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Abstract
This paper is concerned with semilinear wave equations with nonlinear interior and
boundary sources and subject to a nonlinear dynamical boundary condition. By using
the potential well method combined with a standard continuous argument, under
appropriate assumptions imposed on the source term, we establish global existence
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blow-up phenomenon is exhibited.

MSC: 35A01; 35L35; 35B44; 76X05

Keywords: Global existence; Blow-up; Dynamical boundary condition; Wave
equation; Potential well theory

1 Introduction
In this paper, we consider the following model of semilinear wave equation with nonlinear
interior and boundary sources:

utt – �utt – �u = g(u), t > 0, (1.1)

∂utt

∂ν
+

∂u
∂ν

+ u = f (u), x ∈ Γ , t > 0, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω , (1.3)

in a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω = Γ , where f (s), g(s) are con-
tinuous functions and ∂

∂ν
denotes the unit outer normal derivative. In this paper, we take

f (s) = b|u|k–1u, g(s) = a|u|p–1u, where a, b are positive constants. For simplicity, we take
a = b = 1.

Problem (1.1)–(1.3) arises from a model equation of ion-sound waves in ‘non-mag-
netized’ plasma taking account of nonlinear sources localized on the boundary [1–6].
This generates a nonlinear dynamical boundary condition which is ’close’ to the nonlinear
Neumann–Dirichlet condition [1]. Problem (1.1)–(1.3) when g(u) = 0 (i.e., without inte-
rior source term) has been considered by Korpusov [1]. Korpusov proved that the solution
of problem (1.1)–(1.3) exists locally in time for all initial data u0(x), u1(x) ∈ H1(Ω) and that
the solution blows up in a finite time provided that the initial data (the functions u0(x) and
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u1(x)) are sufficiently ‘large’, i.e.,

∫
Ω

[|∇u1|2 + |u1|2
]

dx +
∫

Ω

|∇u0|2 dx < 2
∫

Γ

∫ u0

0
f (s) ds dx,

∫
Ω

[∇u1∇u0 + u0u1] dx > 0,

by using a modification of Levine’s energy method [7, 8]. Park and Kim [9] discussed the
existence and uniform decay rates of the energy of solutions for the following problem:

|ut|ρutt – β�utt – �u – �ut = 0, in Ω × (0,∞),

β
∂utt

∂ν
+

∂u
∂ν

+
∂ut

∂ν
+ u =

∫ t

0
g(t – s)

∣∣ut(s)
∣∣γ ut(s) ds, on Γ1 × (0,∞),

u = 0, on Γ0 × (0,∞),

with initial condition (1.3), where Γ1 ∪Γ0 = ∂Ω = Γ and Γ1 ∩Γ0 = ø. However, as far as we
know, until now there have not been many works on this class of problems. In this paper,
we will extend the result in [1] for negative initial energy to the semilinear wave equation
with positive initial energy and nonlinear interior and boundary sources. It is well known
that the presence of the boundary source term in equation (1.2) brings great difficulty due
to the fact that the Lopatinskii condition [10] does not hold [11]. A combination of interior
and boundary sources with positive initial energy is a much more challenging problem.

To motivate our work, let us recall some results of the following wave equations:

utt – �u + g(ut) = f (u), in Ω × (0, T), (1.4)

∂u
∂ν

+ u + g1(ut) = h(u), on Γ × (0, T). (1.5)

This problem has been widely studied. Several results have been established. It is worth
noting the pioneering work of Lasiecka and Tataru [12] in which (1.4) with g = 0 was con-
ducted under a very weak geometrical condition on ∂Ω . They established the uniform
decay rates for the solutions. Vitillaro [13] obtained a full analysis of local and global ex-
istence of problem (1.4), (1.5) and (1.3). Recently, Boicu and Lasiecka et al. [11, 14–28]
studied problem (1.4), (1.5) and (1.3) with interior and boundary sources and damping
terms. They obtained global existence of a unique weak solution and established explicit
uniform energy rates. As for blow-up of solutions, they established blow-up results with
up-to-critical boundary sources. Especially, at the super-critical level for both interior and
boundary sources terms, the blow-up theorem was presented in [15] for initial data of neg-
ative energy, and Bociu, Rammaha, and Toundykov [18] proved a blow-up result for weak
solutions with nonnegative initial energy.

It is important to observe that similar equations to the one given in (1.1) arise also in
the study of viscoelastic plates. Ji and Lasiecka [29] proved that a semilinear Kirchhoff
equation

utt – �utt + �2u = f (u) (1.6)

with nonlinear dissipation acting via moments only is uniform energy decay.
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Motivated by these papers, in this paper we aim to investigate the existence and nonex-
istence of global solutions for problem (1.1)–(1.3) with nonnegative initial energy. More
precisely, under appropriate assumptions imposed on the source term, we shall establish
global existence of solutions by using the potential well method combined with a standard
continuous argument. Moreover, for certain initial data in the unstable set, we will extend
the finite time blow-up result in [1] for negative initial energy to the semilinear wave equa-
tion with positive initial energy and nonlinear interior and boundary sources. Combining
this method with the method of [18, 19, 27], we can also consider the equation

utt – �utt – �u +
∫ t

0
k(t – s)�u(s) ds + h(ut) = g(u), (1.7)

∂utt

∂ν
+

∂u
∂ν

+ u + h1(ut) = f (u), x ∈ Γ , (1.8)

with initial condition (1.3). The plan of this article is as follows. In Sect. 2, we introduce
some notations, assumptions, and preliminaries. In Sect. 3, we show the main results of
this article.

2 Preliminaries
In this section, we present some materials needed in the proof of our results. We use the
standard Lebesgue space Lp(Ω) (1 < p < ∞) and the Sobolev space H1(Ω) with their usual
scalar products and norms. For simplicity, ‖u‖Lp(Ω) = ‖u‖p and ‖u‖Lq(Γ ) = ‖u‖q,Γ for 1 ≤
p, q ≤ ∞. In particular, we denote ‖u‖L2(Ω) = ‖u‖ and ‖u‖L2(Γ ) = ‖u‖Γ . It is well known
that the norm (‖∇u‖2 + ‖u‖2

Γ ) 1
2 is equivalent to the norm ‖u‖H1(Ω) on the space H1(Ω).

Thus we put ‖u‖H1(Ω) = ‖u‖1,Ω = (‖∇u‖2 + ‖u‖2
Γ ) 1

2 for u ∈ H1(Ω). The constants C used
throughout this paper are positive generic constants, which may be different in various
occurrences.

We assume that

1 ≤ p ≤ n
n – 2

, 1 ≤ k ≤ n – 1
n – 2

if n ≥ 3; p ≥ 1, k ≥ 1 if n = 1, 2. (2.1)

In this case, we have the Sobolev embedding H1(Ω) ↪→ Lp+1(Ω) and the Trace–Sobolev
embedding H1(Ω) ↪→ Lk+1(Γ ). In these cases, the embedding constants are denoted by
c∗, B∗ respectively, i.e.,

‖u‖p+1 ≤ c∗‖u‖1,Ω , ‖u‖k+1,Γ ≤ B∗‖u‖1,Ω . (2.2)

A function u(x, t) of class L∞(0, T ; H1(Ω)) with ut , utt ∈ L∞(0, T ; H1(Ω)) is called a weak
generalized solution of problem (1.1)–(1.3) [1] if it satisfies the equation

(utt ,φ) + (∇utt ,∇φ) + (∇u,∇φ) +
∫

Γ

uφ dx =
∫

Ω

|u|p–1uφ dx +
∫

Γ

|u|k–1uφ dx

for any φ ∈ H1(Ω) and for almost all t ∈ [0, T] and the initial condition

u(x, 0) = u0(x), ut(x, 0) = u1(x).
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Theorem 2.1 Let u0, u1 ∈ H1 and p, k satisfy (2.1), then problem (1.1)–(1.3) has a unique
weak generalized solution on [0, T0) for some T0 > 0, and we have either T0 = +∞ or T0 <
+∞ and

lim
t→T0

sup
[‖u‖2

1,Ω + ‖ut‖2
1,Ω

]
= +∞.

Remark This theorem can be easily established by combining the argument of [30] and
Theorem 2.2 in [1], so we omit it.

We define the functional that plays as the “potential energy”

J(u) =
1
2
‖∇u‖2 +

1
2
‖u‖2

Γ –
1

p + 1
‖u‖p+1

p+1 –
1

k + 1
‖u‖k+1

k+1,Γ

=
1
2
‖u‖2

1,Ω –
1

p + 1
‖u‖p+1

p+1 –
1

k + 1
‖u‖k+1

k+1,Γ , (2.3)

and the Nehari functional

I(u) = ‖u‖2
1,Ω – ‖u‖p+1

p+1 – ‖u‖k+1
k+1,Γ . (2.4)

We have also the following energy identity:

E(t) =
1
2
‖ut‖2

1,Ω + J(u) = E(0). (2.5)

In the sequel, a crucial role is played by the Nehari manifold to I , that is,

N =
{

u ∈ H1(Ω)|I(u) = 0,‖u‖1,Ω 
= 0
}

,

and we can readily give the mountain-pass level d by d = infu∈N J(u).
Next, we show some properties related to functions J(u) and I(u) in the following lemma.

Lemma 2.2 Let u ∈ H1(Ω) and ‖u‖1,Ω 
= 0, then
(i) limλ→0 J(λu) = 0, limλ→+∞ J(λu) = –∞;

(ii) There exists unique λ0 = λ0(u) such that d
dλ

J(λu)|λ=λ0 = 0;
(iii) J(λu) is increasing on 0 < λ ≤ λ0, decreasing on λ0 ≤ λ < +∞, and takes the

maximum at λ = λ0;
(iv) I(λu) > 0 for 0 < λ < λ0; I(λu) < 0 for λ > λ0, and I(λ0u) = 0.

Proof The first conclusion follows from

J(λu) =
λ2

2
‖u‖2

1,Ω –
λp+1

p + 1
‖u‖p+1

p+1 –
λk+1

k + 1
‖u‖k+1

k+1,Γ .

As in [19], let λ0 be the first positive zero of the function F ′(x) where

F(x) =
1
2

x2 –
cp+1
∗

p + 1
xp+1 –

Bk+1∗
k + 1

xk+1, (2.6)
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and we can verify that the function F(x) is increasing in 0 < λ ≤ λ0, decreasing in λ0 ≤ λ <
+∞, and F has a maximum at λ = λ0. Then we have that (ii) and (iii) hold. The conclusion
(iv) follows from (iii) and the fact that I(λu) = λ J(λu)

dλ
. �

Lemma 2.3 Let I(u) be the Nehari functional defined in (2.4) and λ0 be the first posi-
tive zero of the function F ′(x), then (i) if 0 < ‖u‖1,Ω < λ0, then I(u) > 0; (ii) if I(u) < 0, then
‖u‖1,Ω > λ0; (iii) if I(u) = 0 and ‖u‖1,Ω 
= 0, i.e., u ∈ N , then ‖u‖1,Ω ≥ λ0.

Proof We note that

1 = cp+1
∗ λ

p–1
0 + Bk+1

∗ λk–1
0 , (2.7)

so we denote φ(x) = cp+1
∗ xp–1 + Bk+1∗ xk–1, then φ(λ0) = 1.

(i) Since φ(x) is a strictly increasing function in (0,λ0), from 0 < ‖u‖1,Ω < λ0, we get
φ(‖u‖1,Ω ) < φ(λ0) and hence

I(u) = ‖u‖2
1,Ω – ‖u‖p+1

p+1 – ‖u‖k+1
k+1,Γ

≥ ‖u‖2
1,Ω

(
1 – cp+1

∗ ‖u‖p–1
1,Ω – Bk+1

∗ ‖u‖k–1
1,Ω

)

= ‖u‖2
1,Ω

(
1 – φ

(‖u‖1,Ω
))

> 0.

(ii) Condition I(u) < 0 gives

φ(λ0)‖u‖2
1,Ω = ‖u‖2

1,Ω < ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ

≤ (
cp+1
∗ ‖u‖p–1

1,Ω + Bk+1
∗ ‖u‖k–1

1,Ω
)‖u‖2

1,Ω = φ
(‖u‖1,Ω

)‖u‖2
1,Ω ,

which implies ‖u‖1,Ω 
= 0 and ‖u‖1,Ω > λ0 by the monotonicity of φ.
(iii) If I(u) = 0 and ‖u‖1,Ω 
= 0, then

φ(λ0)‖u‖2
1,Ω = ‖u‖2

1,Ω = ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ ≤ φ
(‖u‖1,Ω

)‖u‖2
1,Ω ,

and from the monotonicity of φ we get ‖u‖1,Ω > λ0. �

Lemma 2.4 Let I(u) be the Nehari functional defined in (2.4), then (i) d ≥ d0 = ( 1
2 –

max{ 1
p+1 , 1

k+1 })λ2
0; (ii) if u ∈ H1 and I(u) < 0, then I(u) < min{p + 1, k + 1}(J(u) – d).

Proof (i) For u ∈ N (or I(u) = 0 and ‖u‖1,Ω 
= 0), by Lemma 2.3, we have ‖u‖1,Ω > λ0. Hence

J(u) ≥ 1
2
‖u‖2

1,Ω – max

{
1

p + 1
,

1
k + 1

}(‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ
)

=
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
‖u‖2

1,Ω + max

{
1

p + 1
,

1
k + 1

}
I(u)

=
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
‖u‖2

1,Ω ≥
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
λ2

0,

which gives d ≥ d0.
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(ii) By Lemma 2.2, there exists λ0 ∈ (0, 1) such that I(λ0u) = 0 since I(1u) = I(u) < 0.
Combining this I(λ0u) = 0 with the definition of d and the fact that

J(u) =
1
2
‖u‖2

1,Ω –
1

p + 1
‖u‖p+1

p+1 –
1

k + 1
‖u‖k+1

k+1,Γ

=
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
‖u‖2

1,Ω + max

{
1

p + 1
,

1
k + 1

}
I(u)

+
[

max

{
1

p + 1
,

1
k + 1

}
–

1
p + 1

]
‖u‖p+1

p+1

+
[

max

{
1

p + 1
,

1
k + 1

}
–

1
k + 1

]
‖u‖k+1

k+1,Γ ,

we obtain

d ≤ J(λ0u)

=
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
λ2

0‖u‖2
1,Ω

+ max

{
1

p + 1
,

1
k + 1

}
I(λ0u) +

[
max

{
1

p + 1
,

1
k + 1

}
–

1
p + 1

]
λ

(p+1)
0 ‖u‖p+1

p+1

+
[

max

{
1

p + 1
,

1
k + 1

}
–

1
k + 1

]
λ

(k+1)
0 ‖u‖k+1

k+1,Γ

≤
(

1
2

– max

{
1

p + 1
,

1
k + 1

})
‖u‖2

1,Ω +
[

max

{
1

p + 1
,

1
k + 1

}
–

1
p + 1

]
‖u‖p+1

p+1

+
[

max

{
1

p + 1
,

1
k + 1

}
–

1
k + 1

]
‖u‖k+1

k+1,Γ

= J(u) – max

{
1

p + 1
,

1
k + 1

}
I(u),

which gives the result since max{ 1
p+1 , 1

k+1 } = min{p + 1, k + 1} for p, k > 1. �

Now we define the subsets of H1 related to problem (1.1)–(1.3). Set

W =
{

u ∈ H1|J(u) < d, I(u) > 0
}

, V =
{

u ∈ H1|J(u) < d, I(u) < 0
}

. (2.8)

Lemma 2.5 If u0, u1 ∈ H1 and 0 < E(0) < d, u is a weak solution of problem (1.1)–(1.3),
then (i) u ∈ W if I(u0) > 0 or ‖u‖1,Ω = 0; (ii) u ∈ V if I(u0) < 0.

Proof We only prove (i), the proof for (ii) is similar. Let Tm be maximal existence time of
a weak solution of u(t). We are going to prove that u ∈ W for 0 < t < Tm. From the energy
identity (2.5), we have

E(t) =
1
2
‖ut‖2

1,Ω + J(u) = E(0) < d for any t ∈ [0, T),

which implies J(u(t)) < d. To prove that u ∈ W for 0 < t < Tm, we argue by contradiction.
Indeed, if it is not the case, there would exist t0 ∈ (0, Tm) such that u(t0) ∈ N . By the defi-
nition of d = infu∈N J(u), one has d < J(u(t0)) < E(t0) ≤ d, we reach a contradiction. �
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3 Global existence and blow-up of solutions
In this section, we prove the global existence and blow-up of solutions for problem (1.1)–
(1.3).

Theorem 3.1 Let u0, u1 ∈ H1, 0 < E(0) < d, I(u0) > 0 or ‖u‖1,Ω = 0, and p, k satisfy (2.1),
then the weak solution u of problem (1.1)–(1.3) in Theorem 2.1 can be extended to (0,∞).

Proof By Lemma 2.5, we have u ∈ W , then I(u) > 0 and J(u) < d for all t ∈ (0, T). Therefore

(
1
2

–
1

p + 1

)
‖u‖p+1

p+1 +
(

1
2

–
1

k + 1

)
‖u‖k+1

k+1,Γ

=
1
2
(‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ

)
–

1
p + 1

‖u‖p+1
p+1 –

1
k + 1

‖u‖k+1
k+1,Γ

=
1
2
‖∇u‖2 –

1
2

I(u) –
1

p + 1
‖u‖p+1

p+1 –
1

k + 1
‖u‖k+1

k+1,Γ

≤ J(u) < d (3.1)

for all t ∈ (0, T). Define α = min{ 1
2 – 1

p+1 , 1
2 – 1

k+1 } > 0, then (3.1) implies

‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ <
d
α

(3.2)

for all t ∈ (0, T). By the energy identity, the definition of J(u) and (3.2), we have

1
2
‖ut‖2 +

1
2
‖u‖2

1,Ω = E(0) +
1

p + 1
‖u‖p+1

p+1 +
1

k + 1
‖u‖k+1

k+1,Γ

< d
(

1 +
1
α

max

{
1

p + 1
,

1
k + 1

})
(3.3)

for all t ∈ (0, T). It follows from (3.3) and from a standard continuous argument that the
local weak solution u furnished by Theorem 2.1 can be extended to the whole interval
[0,∞), that is, u is a global solution. �

Theorem 3.2 Let u0, u1 ∈ H1, 0 < E(0) < d, I(u0) < 0, and p, k satisfy (2.1), then the weak
solution u of problem (1.1)–(1.3) blows up in finite time, that is, the maximum existence
time Tm of u is finite and

lim
t→Tm

sup
[‖u‖2

1,Ω + ‖ut‖2
1,Ω

]
= +∞.

Proof Arguing by contradiction, we assume that Tm = +∞. Set

H(t) = ‖u‖2
1,Ω , (3.4)

then by taking the time derivative of the function H(t), performing integration by parts,
and using equations (1.1) and (1.2), we get

H ′(t) = 2(u, ut) + 2(∇u,∇ut), (3.5)
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H ′′(t) = 2‖ut‖2 + 2‖∇ut‖2 + 2(u, utt) + 2(∇u,∇utt)

= 2‖ut‖2 + 2‖∇ut‖2 – 2I(u). (3.6)

By virtue of the Schwarz inequality, we have

H ′2(t) ≤ 4H(t)
(‖ut‖2 + ‖∇ut‖2).

Hence

H(t)H ′′(t) –
ρ + 2

4
H ′2(t) ≥ H(t)

[
H ′′(t) – (ρ + 2)

(‖ut‖2 + ‖∇ut‖2)]

= H(t)
[
–ρ

(‖ut‖2 + ‖∇ut‖2) – 2I(u)
]
, (3.7)

where we denote ρ = min{k, p}. Next, we treat the part –ρ(‖ut‖2 + ‖∇ut‖2) in the above
estimate. By the energy identity E(t) = E(0), we have

–ρ
(‖ut‖2 + ‖∇ut‖2) = 2ρ

(
J(u) – E(0)

)
.

Substituting this into (3.7), we find

H(t)H ′′(t) –
ρ + 2

4
H ′2(t) ≥ 2H(t)

[
ρ
(
J(u) – E(0)

)
– I(u)

]

≥ 2H(t)
[
ρ
(
J(u) – d

)
) – I(u)

]
. (3.8)

From u0 ∈ V and Lemma 2.5, we have u(t) ∈ V , that is, I(u) < 0 for all 0 < t < ∞, then
Lemma 2.4(ii) holds, by (3.8), which leads to

H(t)H ′′(t) –
ρ + 2

4
H ′2(t) ≥ 0.

So,

(
H–β (t)

)′′ =
–β

Hβ+2(t)
(
H(t)H ′′(t) – (β + 1)H ′2(t)

)
< 0, β =

ρ

4
. (3.9)

From (3.6), Lemma 2.4(ii), and E(0) < d, we see that

H ′′(t) ≥ –2I(u) ≥ 2ρ
(
d – J(u)

) ≥ 2ρ
(
d – E(0)

)
,

and then

H ′(t) ≥ 2ρ
(
d – E(0)

)
+ H ′(0).

Hence there exists t0 ≥ 0 such that H ′(t) > H ′(0) > 0 for t0 < +∞ and

H(t) > H ′(0)(t – t0) + H(t0) ≥ H ′(0)(t – t0).

Consequently, there exists t1 such that H(t1) > 0 and H ′(t1) > 0. From this and (3.9), one can
find T1 > 0 such that limt→T1 H–β (t) = 0, therefore limt→T1 H(t) = +∞, which contradicts
Tm = +∞. Finally, from Tm < +∞ and Theorem 2.1, we get the result. �
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Remark Combining this method with the method of [18, 19, 27], we can also consider
equations (1.7), (1.8).
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