by this work we consider the coupled integral system (1). Our results are
based on [20] and [15], extending the results to systems of coupled Hammerstein-type in-
tegral equations with nonlinearities in both unknown functions and their first derivatives.

To the best of our knowledge, it is the first time where coupled systems contain inte-
gral equations with nonlinearities depending on several derivatives of both variables and,
moreover, the derivatives can be of different order on each variable and each equation.
That is, both equations and both variables can have a different regularity. This detail is
very important as it allows the application of our results, for example, to boundary value
problems with coupled systems composed of differential equations of different orders and
distinct boundary conditions on each unknown function. This issue will open new fields
of applications to phenomena modeled by coupled systems requiring different types of
regularity on each variables.

The arguments in this paper apply Guo–Krasnosel’skĭı compression–expansion theory
on cones. Moreover, the kernel functions and the corresponding derivatives associated to
the integral equations are nonnegative and verify some adequate sign and growth assump-
tions. The dependence of the derivatives is overcome by the construction of suitable cones
taking into account certain conditions of sublinearity/superlinearity at the origin and at
+∞.

The paper is organized as it follows: Sect. 2 contains the functional backgrounds. In
Sect. 3, we present an existence result. Finally, an example shows the type of applications
for these integral systems and boundary value problems allowed by our result.

2 Backgrounds and assumptions
In this paper we consider the cones defined, for ι = 1, 2, by

Kι :=
{

w ∈ Crι [0, 1] : min
t∈[aiι ,biι]

w(i)(t) ≥ ciι
∥
∥w(i)∥∥

Crι , for i = 0, 1, . . . , rι

}
, (3)

where 0 < ciι < 1 and rι = max{mι, nι}. The Banach space Ck[0, 1], equipped with the norm
‖ · ‖Ck , defined by

‖w‖Ck := max
{∥
∥w(j)∥∥ : j = 0, 1, . . . , k

}

and ‖y‖ := maxt∈[0,1] |y(t)|.
Moreover, the set E := K1 × K2 with the norm

∥
∥(u1, u2)

∥
∥

E := max
{‖u1‖Cr1 ,‖u2‖Cr2

}
(4)

is a Banach space.

Definition 1 A function h : [0, 1] × R
q → [0,∞), for q a positive integer, is L∞-

Carathéodory if
(i) h(·, y) is measurable for each fixed y ∈R

q;
(ii) h(t, ·) is continuous for a.e. t ∈ [0, 1];

(iii) for each ρ > 0, there exists a function ϕρ ∈ L∞([0, 1]) such that h(t, y) ≤ ϕρ(t) for
y ∈ [–ρ,ρ] and a.e. t ∈ [0, 1].
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The existence tool will be the well-known Guo–Krasnosel’skĭı results in expansive and
compressive cones theory:

Lemma 2 ([16]) Let (E,‖ · ‖) be a Banach space, and P ⊂ E be a cone in E. Assume that
Ω1 and Ω2 are open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2.

If T : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either
(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2, then T has a fixed point in
P ∩ (Ω2\Ω1).

In this paper we will assume the following conditions.
(A1) For ι = 1, 2, the function kι : [0, 1]2 →R, kι ∈ W rι ,1([0, 1]2), verify for all τ ∈ [0, 1],

lim
t→τ

∣
∣kι(t, s) – kι(τ , s)

∣
∣ = 0, for a.e. s ∈ [0, 1],

and

lim
t→τ

∣
∣
∣
∣
∂ ikι

∂ti (t, s) –
∂ ikι

∂ti (τ , s)
∣
∣
∣
∣ = 0, for a.e. s ∈ [0, 1] and i = 1, . . . , rι.

(A2) For ι = 1, 2, and every jι = 0, 1, . . . , rι, there exist subintervals [aιj, bιj] ⊆ [0, 1],
positive functions φιj ∈ L∞[0, 1], and constants cιj ∈ (0, 1], such that

0 ≤ kι(t, s) ≤ φι0(s) for t ∈ [0, 1] and a.e. s ∈ [0, 1];

0 ≤ ∂ ikι

∂ti (t, s) ≤ φιi(s) for t ∈ [0, 1], a.e. s ∈ [0, 1] and i = 1, . . . , rι;

kι(t, s) ≥ cι0φι0(s) for t ∈ [aι0, bι0] and a.e. s ∈ [0, 1];

∂ ikι

∂ti (t, s) ≥ cιiφιi(s) for t ∈ [aιi, bιi], a.e. s ∈ [0, 1] and i = 1, . . . , rι.

(A3) For ι = 1, 2, jι = 0, 1, . . . , rι, gι ∈ L1([0, 1]), gι(t) ≥ 0 a.e. t ∈ [0, 1], φιj ∈ L∞[0, 1] and
∫ bιj

aιj
φιj(s)gι(s) ds > 0.

Consider the following growth assumptions:
(B1) For ι = 1, 2, l = 0, 1, . . . , mι, j = 0, 1, . . . , nι,

lim sup
xl→0,yj→0

max
t∈[0,1]

fι(t, x0, . . . , xmι , y0, . . . , ynι )
max{|xl|, |yj|} = 0 (5)

and

lim inf
xl→+∞,yj→+∞ min

t∈[0,1]

fι(t, x0, . . . , xmι , y0, . . . , ynι )
max{|xl|, |yj|} = +∞. (6)

(B2) For ι = 1, 2, l = 0, 1, . . . , mι, j = 0, 1, . . . , nι,

lim inf
xl→0,yj→0

min
t∈[0,1]

fι(t, x0, . . . , xmι , y0, . . . , ynι )
max{|xl|, |yj|} = +∞ (7)
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and

lim sup
xl→+∞,yj→+∞

max
t∈[0,1]

fι(t, x0, x1, . . . , xmι+nι+1)
max{|xl|, |yj|} = 0. (8)

3 Main result
The main result is given by next theorem:

Theorem 3 Let, for ι = 1, 2, fι : [0, 1] × R
mι+nι+2 → [0,∞) be L∞-Carathéodory functions

such that assumptions (A1)–(A3) hold and or conditions (B1), or (B2), are satisfied. Then
problem (1) has at least one positive solution (u, v) ∈ (Cr1 [0, 1] × Cr2 [0, 1]).

Proof Consider the cones Kι in (3), the Banach space E := K1 × K2 with the norm given by
(4), and define the operators T1 : E → K1 and T2 : E → K2 such that

⎧
⎨

⎩

T1(u1, u2)(t) =
∫ 1

0 k1(t, s)g1(s)f1(s, u1(s), . . . , u(m1)
1 (s), u2(s), . . . , u(n1)

2 (s)) ds,

T2(u1, u2)(t) =
∫ 1

0 k2(t, s)g2(s)f2(s, u1(s), . . . , u(m2)
1 (s), u2(s), . . . , u(n2)

2 (s)) ds.
(9)

The proof will be done in several steps and the main idea is to show that the operator
T : E → E defined by T = (T1, T2) has a fixed point on E. For this, according to Lemma 2,
we need to show that T is completely continuous.

Step 1: T : E → E is well defined in E.
It will be enough to prove that Tι are well defined in Kι, for ι = 1, 2.
Take (u1, u2) ∈ E. By (A2),

∥
∥T1(u1, u2)

∥
∥ = max

t∈[0,1]

∫ 1

0
k1(t, s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0
φ10(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

and

min
t∈[a10,b10]

T1(u1, u2)(t) ≥ c10

∫ 1

0
φ10(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c10
∥
∥T1(u1, u2)

∥
∥.

On the other hand, for i = 1, . . . , r1,

∥
∥
(
T1(u1, u2)

)(i)∥∥

= max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0

∂ ik1

∂ti (t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

∣
∣
∣
∣

≤
∫ 1

0
φ1i(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

and

min
t∈[a1i ,b1i]

(
T1(u1, u2)

)(i)

= min
t∈[a1i ,b1i]

∫ 1

0

∂ ik1

∂ti (t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds
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≥ c1i

∫ 1

0
φ1i(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c1i
∥
∥
(
T1(u1, u2)

)(i)∥∥.

So, for i = 0, 1, . . . , r1,

min
t∈[a1i ,b1i]

T1(u1, u2)(t) ≥ d1
∥
∥T1(u1, u2)

∥
∥

Cr1 ,

with 0 < d1 ≤ max{c1i, i = 0, 1, . . . , r1} ≤ 1.
Therefore, T1E ⊆ K1. The inclusion T2E ⊆ K2 can be proved similarly, and consequently

TE ⊂ E.
Step 2: T is uniformly bounded in E.
We will prove that T1 and T2 are uniformly bounded in K1 and K2, respectively.
Consider (u1, u2) ∈ E such that ‖(u1, u2)‖E ≤ ρ , for some ρ > 0.
The proof will be done for the operator T1, as for T2 the arguments are analogous.
By (A2), (A3) and Definition 1,

∥
∥T1(u1, u2)

∥
∥ = max

t∈[0,1]

∣
∣T1(u1, u2)(t)

∣
∣

≤
∫ 1

0
φ10(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0
φ10(s)g1(s)ϕρ(s) ds < +∞,

and, for i = 1, . . . , r1,

∥
∥
(
T1(u1, u2)

)(i)∥∥

= max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0

∂ (i)k1

∂ti (t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

∣
∣
∣
∣

≤
∫ 1

0
φ1i(s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0
φ1i(s)g1(s)ϕρ(s) ds < +∞.

Therefore ‖T1(u1, u2)‖Cr1 < +∞, and, so, T1 is uniformly bounded in K1.
By an analogous method it can de proved that T2 is uniformly bounded in K2, and, there-

fore, T is uniformly bounded in E.
Step 3: T is equicontinuous in E.
This step will be shown if T1 and T2 are equicontinuous in K1 and K2, respectively. The

calculus will be done only for T1, as the other case is similar.
Consider t1, t2 ∈ [0, 1]. By (A1),

∣
∣T1(u1, u2)(t1) – T1(u1, u2)(t2)

∣
∣

≤
∫ 1

0

∣
∣k1(t1, s) – k1(t2, s)

∣
∣g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds
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≤
∫ 1

0

∣
∣k1(t1, s) – k1(t2, s)

∣
∣g1(s)ϕρ(s) ds → 0 as t1 → t2,

and, for i = 1, . . . , r1,

∣
∣
(
T1(u1, u2)

)(i)(t1) –
(
T1(u1, u2)

)(i)(t2)
∣
∣

≤
∫ 1

0

∣
∣
∣
∣
∂ ik1

∂ti (t1, s) –
∂ ik1

∂ti (t2, s)
∣
∣
∣
∣g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0

∣
∣
∣
∣
∂ ik1

∂ti (t1, s) –
∂ ik1

∂ti (t2, s)
∣
∣
∣
∣g1(s)ϕρ(s) ds → 0 as t1 → t2.

Therefore, T1 is equicontinuous in K1.
In the same way it can be proved that T2 is equicontinuous in K2. Then T is equicontin-

uous in E.
By the Arzelà–Ascoli theorem, T is completely continuous in E.
Assume that condition (B1) holds.
Step 4: ‖T(u1, u2)‖E ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω1 with Ω1 = {(u1, u2) ∈ E :

‖(u1, u2)‖E < ρ1}, for some ρ1 > 0.
To prove that

max
{∥
∥T1(u1, u2)

∥
∥

Cr1 ,
∥
∥T2(u1, u2)

∥
∥

Cr2

} ≤ ∥
∥(u1, u2)

∥
∥

E ,

it will be enough to show that

∥
∥T1(u1, u2)

∥
∥

Cr1 ≤ ∥
∥(u1, u2)

∥
∥

E and
∥
∥T2(u1, u2)

∥
∥

Cr2 ≤ ∥
∥(u1, u2)

∥
∥

E .

As (u1, u2) ∈ E ∩ ∂Ω1 then ‖(u1, u2)‖E = ρ1.
For i = 0, 1, . . . , r1, and (A3), let us define

ε1 := min

{
1

∫ 1
0 φ1i(s)g1(s) ds

}

. (10)

By (5), there exists 0 < ρ1 < 1 such that

f1
(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ≤ ε1
∥
∥(u1, u2)

∥
∥

E , (11)

for ‖(u1, u2)‖E ≤ ρ1.
By (A2), (11), and (10),

T1(u1, u2)(t) =
∫ 1

0
k1(t, s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0
φ10(s)g1(s)ε1

∥
∥(u1, u2)

∥
∥

E ds

= ε1ρ1

∫ 1

0
φ10(s)g1(s) ds < ρ1 =

∥
∥(u1, u2)

∥
∥

E ,
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and, for i = 1, . . . , r1,

(
T1(u1, u2)(t)

)(i) =
∫ 1

0

∂ ikι

∂ti (t, s)g1(s)fι
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤
∫ 1

0
φ1i(s)g1(s)ε1

∥
∥(u1, u2)

∥
∥

E ds < ρ1 =
∥
∥(u1, u2)

∥
∥

E .

Ergo, ‖T1(u1, u2)‖Cr1 ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω1. By similar calculations it can
be proved that ‖T2(u1, u2)‖Cr2 ≤ ‖(u1, u2)‖E and, therefore, ‖T(u1, u2)‖E ≤ ‖(u1, u2)‖E , for
(u1, u2) ∈ E ∩ ∂Ω1.

Step 5: ‖T(u1, u2)‖E ≥ ‖(u1, u2)‖E , for u ∈ E ∩ ∂Ω2 with Ω2 = {(u1, u2) ∈ E : ‖(u1, u2)‖E <
ρ2}, for some ρ2 > 0.

If there exists i0 ∈ {0, 1, . . . , m1}, or j0 ∈ {0, 1, . . . , n1}, such that u(i0)
1 (t) → +∞ and

u(j0)
2 (t) → +∞, then ‖(u1, u2)‖E → +∞.
By (6), for ι = 1, 2, there exist ρ∗

ι > 0 and θ > 0, such that, when ‖(u1, u2)‖E ≥ θ , we have

f1
(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ≥ ∥
∥(u1, u2)

∥
∥

E . (12)

Define, for i = 0, 1, . . . , r1,

ξ1 := max

{
1

c1i
∫ 1

0 φ1i(s)g1(s) ds

}

. (13)

Let (u1, u2) ∈ E be such that ‖(u1, u2)‖E = ρ2, with ρ2 > ρ1.
Now from (A2), and (13),

T1(u1, u2)(t) ≥
∫ b10

a10

k1(t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c10

∫ b10

a10

φ10(s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c10

∫ b10

a10

φ10(s)g1(s)ξ1
∥
∥(u1, u2)

∥
∥

E ds

= c10ξ1ρ2

∫ b10

a10

φ10(s)g1(s) ds ≥ ρ2 =
∥
∥(u1, u2)

∥
∥

E ,

and analogously, for i = 1, . . . , r1,

(
T1(u1, u2)(t)

)(i) ≥
∫ b1i

a1i

∂ (i)k1

∂ti (t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c1i

∫ b1i

a1i

φ1i(s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≥ c1iξ1ρ2

∫ b1i

a1i

φ1i(s)g1(s) ds ≥ ρ2 =
∥
∥(u1, u2)

∥
∥

E .

Therefore, ‖T1(u1, u2)‖Cr1 ≥ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω2. Analogously it can
be shown that ‖T2(u1, u2)‖Cr2 ≥ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω2, and, therefore,
‖T(u1, u2)‖E ≥ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω2.
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By Lemma 2, the operator T has a fixed point in K ∩ (Ω2\Ω1) which in turn is a solution
of our problem.

Now assume that (B2) holds.
Step 6: ‖T(u1, u2)‖E ≥ ‖(u1, u2)‖E , for u ∈ E ∩ ∂Ω3 with Ω3 = {(u1, u2) ∈ E : ‖(u1, u2)‖E <

ρ3}, for some ρ3 > 0.
Taking ξ1 > 0 as in (13), we see that by (7) there exists 0 < ρ3 < 1 such that

(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ∈ [0, 1] × [0,ρ3ι ]
m1+n1+2

and

f1
(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ≥ ξι

∥
∥(u1, u2)

∥
∥

E . (14)

Consider (u1, u2) ∈ E such that ‖(u1, u2)‖E = ρ3ι . Then, applying similar inequalities to
Step 5, we obtain ‖T(u1, u2)‖E ≥ ‖(u1, u2)‖E .

Step 7: ‖T(u1, u2)‖E ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω4 with Ω4 = {(u1, u2) ∈ E :
‖(u1, u2)‖E < ρ4}, for some ρ4 > 0.

Case 7.1. Suppose that f1 is bounded.
Then there is an N > 0 such that f1(t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)) ≤ N for all

(t, u1(t), . . . , u(m1)
1 (t), u2(t), . . . , u(n1)

2 (t)) ∈ [0, 1] × [0, +∞)m1+n1+2. Choose

ρ4 := max

{

ρ3 + 1, N
∫ 1

0
φ1i(s)g1(s) ds : i = 0, 1, . . . , r1

}

and take (u1, u2) ∈ E with ‖(u1, u2)‖E = ρ4. Then

T1(u1, u2)(t) =
∫ 1

0
k1(t, s)g1(s)f1

(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤ N
∫ 1

0
φ10(s)g1(s) ds ≤ ρ4, for t ∈ [0, 1],

and for i = 1, . . . , r1,

(
T1(u1, u2)(t)

)(i) =
∫ 1

0

∂ ik1

∂ti (t, s)g1(s)f1
(
s, u1(s), . . . , u(m1)

1 (s), u2(s), . . . , u(n1)
2 (s)

)
ds

≤ N
∫ 1

0
φ1i(s)g1(s) ds ≤ ρ4, for t ∈ [0, 1].

Thus, ‖T1(u1, u2)‖Cr1 ≤ ‖(u1, u2)‖E .
The same arguments can be applied to show that ‖T2(u1, u2)‖Cr2 ≤ ‖(u1, u2)‖E . So,

‖T(u1, u2)‖E ≤ ‖(u1, u2)‖E .
Case 7.2. Suppose that f1 is unbounded.
By (8), there exists μ > 0 such that

max

{

μ

∫ 1

0
φ1i(s)g1(s) ds : i = 0, 1, . . . , r1

}

≤ 1 (15)
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and

f1
(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ≤ μ
∥
∥(u1, u2)

∥
∥

E , (16)

for every M > 0 such that ‖(u1, u2)‖E ≥ M.
Define

ρ4 := max{M,ρ3 + 1}.

Then, for (u1, u2) ∈ E ∩ ∂Ω4, we have ‖(u1, u2)‖E = ρ4 and, by (16),

f1
(
t, u1(t), . . . , u(m1)

1 (t), u2(t), . . . , u(n1)
2 (t)

) ≤ μ
∥
∥(u1, u2)

∥
∥

E ≤ μρ4. (17)

So,

T1(u1, u2)(t) ≤
∫ 1

0
φ10(s)g1(s)μρ4 ds ≤ μρ4

∫ 1

0
φ10(s)g1(s) ds ≤ ρ4,

and for i = 1, . . . , r1,

(
T1(u1, u2)(t)

)(i) ≤
∫ 1

0
φ1i(s)g1(s)μρ4 ds ≤ μρ4

∫ 1

0
φ1i(s)g1(s) ds ≤ ρ4.

Therefore, ‖T1(u1, u2)‖Cr1 ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω4.
In the same way we can have ‖T2(u1, u2)‖Cr2 ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω4, and,

therefore, ‖T(u1, u2)‖E ≤ ‖(u1, u2)‖E , for (u1, u2) ∈ E ∩ ∂Ω4.
The remaining cases (f2 bounded or unbounded) can be processed by similar techniques.
By Lemma 2, the operator T has a fixed point in E ∩ (Ω4\Ω3) that, in turn, is a solution

of the problem. �

4 Example
Consider the following coupled system composed of third and second nonlinear equa-
tions, with three-point boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′′
1 (t) = (t2 + 1)(e–(u′

2(t)+u1(t))2 +
√|u′

1(t) + u2(t)|),
u′′

2(t) = t4(2 + cos(u2(t) + u1(t))2(sin(u′
1(t)u′

2(t)) + 1),

u(0) = u′(0) = 0, u′(1) = 3
2 u′( 1

2 ),

v(0) = 0, v′(1) = 3
2 v′( 1

2 ).

(18)

Note that the problem (18) can be rewritten as the following system of integral equa-
tions:

⎧
⎨

⎩

u1(t) =
∫ 1

0 k1(t, s)(s2 + 1)(e–(u′
2(s)+u1(s))2 +

√|u′
1(s) + u2(s)|) ds,

u2(t) =
∫ 1

0 k2(t, s)s4(2 + cos(u2(s) + u1(s))2(sin(u′
1(s)u′

2(s)) + 1) ds,
(19)
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where the kernel functions k1(t, s) and k2(t, s) are given by the corresponding Green’s func-
tions

G1(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ts – s2

2 + 2t2s, s ≤ min{ 1
2 , t},

t2

2 + 2t2s, t ≤ s ≤ 1
2 ,

ts – s2

2 + t2( 3
2 – 2s), 1

2 ≤ s ≤ t,

2t2(1 – s), max{ 1
2 , t} ≤ s,

G2(t, s) =

⎧
⎨

⎩

t – s, s ≤ t ≤ 1,

2t, 1
2 ≤ t ≤ s ≤ 1,

respectively.
Clearly system (19) is a particular case of (1) with r1 = r2 = m1 = m2 = n1 = n2 = 1, g1(t) =

t2 + 1, g2(t) = t4, k1(t, s) = G1(t, s), k2(t, s) = G2(t, s), and

f1(t, x, y, z, w) =
(
e–(w+x)2

+
√|y + z|),

f2(t, x, y, z, w) =
(
2 + cos(z + x)

)2(
sin(yw) + 1

)
.

These functions f1, f2 : R5 → [0,∞) are L∞-Carathéodory as, for ρ > 0, when max{|x|, |y|,
|z|, |w|} < ρ , there exist functions ϕ1ρ ,ϕ2ρ ∈ L∞([0, 1]) such that

f1(t, x, y, z, w) ≤ (
1 +

√|2ρ|) := ϕ1ρ

f2(t, x, y, z, w) =
(
2 + cos(z + x)

)2(
sin(yw) + 1

) ≤ 18 := ϕ2.

The first derivative of the Green’s functions are positive, with

∂G1

∂t
(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s + 4ts, s ≤ min{ 1
2 , t},

t + 4ts, t ≤ s ≤ 1
2 ,

t + 2t( 3
2 – 2s), 1

2 ≤ s ≤ t,

4t(1 – s), max{ 1
2 , t} ≤ s,

∂G2

∂t
(t, s) =

⎧
⎨

⎩

1, s ≤ t ≤ 1,

2, 1
2 ≤ t ≤ s ≤ 1.

Therefore (A1) holds and, to show that (A2) is verified, we follow the arguments in [15]
(Lemmas 4.1–4.4), for G1 and any (t, s) ∈ [0, 1] × [0, 1], to obtain

0 ≤ G1(t, s) ≤ 10s(1 – s) := φ10(s), 0 ≤ ∂G1

∂t
(t, s) ≤ 4(1 – s) := φ11(s)

and for (t, s) ∈ [ 1
3 , 1

2 ] × [0, 1], it follows that

c10 =
1

90
, c11 =

3
4
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and

G1(t, s) ≥ c10φ10(s) =
1
9

s(1 – s),
∂G1

∂t
(t, s) ≥ c11φ11(s) = 3(1 – s),

and for G2, taking

φ20(s) = 2, c20 =
1

20
, φ21(s) =

5
2

, c21 =
1
5

,

showing that

G2(t, s) ≥ c20φ20(s) =
1

10
,

∂G2

∂t
(t, s) ≥ c21φ21(s) =

1
2

.

Condition (A3) is satisfied as the four integrals referred to are trivially positive.
For j = 0, 1, we have

lim sup
u(j)

1 ,u(j)
2 →0

max
t∈[0,1]

(e–(u′
2(t)+u1(t))2 +

√|u′
1(t) + u2(t)|)

max{|u(j)
1 |, |u(j)

2 |}
= +∞,

lim inf
u(j)

1 ,u(j)
2 →+∞

min
t∈[0,1]

(e–(u′
2(t)+u1(t))2 +

√|u′
1(t) + u2(t)|)

max{|u(j)
1 |, |u(j)

2 |}
= 0,

lim inf
u(j)

1 ,u(j)
2 →0

min
t∈[0,1]

(2 + cos(u2(t) + u1(t))2(sin(u′
1(t)u′

2(t)) + 1)
max{|u(j)

1 |, |u(j)
2 |}

= +∞,

lim sup
u(j)

1 ,u(j)
2 →+∞

max
t∈[0,1]

(2 + cos(u2(t) + u1(t))2(sin(u′
1(t)u′

2(t)) + 1)
max{|u(j)

1 |, |u(j)
2 |}

= 0,

and, therefore, conditions (B1) hold.
So, by Theorem 3, there is at least one positive solution (u, v) ∈ (C1[0, 1] × C1[0, 1]) of

problem (19), which is solution of (18).
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