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Abstract
In this paper, we study the following nonlinear fractional Schrödinger–Poisson system

{
(–�)su + V(x)u + φu = K (x)f (u), x ∈ R

3,

(–�)tφ = u2, x ∈ R
3.

(0.1)

where s ∈ ( 34 , 1), t ∈ (0, 1), V ,K :R3 → R are continuous functions verifying some
conditions about zero mass. By using the constraint variational method and the
quantitative deformation lemma, we obtain the existence of least energy
sign-changing solution to this system.
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1 Introduction and main results
In this article, we are interested in the existence of the sign-changing solutions for the
following fractional Schrödinger–Poisson system

⎧⎨
⎩(–�)su + V (x)u + φu = K(x)f (u), x ∈ R

3,

(–�)tφ = u2, x ∈ R
3,

(1.1)

where s ∈ ( 3
4 , 1), t ∈ (0, 1). The fractional Laplacian operator (–�)s is defined by

(–�)su(x) = CN ,sP.V .
∫
RN

u(x) – u(y)
|x – y|N+2s dy, u ∈ S

(
R

N)
,

where P.V . stands for the Cauchy principal value, CN ,s is a normalized constant, S(RN ) is
the Schwartz space of rapidly decaying functions.

Throughout this paper, as in [3], we say that (V , K) ∈ K if continuous functions V , K :
R

3 →R satisfy the following conditions:
(H0) V (x), K(x) > 0 for all x ∈R

3 and K ∈ L∞(R3);
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(H1) If {An} ⊂ R
3 is a sequence of Borel sets such that the Lebesgue measure |An| ≤ R,

for all n and some R > 0, then

lim
r→+∞

∫
An

⋂
Bc

r (0)
K(x) dx = 0, uniformly in n = 1, 2, . . . ;

One of the following conditions occurs:
(H2) K/V ∈ L∞(R3); or
(H3) There exists p ∈ (2, 2∗

s ) such that

K(x)

V (x)
2∗s –p
2∗s –2

→ 0 as |x| → +∞,

where 2∗
s = 6

3–2s is the fractional critical exponent.
As for the function f , we assume f ∈ C1(R,R) and:
(f1) limt→0 f (t)/|t| = 0, if (H2) holds;
(f2) limt→0 f (t)/|t|p–1 = A ∈ R, if (H3) holds;
(f3) f has a “quasicritical growth”, namely, lim|t|→∞ f (t)/|t|2∗

s –1 = 0;
(f4) lim|t|→∞ F(t)/t4 = ∞, where F(t) =

∫ t
0 f (s) ds;

(f5) The map t �→ f (t)/|t|3 is nondecreasing on (–∞, 0) and (0,∞).

Remark 1.1 Similar conditions as hypotheses (H0)–(H3) on functions V and K were firstly
introduced in [3] and characterize a class of Schrödinger–Poisson problems as zero-mass
problem.

When s = t = 1, K(x) ≡ 1, system (1.1) reduces to the following Schrödinger–Poisson
system

⎧⎨
⎩–�u + V (x) + λφ(x)u = f (u), x ∈R

3,

–�φ = u2, x ∈R
3.

(1.2)

System (1.2) comes from time-dependent Schrödinger–Poisson equation, which describes
quantum (nonrelativistic) particles interacting with the electromagnetic field generated
by the motion. For more details on the mathematical and physical background of system
(1.2), we refer the readers to the papers [10, 11] and the references therein. Since the so-
called nonlocal term λφu(x)u is involved, system (1.2) is called a nonlocal problem. The
appearance of the nonlocal term in the equations not only makes it important in many
physical applications but also causes some difficulties and challenges from a mathematical
point of view. Therefore, in the past several decades, there has been an increasing attention
toward systems (1.2) or similar problems, and the existence of positive, multiple, bound
state, multi-bump, as well as semiclassical state solutions has been investigated; see, for
example, [4, 7, 9, 10, 13, 16, 21, 24, 29, 37, 38, 43, 47–49, 60]. Besides, He and Zou [23]
considered multiplicity of concentrating positive solutions for a class of double parameter
perturbed Schrödinger–Poisson equation with critical growth.

For sign-changing solutions, Alves and Souto [2] proved that system (1.2) possesses a
least-energy sign-changing solution, in which R

3 is replaced by bounded domains with
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smooth boundary. Via a constraint variational method combined with the Brouwer de-
gree theory, Wang and Zhou [50] investigated the existence of least-energy sign-changing
solutions for the system (1.2) when f (u) = |u|p–1u, p ∈ (3, 5). By using the constraint varia-
tional methods and the quantitative deformation lemma, Shuai and Wang [42] studied the
existence and the asymptotic behavior of least energy sign-changing solution for system
(1.2). Latter, under some more weak assumptions on f , Chen and Tang [15] improved and
generalized some results obtained in [42]. For other work about sign-changing solution
of system (1.2) or similar problems, we refer the reader to [9, 25, 26, 30, 32, 61] and the
reference therein.

The nonlinear fractional Schrödinger–Poisson systems (1.1) also come from the follow-
ing fractional Schrödinger equation

(–�)su + V (x)u = f (x, u) in R
N . (1.3)

Equation (1.3) has been first proposed by Laskin [27, 28] as a result of expanding the Feyn-
man path integral from the Brownian-like to the Lévy-like quantum mechanical paths.
There are many interesting papers which considered the existence, multiplicity, unique-
ness, regularity and asymptotic decay properties of the solutions to fractional Schrödinger
equation (1.3), see [1, 5, 12, 18, 22, 35, 39, 40, 46, 59] and references therein. Besides, some
more complicated fractional equations and systems were also studied, and indeed some
interesting results were obtained, see [19, 45, 53–55] and references therein. Furthermore,
there is a very interesting book [36], in which nonlocal fractional problems are systematic
investigated. For sign-changing solutions, since the fractional Laplacian operator is non-
local, there are important structural differences between the classical and the fractional
Laplacian. In fact, for u ∈ H1(RN ), we have

∫
RN

|∇u|2 dx =
∫
RN

∣∣∇u+∣∣2 dx +
∫
RN

∣∣∇u–∣∣2 dx.

However, for u ∈ Hs(RN ), we have that

∫
RN

∣∣(–�)
s
2 u

∣∣2 dx =
∫
RN

∣∣(–�)
s
2 u+∣∣2 dx +

∫
RN

∣∣(–�)
s
2 u–∣∣2 dx

+ 2
∫
RN

(–�)
s
2 u+(–�)

s
2 u– dx.

This fact makes the study of sign-changing solutions to fractional Schrödinger equation
(1.3) particularly interesting, and indeed some interesting results were obtained; see, for
example, [6, 14, 17, 51] and the references therein.

Before presenting our main result, let us first recall some Sobolev space as follows. We
denote Ds,2(R3) by the closure of function space C∞

c (R3) with respect to the so-called
Gagliardo seminorm

[u]2 :=
∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy.
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Since (1.1) is a zero-mass problem, it seems that the appropriate working space should
be

X =
{

u ∈ Ds,2(
R

3) :
∫
R3

∫
R3

u2(x)u2(y)
|x – y|3–2t dx dy < ∞

}

with the norm

‖u‖2
X =

∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy + Ct

∫
R3

∫
R3

u2(x)u2(y)
|x – y|3–2t dx dy.

Then, we know that (X,‖ · ‖X) is a Banach space.
By the Lax–Milgram Theorem, for any u ∈ X, there exists a unique φt

u ∈ Dt,2(R3) such
that

∫
R3

∫
R3

(φt
u(x) – φt

u(y))(v(x) – v(y))
|x – y|3+2t dx dy =

∫
R3

u2v dx

for any v ∈ Dt,2(R3), that is, φt
u is a weak solution of

(–�)tφ = u2, x ∈R
3.

In fact, we have that

φt
u(x) = C(t)

∫
R3

u2(y)
|x – y|3–2t dy, x ∈R

3 (1.4)

where C(t) = π– 3
2 2–2t Γ ( 3–2t

2 )
Γ (t) .

Using the expression of (1.4), we obtain that system (1.1) is merely a single equation for
u:

(–�)su + V (x)u + φt
uu = K(x)f (u) in R

3. (1.5)

The condition (V , K) ∈ K is fascinating. It can be used to certify that the space E given
by

E =
{

u ∈ Ds,2(
R

3) :
∫
R3

V (x)|u|2 dx < +∞
}

endowed with the norm

‖u‖2
E =

∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

∫
R3

V (x)|u|2 dx

is compactly embedded into the weighted Lebesgue space

Lq
K
(
R

3) =
{

u : u is measurable on R
3 and

∫
R3

K |u|q < ∞
}

for some q ∈ (2, 2∗
s ), see Proposition 2.2 below.
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However, because of the zero-mass situation, we need to consider a new space

H =
{

u ∈ Ds,2(
R

3) :
∫
R3

V (x)|u|2 dx < ∞,
∫
R3

∫
R3

u2(x)u2(y)
|x – y|3–2t dx dy < ∞

}

with the norm

‖u‖2 =
∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

∫
R3

V (x)|u|2 dx + Ct

∫
R3

∫
R3

u2(x)u2(y)
|x – y|3–2t dx dy.

Since (X,‖ · ‖X) and (E,‖ · ‖E) are both Banach, it follows from (H0) that (H ,‖ · ‖) is also a
Banach space. Denote the usual norm of Lp(R3) by | · |p. By Sobolev embedding theorem,
the embedding E ↪→ Ds,2 ↪→ L2∗

s (R3) is continuous. Let S′ > 0 be the embedding constant,
i.e.,

|u|22∗
s
≤ S′–1‖u‖2

E , u ∈ E. (1.6)

The energy functional associated with system (1.1) is defined by

J(u) =
1
2

∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

1
2

∫
R3

V (x)u2 dx +
1
4

∫
R3

φt
uu2 dx

–
∫
R3

K(x)F(u) dx, u ∈ H ,

where F(u) =
∫ u

0 f (t) dt.
Moreover, under our conditions, J belongs to C1(H ,R), and the Fréchet derivative of J

is

〈
J ′(u), v

〉
=

∫
R3

∫
R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2s dx dy +

∫
R3

V (x)uv dx

+
∫
R3

φt
uuv dx –

∫
R3

K(x)f (u)v dx, u, v ∈ H .

As is well known, a critical point of J is a weak solution of system (1.1). Furthermore,
if u ∈ H is a weak solution of system (1.1) and u± �= 0, we say that u is a sign-changing
solution of system (1.1), where

u+(x) = max
{

u(x), 0
}

, u–(x) = min
{

u(x), 0
}

.

Since fractional Schrodinger equation is coupled with a fractional Poisson term φ(x)u,
the existence of multiple nonlocal terms causes some mathematical difficulties and makes
the study of system (1.1) very interesting. In recent years, several scholars paid their at-
tention to the existence of positive, ground state, semiclassical and other solutions to
fractional Schrödinger–Poisson system (1.1) or similar problems; see [33, 41, 44, 56–58]
and references therein. Besides, in [34], Luo and Tang considered a class of doubly sin-
gularly perturbed fractional Schrödinger–Poisson system with critical Sobolev exponent,
and proved the existence of ground state and multiple solutions for this system. However,
to the best of our knowledge, few papers considered sign-changing solutions to fractional
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Schrödinger–Poisson system (1.1) or similar problems. Via the quantitative deformation
lemma and degree theory, Guo [20] studied the existence and asymptotic behavior of sign-
changing solutions for system (1.1).

Our goal in this paper is to seek the least energy sign-changing solutions to system (1.1).
As in [3, 15, 42, 50], to overcome the difficulties and challenges stemming from the non-
local term, we borrow some ideas from [8]. Specifically, we first try to seek a minimizer of
the energy functional J under the following constraint:

M =
{

u ∈ H : u± �= 0,
〈
J ′(u), u+〉

=
〈
J ′(u), u–〉

= 0
}

,

and then we will prove that the minimizer is a sign-changing solution of system (1.1).
The main result can be stated as follows.

Theorem 1.1 Suppose that (V , K) ∈K and f satisfies (f1)–(f5). Then system (1.1) possesses
at least one least-energy sign-changing solution.

2 Preliminary results
In this section we give some propositions and lemmas for convenience.

Proposition 2.1 ([6]) Assume (V , K) ∈K. If (H2) holds, then E is continuously embedded
in Lq

K (R3) for every q ∈ [2, 2∗
s ]; if (H3) holds, then E is continuously embedded in Lp

K (R3).

Proposition 2.2 ([6]) Assume (V , K) ∈K. If (H2) holds, then E is compactly embedded in
Lq

K (R3) for every q ∈ (2, 2∗
s ); if (H3) holds, then E is compactly embedded in Lp

K (R3).

Proposition 2.3 ([6]) Suppose that f satisfies (f1)–(f3) and (V , K) ∈ K. Let {vn} be such
that vn ⇀ v in E. Then

∫
R3

K(x)F(vn) dx →
∫
R3

K(x)F(v) dx,
∫
R3

K(x)f (vn)vn dx →
∫
R3

K(x)f (v)v dx.

Similarly as in [30], we have following lemmas.

Lemma 2.1 Assume that (V , K) ∈K and f satisfies (f1)–(f5). Then, for any u ∈ E \ {0},

lim|t|→∞

∫
R3

Kf (tu)u
t3 = ∞.

Lemma 2.2 Assume that (V , K) ∈K and f satisfies (f1)–(f5). Then, for any u ∈ E \ {0},

lim|t|→∞

∫
R3

KF(tu)
t4 = ∞.

Lemma 2.3 Assume that (V , K) ∈K and f satisfies (f1)–(f5). Then, for any u ∈ E \ {0},

lim
t→0

∫
R3

Kf (tu)u
t

= 0.
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3 Technical lemmas
In this section, we prove some technical lemmas related to the existence of sign-changing
solutions of system (1.1).

For u ∈ H with u± �= 0, we define Gu : R2
+ →R by Gu(α,β) = J(αu+ + βu–).

Lemma 3.1 Assume that (V , K) ∈K and (f1)–(f5) hold. Then,
(i) the pair (α,β) is a critical point of Gu with α,β > 0 if and only if αu+ + βu– ∈M;

(ii) the map Gu has a unique critical point (α+,β–), with α+ = α+(u) > 0 and
β– = β–(u) > 0, which is the unique maximum point of Gu.

Proof By definition of Gu, we have that

∇Gu(α,β) =
(〈

J ′(αu+ + βu–)
, u+〉

,
〈
J ′(αu+ + βu–)

, u–〉)
=

(
1
α

〈
J ′(αu+ + βu–)

,αu+〉
,

1
β

〈
J ′(αu+ + βu–)

,βu–〉)

=
(

1
α

gu(α,β),
1
β

hu(α,β)
)

,

where

gu(α,β) = α2∥∥u+∥∥2
E – αβ

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+ α4
∫
R3

φt
u+

∣∣u+∣∣2 dx + α2β2
∫
R3

φt
u–

∣∣u+∣∣2 dx

–
∫
R3

K(x)f
(
αu+)

αu+ dx, (3.1)

hu(α,β) = β2∥∥u–∥∥2
E – αβ

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+ β4
∫
R3

φt
u–

∣∣u–∣∣2 dx + α2β2
∫
R3

φt
u+

∣∣u–∣∣2 dx

–
∫
R3

K(x)f
(
βu–)

βu– dx. (3.2)

From above facts, item (i) is obvious.
In the following, we prove (ii).
Firstly, we assert that M �= ∅.
In fact, to this end, we just prove the existence of a critical point of Gu. Letting u ∈ H

with u± �= 0 and β0 ≥ 0 fixed, from (3.1), we obtain

gu(α,β0) = α2
(∥∥u+∥∥2

E –
β0

α

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+ α2
∫
R3

φt
u+

∣∣u+∣∣2 dx + β2
0

∫
R3

φt
u–

∣∣u+∣∣2 dx

–
∫
R3

K(x)f (αu+)u+

α
dx

)
,
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gu(α,β0) = α4
(

1
α2

∥∥u+∥∥2
E –

β0

α3

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+
∫
R3

φt
u+

∣∣u+∣∣2 dx +
β2

0
α2

∫
R3

φt
u–

∣∣u+∣∣2 dx

–
∫
R3

K(x)f (αu+)u+

α3 dx
)

.

Then, according to Lemmas 2.1 and 2.3, we have that

gu(α,β0) > 0 for α small enough; gu(α,β0) < 0 for α large enough.

Since gu(α,β0) is continuous, there exists α0 > 0 such that gu(α0,β0) = 0. We assert
α0 is unique. In fact, supposing by contradiction, that there exist 0 < α1 < α2 such that
gu(α1,β0) = gu(α2,β0), we then have

(
1
α2

1
–

1
α2

2

)(∥∥u+∥∥2
E + β2

0

∫
R3

φt
u–

∣∣u+∣∣2 dx
)

+
(

β0

α3
2

–
β0

α3
1

)∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

=
∫
R3

K(x)
[

f (α1u+)
(α1u+)3 –

f (α2u+)
(α2u+)3

](
u+)4 dx.

Therefore, in view of (f5) and 0 < α1 < α2, we obtain a contradiction. That is, there exists
a unique α0 > 0 such that gu(α0,β0) = 0.

Thus, we can define a function ϕ1 : R+ → (0,∞) by

ϕ1(β) = α(β),

where α(β) satisfies gu(α(β),β) = 0.
By the same arguments as above, we can define functions ϕ2 : R+ → (0,∞) by ϕ2(α) =

β(α) which satisfies hu(α,β(α)) = 0.
Furthermore, the functions ϕi, i = 1, 2, have the following three good properties:
(a) ϕi are continuous on R+.
(b) ϕ1(β) > 0, ϕ2(α) > 0 for any α,β ∈R+.
(c) ϕ1(β) < β and ϕ2(α) < α for α, β large.
By (c), there exists C1 > 0 such that ϕ1(β) ≤ β and ϕ2(α) ≤ α, respectively, when

α,β > C1. Let C2 = max{maxβ∈[0,C1] ϕ1(β), maxα∈[0,C1] ϕ2(α)}, C = max{C1, C2}, and define
T : [0, C] × [0, C] →R

2
+ by

T(α,β) =
(
ϕ1(β),ϕ2(α)

)
.

It is easy to see that T(α,β) ∈ [0, C] × [0, C] for all (α,β) ∈ [0, C] × [0, C]. In fact,

⎧⎨
⎩ϕ2(α) ≤ α ≤ C1, α > C1,

ϕ2(α) ≤ maxα∈[0,C1] ϕ2(α) ≤ C2, α ≤ C1,
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that is to say, ϕ2(α) ≤ C. Similarly, we have ϕ1(β) ≤ C. Since T is continuous, using
Brouwer fixed point theorem, there exists (α+β–) ∈ [0, C] × [0, C] such that

(
ϕ1(β–),ϕ2(α+)

)
= (α+,β–). (3.3)

It follows from ϕi > 0, (3.3) that α+,β– > 0. According to the definition, we have

∂Gu

∂α
(α+,β–) =

∂Gu

∂β
(α+,β–) = 0.

We next prove the uniqueness of (α+,β–).
Case 1. u ∈M.
Supposing that u ∈M, one has

∇Gu(1, 1) =
(

∂Gu

∂α
(1, 1),

∂Gu

∂β
(1, 1)

)

=
(〈

J ′(u+ + u–)
, u+〉

,
〈
J ′(u+ + u–)

, u–〉)
= (0, 0),

which shows that (1, 1) is a critical point of Gu. Now, we need to prove that (1, 1) is the
unique critical point of Gu with positive coordinates. Let (α0,β0) be a critical point of Gu

such that 0 < α0 ≤ β0. So, one has that

α2
0
∥∥u+∥∥2

E – α0β0

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+ α4
0

∫
R3

φt
u+

∣∣u+∣∣2 dx + α2
0β

2
0

∫
R3

φt
u–

∣∣u+∣∣2 dx

=
∫
R3

K(x)f
(
α0u+)(

α0u+)
dx (3.4)

and

β2
0
∥∥u–∥∥2

E – α0β0

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

+ β4
0

∫
R3

φt
u–

∣∣u–∣∣2 dx + α2
0β

2
0

∫
R3

φt
u+

∣∣u–∣∣2 dx

=
∫
R3

K(x)f
(
β0u–)(

β0u–)
dx. (3.5)

Thanks to 0 < α0 ≤ β0 and (3.5), we have that

‖u–‖2
E

β2
0

–
1
β2

0

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy +

∫
R3

φt
u
∣∣u–∣∣2 dx

≥
∫
R3

K(x)
f (β0u–)
(β0u–)3

(
u–)4 dx. (3.6)
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On the other hand, for u ∈M, we have

∥∥u–∥∥2
E –

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy +

∫
R3

φt
u
∣∣u–∣∣2 dx

=
∫
R3

K(x)
f (u–)
(u–)3

(
u–)4 dx. (3.7)

Combining (3.6) with (3.7), one has that

(
1
β2

0
– 1

)∥∥u–∥∥2
E +

(
1 –

1
β2

0

)∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

≥
∫
R3

K(x)
[

f (β0u–)
(β0u–)3 –

f (u–)
(u–)3

](
u–)4 dx.

By the definitions of u± and u± �= 0, we know that
∫
R3

∫
R3

u+(x)u–(y)+u–(x)u+(y)
|x–y|3+2s dx dy < 0. So,

if β0 > 1, the left-hand side of the above inequality is negative, which is absurd because the
right-hand side is nonnegative by condition (f5). Therefore, we obtain that 0 < α0 ≤ β0 ≤ 1.

Similarly, by (3.4) and 0 < α0 ≤ β0, one has that

(
1
α2

0
– 1

)∥∥u+∥∥2
E +

(
1 –

1
α2

0

)∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

≤
∫
R3

K(x)
[

f (α0u+)
(α0u+)3 –

f (u+)
(u+)3

](
u+)4 dx.

Therefore, by condition (f5), we must have α0 ≥ 1. Consequently, α0 = β0 = 1, which
indicates that (1, 1) is the unique critical point of Gu with positive coordinates.

Case 2. u /∈M.
Let u ∈ H , u± �= 0 and (α1,β1), (α2,β2) be the critical points of Gu with positive coordi-

nates. In view of (i), one has that

u1 = α1u+ + β1u– ∈M, u2 = α2u+ + β2u– ∈M.

So,

u2 =
(

α2

α1

)
α1u+ +

(
β2

β1

)
β1u– =

(
α2

α1

)
u+

1 +
(

β2

β1

)
u–

1 ∈M.

It follows from u1 ∈ H with u±
1 �= 0 that ( α2

α1
, β2

β1
) is a critical point of the map Gu1 with

positive coordinates. Thanks to u1 ∈M, one has that

α2

α1
=

β2

β1
= 1,

Hence, α1 = α2, β1 = β2.
Finally, we prove that the unique critical point is the unique maximum point of Gu.
In fact, using Lemma (2.2), we have that

Gu(α,β) → –∞ as
∣∣(α,β)

∣∣ → ∞.
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Hence, the maximum point of Gu(α,β) cannot be achieved on the boundary ofR2
+. With-

out loss of generality, we may assume that (0,β) is a maximum point of Gu. But, according
to Lemma (2.3), it is obvious that

Gu(α,β)

=
α2

2

∫
R3

∫
R3

|u+(x) – u+(y)|2
|x – y|3+2s dx dy +

β
2

2

∫
R3

∫
R3

|u–(x) – u–(y)|2
|x – y|3+2s dx dy

– αβ

∫
R3

∫
R3

u+(x)u–(y) + u+(y)u–(x)
|x – y|3+2s dx dy +

α2

2

∫
R3

V (x)
∣∣u+∣∣2 dx

+
β

2

2

∫
R3

V (x)
∣∣u–∣∣2 dx +

α2

4

∫
R3

φt
u+

∣∣u+∣∣2 dx +
β

2

4

∫
R3

φt
u–

∣∣u–∣∣2 dx

+
αβ

4

∫
R3

(
φt

u+
∣∣u–∣∣2 + φt

u–
∣∣u+∣∣2)dx –

∫
R3

K(x)F
(
αu+)

dx –
∫
R3

K(x)F
(
βu–)

dx,

which is an increasing function with respect to α, if α is small enough. Hence, the pair
(0,β) is not a maximum point of Gu in R

2
+. �

Lemma 3.2 Suppose that (V , K) ∈ K and (f1)–(f5) hold. If u ∈ H with u± �= 0 is such that
gu(1, 1) ≤ 0 and hu(1, 1) ≤ 0, where gu(α,β), hu(α,β) are given by (3.1) and (3.2), then the
unique pair (α+,β–) obtained in Lemma (2.1) satisfies 0 < α+, β– ≤ 1.

Proof Suppose α+ ≥ β– > 0. Since α+u+ + β–u– ∈M, we have

α2
+
∥∥u+∥∥2

E + α4
+

∫
R3

φt
u+

∣∣u+∣∣2 dx + α4
+

∫
R3

φt
u–

∣∣u+∣∣2 dx

– α2
+

∫
R3

∫
R3

u+(x)u–(y) + u+(y)u–(x)
|x – y|3+2s dx dy

≥ α2
+
∥∥u+∥∥2

E + α4
+

∫
R3

φt
u+

∣∣u+∣∣2 dx + α2
+β2

–

∫
R3

φt
u–

∣∣u+∣∣2 dx

– α+β–

∫
R3

∫
R3

u+(x)u–(y) + u+(y)u–(x)
|x – y|3+2s dx dy

=
∫
R3

K(x)f
(
α+u+)(

α+u+)
dx. (3.8)

Thanks to gu(1, 1) ≤ 0, we have that

∥∥u+∥∥2
E +

∫
R3

φt
u+

∣∣u+∣∣2 dx +
∫
R3

φt
u–

∣∣u+∣∣2 dx

–
∫
R3

∫
R3

u+(x)u–(y) + u+(y)u–(x)
|x – y|3+2s dx dy

≤
∫
R3

K(x)f
(
u+)(

u+)
dx. (3.9)
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From (3.8) and (3.9), we have that

(
1
α2

+
– 1

)∥∥u+∥∥2
E +

(
1 –

1
α2

+

)∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy

≥
∫
R3

K(x)
[

f (α+u+)
(α+u+)3 –

f (u+)
(u+)3

](
u+)4.

By (f5), we must have α+ ≤ 1. Then the proof is completed. �

Next, we consider the following minimization problem

m = inf
{

J(u) : u ∈M
}

. (3.10)

Lemma 3.3 Suppose that (V , K) ∈K and f satisfies (f1)–(f5). Then m > 0 can be achieved.

Proof Firstly, we prove m > 0.
For every u ∈M, we have 〈J ′(u), u〉 = 0.
First of all, suppose that (H2) is true. It follows from (f1) and (f3) that for any given ε > 0,

there exists Cε > 0 such that

∣∣f (t)
∣∣ ≤ ε|t| + Cε|t|2∗

s –1, t ∈R.

So, we have that

‖u‖2
E ≤

∫
R3

∫
R3

u(x) – u(y)
|x – y|3+2s dx dy +

∫
R3

V (x)u2 dx +
∫
R3

φt
uu2 dx

=
∫
R3

K(x)f (u)u dx ≤ ε|K/V |∞‖u‖2
E + Cε|K |∞(S′)– 2∗s

2 ‖u‖2∗
s

E . (3.11)

Choosing ε < 1/|K/V |∞, there exists a constant θ1 > 0 such that ‖u‖2
E ≥ θ1.

Next, suppose that (H3) holds. By the discussion of [6], there is a constant Cp > 0, for
every given ε ∈ (0, Cp), there exists R > 0 large enough leading to

∫
|x|≥R

K(x)|u|p dx ≤ ε

∫
|x|≥R

(
Vu2 + u2∗

s
)

dx, u ∈ E. (3.12)

From (f2) and (f3), there are C1, C2 > 0 such that

∣∣f (t)
∣∣ ≤ C1|t|p–1 + C2|t|2∗

s –1, t ∈R.

So, by Hölder’s inequality and Soblev inequalities, we have that

‖u‖2
E ≤

∫
R3

∫
R3

u(x) – u(y)
|x – y|3+2s dx dy +

∫
R3

V (x)u2 dx +
∫
R3

φt
uu2 dx

=
∫
R3

K(x)f (u)u dx ≤ C1ε‖u‖2
E + C1

(
S′) –2

2∗s
(
ε + C2|K |∞

)‖u‖2∗
s

E

+ C2|K |L2∗s /(2∗s –p)BR(0)

(
S′) –p

2 ‖u‖p
E . (3.13)
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Choosing ε < 1/C1, there exists a constant θ2 > 0 such that ‖u‖2
E ≥ θ2.

Consequently, we conclude that ‖u‖2
E ≥ θ for any u ∈M, where θ = max{θ1, θ2} > 0.

On the other hand, by condition (f5), we have

H(t) := f (t)t – 4F(t) ≥ 0, t ∈R, (3.14)

and H(t) is increasing when t > 0 and decreasing when t < 0. Hence,

J(u) = J(u) –
1
4
〈
J ′(u), u

〉
=

1
4
‖u‖2

E +
1
4

∫
R3

K(x)
(
f (u)u – 4F(u)

)
dx

≥ 1
4
‖u‖2

E

≥ 1
4
θ .

This implies that m ≥ θ
4 > 0.

In the following, we prove that m is achieved.
Let {un} ⊂M such that J(un) → m. Then ‖un‖E ≤ C. Hence, we may assume that there

exists u ∈ E such that un ⇀ u, u±
n ⇀ u± in E.

By Proposition (2.3), we know that

∫
R3

K(x)F(un) dx →
∫
R3

K(x)F(u) dx.

Hence {∫
R3 K(x)F(un) dx} is bounded.

By definition of J , we get

1
4

∫
R3

φt
un u2

n dx +
1
2
‖un‖2

E = J(un) +
∫
R3

KF(un) dx,

which implies that {un} is bounded in H .
Hence, by the uniqueness of the convergence, we get un ⇀ u and u±

n ⇀ u± in H . Thanks
to un ∈M, we have that

〈
J ′(un), u±

n
〉

=
∥∥u±

n
∥∥2

E –
∫
R3

∫
R3

u+
n(x)u–

n(y) + u–
n(x)u+

n(y)
|x – y|3+2s dx dy

+
∫
R3

φt
un

∣∣u±
n
∣∣2 dx –

∫
R3

Kf
(
u±

n
)
u±

n dx

= 0. (3.15)

Together (3.15) with Proposition 2.3, we get

0 < θ ≤ ∥∥u±
n
∥∥2

E

≤ ∥∥u±
n
∥∥2

E –
∫
R3

∫
R3

u+
n(x)u–

n(y) + u–
n(x)u+

n(y)
|x – y|3+2s dx dy +

∫
R3

φt
un

∣∣u±
n
∣∣2 dx

=
∫
R3

K(x)f
(
u±

n
)
u±

n dx =
∫
R3

K(x)f
(
u±)

u± dx + o(1). (3.16)
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Thus u± �= 0.
On the other hand, combining (1.4) with the Hardy–Littlewood–Sobolev inequality

[31], we have that

lim
n→∞ inf

∫
R3

φt
un

∣∣u±
n
∣∣2 dx =

∫
R3

φt
u
∣∣u±∣∣2 dx.

Then, by the weak lower semicontinuity of norm and Fatou’s lemma, we have

∥∥u±∥∥2
E –

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy +

∫
R3

φt
u
∣∣u±∣∣2 dx

≤ lim
n→∞ inf

[∥∥u±
n
∥∥2

E –
∫
R3

∫
R3

u+
n(x)u–

n(y) + u–
n(x)u+

n(y)
|x – y|3+2s dx dy

+
∫
R3

φt
un

∣∣u±
n
∣∣2 dx

]
. (3.17)

Then, by (3.16) and (3.17), we have that

∥∥u±∥∥2
E –

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy +

∫
R3

φt
u
∣∣u±∣∣2 dx

≤
∫
R3

K(x)f
(
u±)

u± dx. (3.18)

According to Lemmas 3.1 and 3.2, there exists (α,β) ∈ (0, 1] × (0, 1] such that

u := αu+ + βu– ∈M.

Thanks to (3.14), we have that

m ≤ J(u) –
1
4
〈
J ′(u), u

〉
=

1
4

∫
R3

∫
R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

1
4

∫
R3

V (x)|u|2 dx +
1
4

∫
R3

K(x)
(
f (u)u – 4F(u)

)
dx

=
α2

4
∥∥u+∥∥2

E –
αβ

2

∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy +

β
2

4
∥∥u–∥∥2

E

+
1
4

∫
R3

K(x)
(
f
(
αu+)

αu+ – 4F
(
αu+))

dx +
1
4

∫
R3

K(x)
(
f
(
βu–)

βu– – 4F
(
βu–))

dx

≤ 1
4
‖u‖2

E +
1
4

∫
R3

K(x)
(
f (u)u – 4F(u)

)
dx

≤ lim
n→∞

[
J(un) –

1
4
〈
J ′(un), un

〉]
= m.

Consequently, α = β = 1. Thus u = u and J(u) = m. �

4 Proof of the main result
In this section, we will prove Theorem 1.1. In fact, we just prove that the minimizer u for
(3.10) is indeed a sign-changing solution of system (1.1).
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Proof Since u ∈M, we have 〈J ′(u), u+〉 = 0 = 〈J ′(u), u–〉. By Lemma 3.1, for (α,β) ∈ R
2
+ and

(α,β) �= (1, 1), we have

J
(
αu+ + βu–)

< J
(
u+ + u–)

= m. (4.1)

Set ξ1 = |u+|2∗
s , ξ2 = |u–|2∗

s and ξ = min{ξ1, ξ2}. We denote S̃ the imbedding constant of
H ↪→ L2∗

s (R3), that is, |u|2∗
s ≤ S̃‖u‖, u ∈ H .

If J ′(u) �= 0, then there exist r,μ > 0 such that

∥∥J ′(v)
∥∥ ≥ μ, ‖v – u‖ ≤ r. (4.2)

Choose δ ∈ (0, min{ξ /(2̃S), r/3}) and σ ∈ (0, min{1/2, δ/(
√

2‖u‖)}). Let D = (1–σ , 1+σ )×
(1 – σ , 1 + σ ) and ψ(α,β) := αu+ + βu–, (α,β) ∈ D. In view of (4.1), it is easy to see that

m := max
∂D

J ◦ ψ < m. (4.3)

Let 0 < ε < min{(m – m)/2,μδ/8} and Sδ := {v ∈ H ,‖v – u‖ < δ}, according to quantitative
deformation lemma [52], there exists a deformation η ∈ ([0, 1] × H , H) satisfying

(a) η(1, u) = u if u /∈ J–1([m – 2ε, m + 2ε]) ∩ S2δ ;
(b) η(1, Jm+ε ∩ Sδ) ⊂ Jm–ε ;
(c) ‖η(1, u) – u‖ ≤ δ for all u ∈ H , where Jm+ε := {x|J(x) ≤ m + ε}.
Firstly, we need to prove that

max
(α,β)∈D

J
(
η
(
1,ψ(α,β)

))
< m. (4.4)

In fact, it is follows from Lemma 3.1 that J(ψ(α,β)) ≤ m < m + ε. That is, ψ(α,β) ∈ Jm+ε .
On the other hand, we have

∥∥ψ(α,β) – u
∥∥2 ≤ 2

(
(α – 1)2∥∥u+∥∥2 + (β – 1)2∥∥u–∥∥2)

≤ 2σ‖u‖2

< δ2,

which shows that ψ(α,β) ∈ Sδ for all (α,β) ∈ D.
Therefore, according to (b), we have J(η(1,ψ(α,β))) < m – ε. Hence (4.4) holds.
In the following, we prove that

η
(
1,ψ(D)

) ∩M �= ∅, (4.5)

which is a contradiction to the definition of m.
Let γ (α,β) := η(1,ψ(α,β)) and

Φ0(α,β) :=
(〈

J ′(ψ(α,β)
)
, u+〉

,
〈
J ′(ψ(α,β)

)
, u–〉)

=
(〈

J ′(αu+ + βu–)
, u+〉

,
〈
J ′(αu+ + βu–)

, u+〉)
,

Φ1(α,β) :=
(

1
α

〈
J ′(γ (α,β)

)
,γ +(α,β)

〉
,

1
β

〈
J ′(γ (α,β)

)
,γ –(α,β)

〉)
.



Wang et al. Boundary Value Problems         (2019) 2019:25 Page 16 of 18

Thanks to (f5), we have that f ′(u)u2 ≥ 3f (u)u. Then, by direct calculation, we get

A11 :=
∂〈J ′(αu+ + βu–), u+〉

∂α

∣∣∣∣
(1,1)

=
∥∥u+∥∥2

E + 3
∫
R3

φt
u+

∣∣u+∣∣2 dx +
∫
R3

φt
u–

∣∣u+∣∣2 dx –
∫
R3

K(x)f ′(u+)∣∣u+∣∣2 dx

= –2
∥∥u+∥∥2

E + 3
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy – 2

∫
R3

φt
u–

∣∣u+∣∣2 dx

–
∫
R3

K(x)
(
f ′(u+)∣∣u+∣∣2 dx – 3f

(
u+)

u+)
dx

<
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy – 2

∫
R3

φt
u–

∣∣u+∣∣2 dx < 0,

A12 :=
∂〈J ′(αu+ + βu–), u+〉

∂β

∣∣∣∣
(1,1)

= –
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy + 2

∫
R3

φt
u–

∣∣u+∣∣2 dx,

A21 :=
∂〈J ′(αu+ + βu–), u–〉

∂α

∣∣∣∣
(1,1)

= –
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy + 2

∫
R3

φt
u+

∣∣u–∣∣2 dx,

and

A22 :=
∂〈J ′(αu+ + βu–), u–〉

∂β

∣∣∣∣
(1,1)

=
∥∥u–∥∥2

E + 3
∫
R3

φt
u–

∣∣u–∣∣2 dx +
∫
R3

φt
u+

∣∣u–∣∣2 dx –
∫
R3

K(x)f ′(u–)∣∣u–∣∣2 dx

= –2
∥∥u–∥∥2

E + 3
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy – 2

∫
R3

φt
u+

∣∣u–∣∣2 dx

–
∫
R3

K(x)
(
f ′(u–)∣∣u–∣∣2 dx – 3f

(
u–)

u–)
dx

<
∫
R3

∫
R3

u+(x)u–(y) + u–(x)u+(y)
|x – y|3+2s dx dy – 2

∫
R3

φt
u+

∣∣u–∣∣2 dx < 0.

Thus

JΦ0(1,1) =

∣∣∣∣∣
∂〈J ′(αu++βu–),u+〉

∂α

∂〈J ′(αu++βu–),u+〉
∂β

∂〈J ′(αu++βu–),u–〉
∂α

∂〈J ′(αu++βu–),u–〉
∂β

∣∣∣∣∣
(1,1)

= A11A22 – A12A21 > 0,

which implies that deg(Φ0, D, 0) = 1.
So, combining (4.3) with (a), we obtain ψ = γ on ∂D. Consequently, we obtain

deg(Φ1, D, 0) = deg(Φ0, D, 0) = 1. Therefore, Φ1(α0,β0) = 0 for some (α0,β0) ∈ D, so that
η(1,ψ(α0,β0)) = γ (α0,β0) ∈M, which contradicts (4.4).

From the above discussion, we conclude that u is a sign-changing solution for system
(1.1). �
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