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Abstract
In this work, the three-dimensional model for the compressible micropolar fluid flow
is considered, whereby it is assumed that the fluid is viscous, perfect, and heat
conducting. The flow between two coaxial thermoinsulated cylinders, which leads to
a cylindrically symmetric model with homogeneous boundary data for velocity,
microrotation, and heat flux, is analyzed.
The corresponding PDE system is formulated in the Lagrangian setting, and it is

proven that this system has a generalized solution locally in time.
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1 Introduction
In this paper, we analyze the compressible flow of an isotropic, viscous, and heat-
conducting micropolar fluid, whereby we consider the flow between two coaxial ther-
moinsulated solid cylinders. We also assume that the fluid is perfect and polytropic in the
thermodynamical sense.

The micropolar fluid is a type of fluid which exhibits microrotational effects, as well as
microrotational inertia, and it can be perceived as a collection of rigid particles suspended
in a viscous medium, which can rotate about the centroid of the volume element. Conse-
quently, it belongs to the class of viscous fluids with a non-symmetric stress tensor, hence
the law of conservation of angular momentum must be taken into account. Therefore,
in addition to the standard hydrodynamic and thermodynamic variables (mass density,
velocity, and temperature), the microrotation vector is introduced to describe the micro
phenomena. The micropolar fluid was introduced by Eringen (see [1]) as an extension of
the Navier–Stokes model, capable of treating phenomena at the microlevel (see [2]).

As today’s science is increasingly engaged with micro and nanotechnology, the need has
emerged for models that can handle the impact of the scale. That is why the micropolar
continuum has begun to be intensively studied in the last few years. Let us note that the
micropolar fluid model has been applied as the model for blood flow (see [3]), water-based
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nanofluids (see [4]), mimicking physical phenomena of bacteria (see [5]), the behavior of
the epididymal material (see [6]), describing lubricants with additives, the motion of the
synovial fluid in the joints (see [7]), etc. Recently, the micropolar fluid model has been
used to effectively treat some heating problems as well (see [8] and [9]).

The aforementioned model was first analyzed in the one-dimensional case by N. Mu-
jaković in [10] and for the first time in [11] in the three-dimensional case with the assump-
tions of spherical symmetry of the solution by I. Dražić and N. Mujaković. For the recent
progress in the mathematical analysis of these two models, we refer to [12] and [13], and
for general theory to [14].

In this paper, assuming that initial functions are cylindrically symmetric and smooth
enough, we prove the local existence of the generalized cylindrically symmetric solution
to the governing system with homogeneous boundary conditions for velocity, microrota-
tion, and heat flux. In the proof, we follow the ideas from [10] and [11], whereby we apply
the Faedo–Galerkin method together with some ideas from [15], where this method was
applied for the classical fluid model in the one-dimensional case. Let us mention that the
utilization of the Faedo–Galerkin method does not require additional restrictions to initial
data, unlike in other approaches. Let us also note that the obtained model is the general-
ization of the model for the classical fluid considered by Qin in [16] and [17].

The paper is organized as follows. In the next section we state the problem, define the
generalized solution to our problem, and present the main result. In the third section, in
line with the Faedo–Galerkin method, we introduce the approximate problem and form
a series of approximate solutions. In the forth section, we derive some a priori estimates
for the obtained approximate solutions, which are the base for the final proof of our main
result (the local existence theorem), which is presented in the last section of this paper.

2 Statement of the problem and the main result
The governing initial boundary value problem is derived in [18] and reads as follows:

∂ρ

∂t
+ ρ2 ∂

∂x
(
rvr) = 0, (1)

∂vr

∂t
= –Rr

∂

∂x
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∂
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∂
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r
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ρ

∂

∂x
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cv
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ρ(x, 0) = ρ0(x), vr(x, 0) = vr
0(x), vϕ(x, 0) = vϕ

0 (x), vz(x, 0) = vz
0(x), (9)

ωr(x, 0) = ωr
0(x), ωϕ(x, 0) = ω

ϕ
0 (x), ωz(x, 0) = ωz

0(x), θ (x, 0) = θ0(x), (10)

vr(0, t) = vr(L, t) = 0, vϕ(0, t) = vϕ(L, t) = 0, vz(0, t) = vz(L, t) = 0, (11)

ωr(0, t) = ωr(L, t) = 0, ωϕ(0, t) = ωϕ(L, t) = 0, ωz(0, t) = ωz(L, t) = 0, (12)

∂θ

∂x
(0, t) =

∂θ

∂x
(L, t) = 0 (13)

defined on the domain QT = ]0, L[× ]0, T[ , where

L =
∫ b

a
sρ0(s) ds. (14)

Variables in this system are mass density ρ , velocity v, microrotation ω, and temperature
θ , and they are defined by

ρ(x, t) = ρ(r, t), θ (x, t) = θ (r, t), (15)

v(x, t) = vr(r, t)e1 + vϕ(r, t)e2 + vz(r, t)e3, (16)

ω(x, t) = ωr(r, t)e1 + ωϕ(r, t)e2 + ωz(r, t)e3, (17)

where

e1 =
1
r

(x1, x2, 0), e2 =
1
r

(–x2, x1, 0), e3 = (0, 0, 1), (18)

x ∈ Ω =
{

(x1, x2, x3) ∈ R3, a < r < b, x3 ∈ R
}

, a > 0, r =
√

x2
1 + x2

2. (19)

Here, the positive constant jI is microinertia density, λ and μ are the coefficients of
viscosity, μr , c0, ca, and cd are the coefficients of microviscosity, k (k ≥ 0) is the heat con-
duction coefficient, the positive constant R is the specific gas constant, and the positive
constant cv is the specific heat for a constant volume. Coefficients of viscosity and micro-
viscosity have the following properties:

μ ≥ 0, 3λ + 2μ ≥ 0, μr ≥ 0, (20)
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cd ≥ 0, 3c0 + 2cd ≥ 0, |cd – ca| ≤ cd + ca. (21)

Let us note that equations (1)–(8) are local forms of conservation laws and, with bound-
ary conditions (11)–(13), we describe the acting of the solid thermo-insulated walls.

This problem is written in the Lagrangian description, which is much simpler in com-
parison to the Eulerian description. Moreover, using the Lagrangian coordinates, we elim-
inate the hyperbolic part of the system, and the density equation becomes explicitly solv-
able once the velocity has been determined. At the same time, other equations remain
parabolic. Because of this coordinate transform, described in [18], we have the property

∂r
∂x

(x, t) =
1

ρ(x, t)r(x, t)
, (22)

where

r(x, t) = r0(x) +
∫ t

0
vr(x, τ ) dτ , (x, t) ∈ QT , (23)

r0(x) =
(

a2 + 2
∫ x

0

1
ρ0(y)

dy
) 1

2
, (24)

and a > 0 is the radius of the smaller boundary cylinder.
The main purpose of this work is to prove that problem (1)–(13) has a generalized (weak)

solution in the domain QT0 = ]0, L[×]0, T0[ for sufficiently small time T0 > 0.
Let us first introduce the vectors

V =
(
vr , vϕ , vz), W =

(
ωr ,ωϕ ,ωz) (25)

and the definition of a generalized solution.

Definition 1 A generalized solution of problem (1)–(13) in the domain QT is the function

(x, t) �→ (ρ, V, W, θ )(x, t), (x, t) ∈ QT , (26)

where

ρ ∈ L∞(
0, T ; H1(]0, L[

)) ∩ H1(QT ), inf
QT

ρ > 0, (27)

V, W ∈ (
L∞(

0, T ; H1(]0, L[
)))3 ∩ (

H1(QT )
)3 ∩ (

L2(0, T ; H2(]0, L[
)))3, (28)

θ ∈ L∞(
0, T ; H1(]0, L[

)) ∩ H1(QT ) ∩ L2(0, T ; H2(]0, L[
))

, (29)

that satisfies equations (1)–(8) a.e. in QT and conditions (9)–(13) in the sense of traces.

It is important to note that function (26) has the properties of a strong solution. Because
of the embedding and interpolation theorems (e.g., in [19] and [20]), we also have:

ρ ∈ L∞(
0, T ; C

(
[0, L]

)) ∩ C
(
[0, T], L2(]0, L[

))
, (30)

V, W ∈ (
L2(0, T ; C1([0, L]

)))3 ∩ (
C

(
[0, T]; H1(]0, L[

)))3, (31)
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θ ∈ L2(0, T ; C1([0, L]
)) ∩ C

(
[0, T]; H1(]0, L[

))
, (32)

V, W ∈ (
C(QT )

)3, (33)

θ ∈ C(QT ). (34)

The aim of this paper is to prove the following theorem.

Theorem 1 Let the functions

ρ0, θ0 ∈ H1(]0, L[
)
, vr

0, vϕ
0 , vz

0,ωr
0,ωϕ

0 ,ωz
0 ∈ H1

0
(
]0, L[

)
(35)

satisfy the conditions

ρ0(x) ≥ m, θ0(x) ≥ m for x ∈ ]0, L[ , (36)

where m ∈ R+. Then there exists T0, 0 < T0 ≤ T , such that problem (1)–(13) has a general-
ized solution in Q0 = QT0 , having the property

θ > 0 in Q0. (37)

For the function r, we have

r ∈ L∞(
0, T0; H2(]0, L[

)) ∩ H2(Q0) ∩ C(Q0), (38)
a
2

≤ r ≤ 2M in Q0. (39)

Remark 1 Because of the embedding H1(]0, L[) ⊂ C([0, L]), we can conclude that there
exists M ∈ R+ such that

ρ0(x),
∣∣vr

0(x)
∣∣,

∣∣vϕ
0 (x)

∣∣,
∣∣vz

0(x)
∣∣,

∣∣ωr
0(x)

∣∣,
∣∣ωϕ

0 (x)
∣∣,

∣∣ωz
0(x)

∣∣, θ0(x) ≤ M, (40)

for x ∈ [0, L].
The function r0, introduced by (24), belongs to the space H2(]0, L[) ⊂ C1([0, L]), and we

have

0 < a ≤ r0(x) ≤ M, 0 < a1 ≤ r′
0(x) ≤ M1, x ∈ [0, L], (41)

where a1 = M–2, M1 = (ma)–1, a is from (24) and m from (36).

The proof of Theorem 1 is essentially based on the Faedo–Galerkin method. We first de-
fine the approximate problem (for each n ∈ N). Then we derive uniform (in n) a priori
estimates for approximate solutions, where we utilize the techniques applied in [10, 15],
and [11] to similar models. Using the obtained estimates and results of weak compactness,
we extract the subsequence of approximate solutions, which has a limit in some weak sense
on ]0, L[×]0, T0[ for sufficiently small T0 > 0.
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3 Approximate solutions
In [18], we have already introduced the Faedo–Galerkin approximations to problem (1)–
(13), where we used them to find the numerical solution to problem (1)–(13). For the
reader’s convenience, we will describe it here briefly.

As we have already pointed out, we shall find a local generalized solution to problem
(1)–(13) as a limit of approximate solutions

(
ρn, vrn, vϕn, vzn,ωrn,ωϕn,ωzn, θn), n ∈ N, (42)

where ρn, vrn, vϕn, vzn, ωrn, ωϕn, ωzn, and θn are the approximations of the functions ρ , vr ,
vϕ , vz, ωr , ωϕ , ωz , and θ , respectively. We define them by

vrn(x, t) =
n∑

i=1

vrn
i (t) sin

π ix
L

, vϕn(x, t) =
n∑

i=1

vϕn
i (t) sin

π ix
L

, (43)

vzn(x, t) =
n∑

i=1

vzn
i (t) sin

π ix
L

, ωrn(x, t) =
n∑

j=1

ωrn
j (t) sin

π jx
L

, (44)

ωϕn(x, t) =
n∑

j=1

ω
ϕn
j (t) sin

π jx
L

, ωzn(x, t) =
n∑

j=1

ωzn
j (t) sin

π jx
L

, (45)

θn(x, t) =
n∑

k=0

θn
k (t) cos

πkx
L

. (46)

We also define

rn(x, t) = r0(x) +
∫ t

0
vrn(x, τ ) dτ = r0(x) +

n∑

i=1

sin
π ix

L

∫ t

0
vrn

i (τ ) dτ , (47)

where r0(x) is defined by (24). vrn
i , vϕn

i , vzn
i , i = 1, 2, . . . , n, ωrn

j , ω
ϕn
j , ωzn

j , j = 1, . . . , n and θn
k ,

k = 0, . . . , n, are unknown smooth functions defined on the interval [0, Tn], Tn ≤ T .
The approximation ρn of the function ρ becomes the solution to the initial problem

∂ρn

∂t
+

(
ρn)2 ∂

∂x
(
rnvrn) = 0, ρn(x, 0) = ρ0(x), (48)

and it can be written in the form

ρn(x, t) =
ρ0(x)

1 + ρ0(x) ∂
∂x

∫ t
0 rnvrn dτ

. (49)

We also have

∂rn

∂x
=

1
ρnrn . (50)

Since rn and vrn are sufficiently smooth functions, we can conclude that the function ρn

is continuous on the rectangle [0, L] × [0, Tn] with the property ρn(x, 0) = ρ0(x) ≥ m > 0.
Because of the aforementioned, we can conclude that there exists such Tn, 0 < Tn ≤ T ,
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that

ρn(x, t) > 0, for (x, t) ∈ [0, L] × [0, Tn]. (51)

Evidently, the boundary conditions

vrn(0, t) = vrn(L, t) = vϕn(0, t) = vϕn(L, t) = vzn(0, t) = vzn(L, t) = 0, (52)

ωrn(0, t) = ωrn(L, t) = ωϕn(0, t) = ωϕn(L, t) = ωzn(0, t) = ωzn(L, t) = 0, (53)

∂θn

∂x
(0, t) =

∂θn

∂x
(L, t) = 0 (54)

are satisfied, which is in accordance with boundary conditions (11)–(13) of the starting
problem.

We take the initial conditions for vrn, vϕn, vzn, ωrn, ωϕn, ωzn, and θn in the form:

vrn(x, 0) = vrn
0 (x), vϕn(x, 0) = vϕn

0 (x), vzn(x, 0) = vzn
0 (x), (55)

ωrn(x, 0) = ωrn
0 (x), ωϕn(x, 0) = ω

ϕn
0 (x), ωzn(x, 0) = ωzn

0 (x), (56)

θn(x, 0) = θn
0 (x), x ∈ [0, L], (57)

where vrn
0 , vϕn

0 , vzn
0 , ωrn

0 , ωϕn
0 , ωzn

0 , and θn
0 are defined by

vrn
0 (x) =

n∑

i=1

vr
0i sin

π ix
L

, vϕn
0 (x) =

n∑

i=1

vϕ
0i sin

π ix
L

, (58)

vzn
0 (x) =

n∑

i=1

vz
0i sin

π ix
L

, ωrn
0 (x) =

n∑

i=1

ωr
0i sin

π jx
L

, (59)

ω
ϕn
0 (x) =

n∑

i=1

ω
ϕ
0i sin

π jx
L

, ωzn
0 (x) =

n∑

i=1

ωz
0i sin

π jx
L

, (60)

θn
0 (x) =

n∑

k=0

θ0k cos
πkx

L
, (61)

and vr
0i, vϕ

0i, vz
0i, ωr

0j, ω
ϕ
0j, ω

z
0j, and θ0k are the Fourier coefficients of the functions vr

0, vϕ
0 , vz

0,
ωr

0, ωϕ
0 , ωz

0, and θ0, respectively.
According to the Faedo–Galerkin method, we take the following approximate condi-

tions:

∫ L

0

(
∂vrn

∂t
+ Rrn ∂

∂x
(
ρnθn) – (λ + 2μ)rn ∂

∂x

(
ρn ∂

∂x
(
rnvrn)

)

–
(vϕn)2

rn

)
sin

π i1x
L

dx = 0, (62)

∫ L

0

(
∂vϕn

∂t
– (μ + μr)rn ∂

∂x

(
ρn ∂

∂x
(
rnvϕn)

)
+

vrnvϕn

rn

+ 2μrrn ∂ωzn

∂x

)
sin

π i2x
L

dx = 0, (63)
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∫ L

0

(
∂vzn

∂t
– (μ + μr)rn ∂

∂x

(
ρn ∂

∂x
(
rnvzn)

)
– (μ + μr)

vzn

ρn(rn)2

– 2μr
∂

∂x
(
rnωϕn)

)
sin

π i3x
L

dx = 0, (64)

∫ L

0

(
∂ωrn

∂t
–

c0 + 2cd

jI
rn ∂

∂x

(
ρn ∂

∂x
(
rnωrn)

)
–

ωϕnvϕn

rn

+ 4
μr

jI
ωrn

ρn

)
sin

π j1x
L

dx = 0, (65)

∫ L

0

(
∂ωϕn

∂t
–

cd + ca

jI
rn ∂

∂x

(
ρn ∂

∂x
(
rnωϕn)

)
+

ωrnvϕn

rn + 2
μr

jI
rn ∂vzn

∂x

+ 4
μr

jI
ωϕn

ρn

)
sin

π j2x
L

dx = 0, (66)

∫ L

0

(
∂ωzn

∂t
–

cd + ca

jI
rn ∂

∂x

(
ρn ∂

∂x
(
rnωzn)

)
–

cd + ca

jI
ωzn

ρn(rn)2

– 2
μr

jI
∂

∂x
(
rnvϕn) + 4

μr

jI
ωzn

ρn

)
sin

π j3x
L

dx = 0, (67)

∫ L

0

(
∂θn

∂t
–

k
cv

∂

∂x

(
(
rn)2

ρn ∂θn

∂x

)
–

ρn

cv

[
(λ + 2μ)

∂

∂x
(
rnvrn) – Rθn

]

× ∂

∂x
(
rnvrn) –

μ + μr

cv
ρn

(
∂

∂x
(
rnvϕn)

)2

–
cd + ca

cv
ρn

(
∂

∂x
(
rnωϕn)

)2

–
c0 + 2cd

cv
ρn

(
∂

∂x
(
rnωrn)

)2

–
μ + μr

cv
ρn(rn)2

(
∂vzn

∂x

)2

–
cd + ca

cv
ρn(rn)2

(
∂ωzn

∂x

)2

+ 2
cd

cv

∂

∂x
((

ωrn)2 +
(
ωϕn)2)

+ 2
μ

cv

∂

∂x
((

vrn)2 +
(
vϕn)2) – 4

μr

cv

(ωrn)2

ρn – 4
μr

cv

(ωϕn)2

ρn – 4
μr

cv

(ωzn)2

ρn

– 4
μr

cv
rnωϕn ∂vzn

∂x
+ 4

μr

cv
ωzn ∂

∂x
(
rnvϕn)

)
cos

πkx
L

dx = 0 (68)

for i1, i2, i3, j1, j2, j3 = 1, . . . , n, k = 0, 1, . . . , n.
To simplify the problem, we introduce the functions zn

m(t) and λn
pq(t) by

zn
m(t) =

∫ t

0
vrn

m (τ ) dτ , m = 1, . . . , n, (69)

λn
pq(t) =

∫ t

0
zn

p(τ )vrn
q (τ ) dτ , p, q = 1, . . . , n. (70)

Now, (47) and (49) could be written in the form

rn(x, t) = r0(x) +
n∑

i=1

zn
i (t) sin

π ix
L

, (71)
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ρn(x, t) = ρ0(x)

(

1 + ρ0(x)
n∑

j=1

zn
j (t)

∂

∂x

(
r0(x) sin

π jx
L

)

+ ρ0(x)
n∑

i,j=1

λn
ij(t)

∂

∂x

(
sin

π ix
L

sin
π jx
L

))–1

. (72)

Taking into account (58)–(72), from (62)–(68) we obtain, for n2 + 8n + 1-tuple un (with
coordinates vrn

i1 , vϕn
i2 , vzn

i3 , ωrn
j1 , ω

ϕn
j2 , ωzn

j3 , θn
k , zn

m, λn
pq, i1, i2, i3, j1, j2, j3, m, p, q = 1, . . . , n,

k = 0, 1, . . . , n), the following differential equation:

u̇n(t) = F
(
un(t)

)
(73)

with the initial conditions un(0) defined by

vrn
i1 (0) = vr

0i1 , vϕn
i2 (0) = vϕ

0i2 , vzn
i3 (0) = vz

0i3 (x), (74)

ωrn
j1 (0) = ωr

0j1 , ω
ϕn
j2 (0) = ω

ϕ
0j2 , ωzn

j3 (0) = ωz
0j3 , (75)

θn
k (0) = θ0k , zn

m(0) = 0, λn
pq(0) = 0. (76)

Let us notice that the function F on the right-hand side of (73) satisfies the conditions
of the Cauchy–Picard theorem, and we can conclude that problem (73)–(76) has a unique
smooth solution on a sufficiently small domain [0, Tn[, Tn ≤ T . Because of (36), (40), and
(41), we easily obtain the following statements.

Lemma 1 For each n ∈ N , there exists such Tn, 0 < Tn ≤ T , and Qn = ]0, L[×]0, Tn[, that
the functions vrn, vϕn, vzn, ωrn, ωϕn, ωzn, and θn belong to the class C∞(Qn) and satisfy
conditions (55)–(57).

Moreover, we have ρn ∈ C(Qn), rn ∈ C1(Qn), and

m
2

≤ ρn(x, t) ≤ 2M, (77)

a
2

≤ rn(x, t) ≤ 2M, (78)

a1

2
≤ ∂rn

∂x
(x, t) ≤ 2M1, (79)

on Qn. The constants m, a, a1, M, and M1 are introduced by (36), (40), and (41).

4 Some properties of approximate solutions
In the previous section, we showed that, for each n ∈ N, there exists Tn, 0 < Tn ≤ T , such
that the set Qn is a domain of the nth approximate solution introduced in Lemma 1. Our
first goal is to find such T0, 0 < T0 ≤ T , that for each n ∈ N a solution un to problem (73)–
(76) is defined on [0, T0]. Therefore, the approximate functions (43)–(47) and (49) also
exist on Q0. For that we need some interrelationships between the functions ρn, vrn, vϕn,
vzn, ωrn, ωϕn, ωzn, and θn which we, using the ideas adapted from [11], state in the following
lemmas.

Hereafter, we denote by C > 0 or Ci > 0 (i = 1, 2, . . .) a generic constant, independent of
n ∈ N, which may have different values in different places.
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For simplicity reasons, we use the notations

‖f ‖ = ‖f ‖L2(]0,L[), (80)

Vn =
(
vrn, vϕn, vzn), Vn(0) =

(
vrn

0 , vϕn
0 , vzn

0
)
, (81)

as well as

∥
∥∥∥
∂βVn

∂xβ
(t)

∥
∥∥∥ =

(∥
∥∥∥
∂βvrn

∂xβ
(t)

∥
∥∥∥

2

+
∥
∥∥∥
∂βvϕn

∂xβ
(t)

∥
∥∥∥

2

+
∥
∥∥∥
∂βvzn

∂xβ
(t)

∥
∥∥∥

2) 1
2

, (82)

∥∥∥
∥
∂βVn

∂tβ
(t)

∥∥∥
∥ =

(∥∥∥
∥
∂βvrn

∂tβ
(t)

∥∥∥
∥

2

+
∥∥∥
∥
∂βvϕn

∂tβ
(t)

∥∥∥
∥

2

+
∥∥∥
∥
∂βvzn

∂tβ
(t)

∥∥∥
∥

2) 1
2

(83)

for β = 0, 1, . . . . We use the same notations for the vector W = (ωrn,ωϕn,ωzn).
In what follows, we use the inequalities

|f |2 ≤ 2‖f ‖
∥
∥∥
∥

∂f
∂x

∥
∥∥
∥, ‖f ‖ ≤ 2

∥
∥∥
∥

∂f
∂x

∥
∥∥
∥, |f | ≤ 2

∥
∥∥
∥

∂f
∂x

∥
∥∥
∥, (84)

∣
∣∣
∣
∂f
∂x

∣
∣∣
∣

2

≤ 2
∥
∥∥
∥

∂f
∂x

∥
∥∥
∥

∥
∥∥
∥

∂2f
∂x2

∥
∥∥
∥,

∥
∥∥
∥

∂f
∂x

∥
∥∥
∥ ≤ 2

∥
∥∥
∥

∂2f
∂x2

∥
∥∥
∥,

∣
∣∣
∣
∂f
∂x

∣
∣∣
∣ ≤ 2

∥
∥∥
∥

∂2f
∂x2

∥
∥∥
∥ (85)

which are valid for the function f vanishing at x = 0 and x = L, and with the first derivative
vanishing at some point x ∈ [0, L]. These inequalities satisfy the functions vrn, vϕn, vzn, ωrn,
ωϕn, and ωzn. The function θn satisfies only (85). Let us note that inequalities (84) and (85)
follow from the Gagliardo–Ladyzhenskaya, the Friedrichs, and the Poincaré inequalities,
adapted in accordance with the spaces of functions used in this work.

Hereafter, we use Tn, 0 < Tn ≤ T , from Lemma 1.

Lemma 2 For t ∈ [0, Tn], we have

∥∥
∥∥
∂2rn

∂x2 (t)
∥∥
∥∥

2

≤ C
(

1 +
∫ t

0

∥∥
∥∥
∂2Vn

∂x2 (τ )
∥∥
∥∥

2

dτ

)
. (86)

Proof From (47) we have

∂2rn

∂x2 = r′′
0 +

∫ t

0

∂2vrn

∂x2 dτ (87)

and by using Remark 1 we immediately obtain (86). �

Lemma 3 For t ∈ [0, Tn], we have

∥
∥Wn(t)

∥
∥2 +

∫ t

0

∥
∥Wn(τ )

∥
∥2 dτ +

∫ t

0

∥∥
∥∥
∂Wn

∂x
(τ )

∥∥
∥∥

2

dτ

≤ C
(

1 +
∫ t

0

∥∥Vn(τ )
∥∥2dτ

)
. (88)
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Proof After multiplying (65), (66), and (67), respectively, by jIωrn
j1 , jIωϕn

j2 , and jIωzn
j3 , sum-

ming over j1, j2, j3 = 1, . . . , n, and by using formula (50), integration by parts, and boundary
conditions, we obtain

jI
2

d
dt

∥∥Wn(t)
∥∥2 + (c0 + 2cd)

(∫ L

0

(ωrn)2

(rn)2ρn dx +
∫ L

0
ρn(rn)2

(
∂ωrn

∂x

)2

dx
)

+ (cd + ca)
(∫ L

0

(ωϕn)2

(rn)2ρn dx +
∫ L

0
ρn(rn)2

(
∂ωϕn

∂x

)2

dx

+
∫ L

0
ρn(rn)2

(
∂ωzn

∂x

)2

dx
)

+ 4μr

(∫ L

0

(ωrn)2

ρn dx +
∫ L

0

(ωϕn)2

ρn dx +
∫ L

0

(ωzn)2

ρn dx
)

= 2μr

(∫ L

0

vzn

rnρn ωϕn dx +
∫ L

0
rnvzn ∂ωϕn

∂x
dx –

∫ L

0
rnvϕn ∂ωzn

∂x
dx

)
. (89)

Now, we will use (77) and (78) as well as the Young inequality with the parameter ε > 0
applied to the integrals on the right-hand side of (89). We obtain

jI
2

d
dt

∥
∥Wn(t)

∥
∥2 + C1

(∥
∥Wn(t)

∥
∥2 +

∥∥
∥∥
∂Wn

∂x
(t)

∥∥
∥∥

2)

≤ ε
∥∥Wn(t)

∥∥2 + ε

∥∥∥
∥
∂Wn

∂x
(t)

∥∥∥
∥

2

+ C2
∥∥Vn(t)

∥∥2. (90)

Integrating (90) over [0, t], 0 < t ≤ Tn, and taking into account that

∥∥Wn(0)
∥∥2 =

∥∥ωrn
0

∥∥2 +
∥∥ω

ϕn
0

∥∥2 +
∥∥ωzn

0
∥∥2 ≤ C (91)

from (90), for sufficiently small ε > 0, we obtain (88). �

Lemma 4 For t ∈ [0, Tn], we have

∣∣
∣∣

∫ L

0
θn(x, t) dx

∣∣
∣∣ ≤ C

(
1 +

∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

2

+
∫ t

0

∥∥
∥∥
∂Vn

∂x
(τ )

∥∥
∥∥

2

dτ

)
. (92)

Proof First, we multiply (62) and (63), respectively, by vrn
i1 and vϕn

i2 , sum over i1, i2 = 1, . . . , n,
and add (68) for k = 0 (multiplied by cv). After we integrate the resulting equality over [0, L]
and employ integration by parts, we get

d
dt

(
1
2
∥
∥vrn(t)

∥
∥2 +

1
2
∥
∥vϕn(t)

∥
∥2 + cv

∫ L

0
θn(x, t) dx

)

= (cd + ca)
∫ L

0
ρn

(
∂

∂x
(
rnωϕn)

)2

dx + (c0 + 2cd)
∫ L

0
ρn

(
∂

∂x
(
rnωrn)

)2

dx

+ (μ + μr)
∫ L

0
ρn(rn)2

(
∂vzn

∂x

)2

dx + (cd + ca)
∫ L

0
ρn(rn)2

(
∂ωzn

∂x

)2

dx
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+ 4μr

(∫ L

0

(ωrn)2

ρn dx +
∫ L

0

(ωϕn)2

ρn dx +
∫ L

0

(ωzn)2

ρn dx
)

+ 4μr

∫ L

0
rnωϕn

(
∂vzn

∂x

)
dx + 2μr

∫ L

0
rnvϕn

(
∂ωzn

∂x

)
dx. (93)

Integrating (93) over [0, t], 0 < t ≤ Tn, using

∥∥Vn(0)
∥∥2 =

∥∥vrn
0

∥∥2 +
∥∥vϕn

0
∥∥2 +

∥∥vzn
0

∥∥2 ≤ C,
∫ L

0
θn

0 (x, t) dx ≤ ∥∥θn
0
∥∥ ≤ C, (94)

the Young inequality, and properties (77)–(79), from (93) we have

∣
∣∣∣

∫ L

0
θn(x, t) dx

∣
∣∣∣ ≤ C

(
1 +

∥∥vrn(t)
∥∥2 +

∥∥vϕn(t)
∥∥2 +

∥∥vzn(t)
∥∥2

+
∫ t

0

(∥
∥ωrn(τ )

∥
∥2 +

∥
∥ωϕn(τ )

∥
∥2 +

∥
∥ωzn(τ )

∥
∥2 +

∥∥
∥∥
∂vzn

∂x
(τ )

∥∥
∥∥

2

+
∥∥
∥∥
∂ωrn

∂x
(τ )

∥∥
∥∥

2

+
∥∥
∥∥
∂ωϕn

∂x
(τ )

∥∥
∥∥

2

+
∥∥
∥∥
∂ωzn

∂x
(τ )

∥∥
∥∥

2)
dτ

)
. (95)

Since, because of (84), we have

∥∥Vn∥∥2 ≤ 2
∥
∥∥
∥
∂Vn

∂x

∥
∥∥
∥

2

, (96)

taking into account (88), from (95) we easily obtain (92). �

Lemma 5 For (x, t) ∈ Qn, we have

∣
∣θn(x, t)

∣
∣ ≤ C

(
1 +

∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥ +

∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

2

+
∫ t

0

∥∥
∥∥
∂Vn

∂x
(τ )

∥∥
∥∥

2

dτ

)
. (97)

Proof Let t ∈ [0, Tn] be fixed, but arbitrary. As the function θn is continuous with respect
to the variable x ∈ [0, L] (see Lemma 1), there exist such x1(t), x2(t) ∈ [0, L] that we have

mn(t) = min
x∈[0,L]

θn(x, t) = θn(x1(t), t
)
, (98)

Mn(t) = max
x∈[0,L]

θn(x, t) = θn(x2(t), t
)
. (99)

Now, using the Hölder inequality, we obtain

θn(x, t) – mn(t) =
∫ x

x1

∂θn

∂x
(y, t) dy ≤ √

L
∥∥∥
∥
∂θn

∂x
(t)

∥∥∥
∥, (100)

which implies

θn(x, t) ≤ √
L
∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥ +

1
L

∣∣
∣∣

∫ L

0
θn(x, t) dx

∣∣
∣∣. (101)
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Analogously, using the function Mn(t), we obtain

θn(x, t) ≥ –
√

L
∥
∥∥
∥
∂θn

∂x
(t)

∥
∥∥
∥ –

1
L

∣
∣∣
∣

∫ L

0
θn(x, t) dx

∣
∣∣
∣, (102)

which together with (101) implies

∣
∣θn(x, t)

∣
∣ ≤ C

(∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥ +

∣∣
∣∣

∫ L

0
θn(x, t) dx

∣∣
∣∣

)
. (103)

Now, using (92), from (102) we immediately obtain (97). �

Lemma 6 For t ∈ [0, Tn], we have

∥
∥∥
∥
∂ρn

∂x
(t)

∥
∥∥
∥

2

≤ C
(

1 +
(∫ t

0

∥
∥∥
∥
∂2Vn

∂x2 (τ )
∥
∥∥
∥

2

dτ

)2)
. (104)

Proof Taking the derivative of the function ρn represented by (49) with respect to x and
by using (36) and (77)–(79), we obtain

∣∣
∣∣
∂ρn

∂x

∣∣
∣∣ ≤ C

(∣
∣ρ ′

0
∣
∣ +

∫ t

0

(∣
∣vrn∣∣

∣∣
∣∣
∂2rn

∂x2

∣∣
∣∣ +

∣∣
∣∣
∂vrn

∂x

∣∣
∣∣ +

∣∣
∣∣
∂2vrn

∂x2

∣∣
∣∣

)
dτ

)
.

With the help of (84) and (85) applied to the function vrn, the Hölder, and the Young in-
equalities as well as (86), we obtain (104). �

Lemma 7 For t ∈ [0, Tn], we have

d
dt

(∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂Wn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥

2)

+ C1

(∥
∥∥
∥
∂2Vn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2Wn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2θn

∂x2 (t)
∥
∥∥
∥

2)

≤ C
(

1 +
∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

16

+
∥∥
∥∥
∂Wn

∂x
(t)

∥∥
∥∥

16

+
∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥

16

+
(∫ t

0

∥∥
∥∥
∂2Vn

∂x2 (τ )
∥∥
∥∥

2

dτ

)8)
. (105)

Proof We apply a similar procedure as in [11], Lemma 4.6, and in [10], Lemma 5.6. Mul-
tiplying (62)–(68), respectively, by – (π i1)2

L2 vrn
i1 , – (π i2)2

L2 vϕn
i2 , – (π i3)2

L2 vzn
i3 , – (π j1)2

L2 ωrn
j1 , – (π j2)2

L2 ω
ϕn
j2 ,

– (π j3)2

L2 ωzn
j3 , and – (πk)2

L2 θn
k , after summation over i1, i2, i3, j1, j2, j3, k = 1, 2, . . . , n, using (50) and

addition of the obtained equations, we obtain

1
2

d
dt

(∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂Wn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥

2)

+ (λ + 2μ)
∫ L

0
ρn(rn)2

(
∂2vrn

∂x2

)2

dx + (μ + μr)
∫ L

0
ρn(rn)2

(
∂2vϕn

∂x2

)2

dx

+ (μ + μr)
∫ L

0
ρn(rn)2

(
∂2vzn

∂x2

)2

dx +
c0 + 2cd

jI

∫ L

0
ρn(rn)2

(
∂2ωrn

∂x2

)2

dx
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+
cd + ca

jI

∫ L

0
ρn(rn)2

(
∂2ωϕn

∂x2

)2

dx +
cd + ca

jI

∫ L

0
ρn(rn)2

(
∂2ωzn

∂x2

)2

dx

+
k
cv

∫ 1

0
ρn(rn)2

(
∂2θn

∂x2

)2

dx =
61∑

p=1

Ip, (106)

where

I1 = (λ + 2μ)
∫ L

0

vrn

(rn)2ρn
∂2vrn

∂x2 dx, I2 = –2(λ + 2μ)
∫ L

0

∂vrn

∂x
∂2vrn

∂x2 dx,

I3 = –(λ + 2μ)
∫ L

0

(
rn)2 ∂ρn

∂x
∂vrn

∂x
∂2vrn

∂x2 dx, I4 = R
∫ L

0
rnθn ∂ρn

∂x
∂2vrn

∂x2 dx,

I5 = R
∫ L

0
rnρn ∂θn

∂x
∂2vrn

∂x2 dx, I6 = –
∫ L

0

(vϕn)2

rn
∂2vrn

∂x2 dx,

I7 = (μ + μr)
∫ L

0

vϕn

(rn)2ρn
∂2vϕn

∂x2 dx, I8 = –2(μ + μr)
∫ L

0

∂vϕn

∂x
∂2vϕn

∂x2 dx,

I9 = –(μ + μr)
∫ L

0

(
rn)2 ∂ρn

∂x
∂vϕn

∂x
∂2vϕn

∂x2 dx, I10 = 2μr

∫ L

0
rn ∂ωzn

∂x
∂2vϕn

∂x2 dx,

I11 =
∫ L

0

vrnvϕn

rn
∂2vϕn

∂x2 dx, I12 = 2(μ + μr)
∫ L

0

vzn

(rn)2ρn
∂2vzn

∂x2 dx,

I13 = –2(μ + μr)
∫ L

0

∂vzn

∂x
∂2vzn

∂x2 dx, I14 = –(μ + μr)
∫ L

0

(
rn)2 ∂ρn

∂x
∂vzn

∂x
∂2vzn

∂x2 dx,

I15 = –2μr

∫ L

0

ωϕn

rnρn
∂2vzn

∂x2 dx, I16 = –2μr

∫ L

0
rn ∂ωϕn

∂x
∂2vzn

∂x2 dx,

I17 =
c0 + 2cd

jI

∫ L

0

ωrn

(rn)2ρn
∂2ωrn

∂x2 dx, I18 = –
2(c0 + 2cd)

jI

∫ L

0

∂ωrn

∂x
∂2ωrn

∂x2 dx,

I19 = –
c0 + 2cd

jI

∫ L

0

(
rn)2 ∂ρn

∂x
∂ωrn

∂x
∂2ωrn

∂x2 dx, I20 = –
∫ L

0

ωϕnvϕn

rn
∂2ωrn

∂x2 dx,

I21 =
4μr

jI

∫ L

0

ωrn

ρn
∂2ωrn

∂x2 dx, I22 =
cd + ca

jI

∫ L

0

ωϕn

(rn)2ρn
∂2ωϕn

∂x2 dx,

I23 = –
2(cd + ca)

jI

∫ L

0

∂ωϕn

∂x
∂2ωϕn

∂x2 dx,

I24 = –
cd + ca

jI

∫ L

0

(
rn)2 ∂ρn

∂x
∂ωϕn

∂x
∂2ωϕn

∂x2 dx,

I25 =
∫ L

0

ωrnvϕn

rn
∂2ωϕn

∂x2 dx, I26 =
4μr

jI

∫ L

0

ωϕn

ρn
∂2ωϕn

∂x2 dx,

I27 =
2μr

jI

∫ L

0
rn ∂vzn

∂x
∂2ωϕn

∂x2 dx, I28 =
2(cd + ca)

jI

∫ L

0

ωzn

(rn)2ρn
∂2ωzn

∂x2 dx,

I29 = –
2(cd + ca)

jI

∫ L

0

∂ωzn

∂x
∂2ωzn

∂x2 dx,

I30 = –
cd + ca

jI

∫ L

0

(
rn)2 ∂ρn

∂x
∂ωzn

∂x
∂2ωzn

∂x2 dx,

I31 =
4μr

jI

∫ L

0

ωzn

ρn
∂2ωzn

∂x2 dx, I32 = –
2μr

jI

∫ L

0
rn ∂vϕn

∂x
∂2ωzn

∂x2 dx,
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I33 = –
2μr

jI

∫ L

0

vϕn

rnρn
∂2ωzn

∂x2 dx, I34 = –
2k
cv

∫ L

0

∂θn

∂x
∂2θn

∂x2 dx,

I35 = –
k
cv

∫ L

0

(
rn)2 ∂ρn

∂x
∂θn

∂x
∂2θn

∂x2 dx, I36 =
R
cv

∫ L

0

vrn

rn θn ∂2θn

∂x2 dx,

I37 =
R
cv

∫ L

0
ρnrnθn ∂vrn

∂x
∂2θn

∂x2 dx, I38 = –
2(λ + 2μ)

cv

∫ L

0
vrn ∂vrn

∂x
∂2θn

∂x2 dx,

I39 = –
λ + 2μ

cv

∫ L

0

(vrn)2

(rn)2ρn
∂2θn

∂x2 dx,

I40 = –
λ + 2μ

cv

∫ L

0
ρn(rn)2

(
∂vrn

∂x

)2
∂2θn

∂x2 dx,

I41 = –
2(μ + μr)

cv

∫ L

0
vϕn ∂vϕn

∂x
∂2θn

∂x2 dx, I42 = –
μ + μr

cv

∫ L

0

(vϕn)2

(rn)2ρn
∂2θn

∂x2 dx,

I43 = –
μ + μr

cv

∫ L

0
ρn(rn)2

(
∂vϕn

∂x

)2
∂2θn

∂x2 dx,

I44 = –
2(cd + ca)

cv

∫ L

0
ωϕn ∂ωϕn

∂x
∂2θn

∂x2 dx,

I45 = –
cd + ca

cv

∫ L

0

(ωϕn)2

(rn)2ρn
∂2θn

∂x2 dx,

I46 = –
cd + ca

cv

∫ L

0
ρn(rn)2

(
∂ωϕn

∂x

)2
∂2θn

∂x2 dx,

I47 = –
2(c0 + 2cd)

cv

∫ L

0
ωrn ∂ωrn

∂x
∂2θn

∂x2 dx,

I48 = –
c0 + 2cd

cv

∫ L

0

(ωrn)2

(rn)2ρn
∂2θn

∂x2 dx,

I49 = –
c0 + 2cd

cv

∫ L

0
ρn(rn)2

(
∂ωrn

∂x

)2
∂2θn

∂x2 dx,

I50 = –
μ + μr

cv

∫ L

0
ρn(rn)2

(
∂vzn

∂x

)2
∂2θn

∂x2 dx,

I51 = –
cd + ca

cv

∫ L

0
ρn(rn)2

(
∂ωzn

∂x

)2
∂2θn

∂x2 dx,

I52 =
4μ

cv

∫ L

0
vrn ∂vrn

∂x
∂2θn

∂x2 dx,

I53 =
4μ

cv

∫ L

0
vϕn ∂vϕn

∂x
∂2θn

∂x2 dx, I54 =
4cd

cv

∫ L

0
ωrn ∂ωrn

∂x
∂2θn

∂x2 dx,

I55 =
4cd

cv

∫ L

0
ωϕn ∂ωϕn

∂x
∂2θn

∂x2 dx, I56 = –
4μr

cv

∫ L

0

(ωrn)2

ρn
∂2θn

∂x2 dx,

I57 = –
4μr

cv

∫ L

0

(ωϕn)2

ρn
∂2θn

∂x2 dx, I58 = –
4μr

cv

∫ L

0

(ωzn)2

ρn
∂2θn

∂x2 dx,

I59 = –
4μr

cv

∫ L

0
rnωϕn ∂vzn

∂x
∂2θn

∂x2 dx, I60 =
4μr

cv

∫ L

0

ωznvϕn

rnρn
∂2θn

∂x2 dx,

I61 =
4μr

cv

∫ L

0
rnωzn ∂vϕn

∂x
∂2θn

∂x2 dx.
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Now, we will estimate integrals I1–I61. Taking into account (77)–(79) as well as (84) and
the Young inequality, we obtain

|I1| = (λ + 2μ)
∣∣
∣∣

∫ L

0

vrn

(rn)2ρn
∂2vrn

∂x2 dx
∣∣
∣∣ ≤ ε

∥∥
∥∥
∂2vrn

∂x2 (t)
∥∥
∥∥

2

+ C
∥
∥vrn(t)

∥
∥2

≤ ε

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

2

+ C
∥
∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥

2

≤ ε

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

2

+ C
(∥

∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥

16

+ 1
)

. (107)

In the same way, we estimate integrals I7, I12, I15, I17, I21, I22, I26, I28, I31, and I33.
We estimate integrals I2, I5, I8, I10, I13, I16, I18, I23, I27, I29, I32, and I34 by using the Young

inequality, and in some cases by using (77) and (78). For instance, we have

|I2| = 2(λ + 2μ)
∣
∣∣
∣

∫ L

0

∂vrn

∂x
∂2vrn

∂x2 dx
∣
∣∣
∣

≤ ε

∥∥∥
∥
∂2vrn

∂x2 (t)
∥∥∥
∥

2

+ C
(∥∥∥

∥
∂vrn

∂x
(t)

∥∥∥
∥

16

+ 1
)

. (108)

Now, we estimate integral I3. To do it, we need (84), the Hölder, and the Young inequal-
ities, as well as (78) and (104). We have

|I3| = (λ + 2μ)
∣
∣∣
∣

∫ L

0

(
rn)2 ∂ρn

∂x
∂vrn

∂x
∂2vrn

∂x2 dx
∣
∣∣
∣

≤ C
∥∥
∥∥
∂vrn

∂x
(t)

∥∥
∥∥

1
2
∥∥
∥∥
∂2vrn

∂x2 (t)
∥∥
∥∥

1
2
∫ L

0

∣∣
∣∣
∂ρn

∂x
∂2vrn

∂x2

∣∣
∣∣dx

≤ C
∥
∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥

1
2
∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

3
2
∥
∥∥
∥
∂ρn

∂x
(t)

∥
∥∥
∥

≤ ε

∥
∥∥∥
∂2vrn

∂x2 (t)
∥
∥∥∥

2

+ C
(∥

∥∥∥
∂vrn

∂x
(t)

∥
∥∥∥

4

+
∥
∥∥∥
∂ρn

∂x
(t)

∥
∥∥∥

8)

≤ ε

∥∥∥
∥
∂2vrn

∂x2 (t)
∥∥∥
∥

2

+ C
(

1 +
∥∥∥
∥
∂vrn

∂x
(t)

∥∥∥
∥

16

+
(∫ t

0

∥∥∥
∥
∂2Vn

∂x2 (τ )
∥∥∥
∥

2

dτ

)8)
. (109)

We use the same approach in the estimates of integrals I9, I14, I19, I24, I30, and I35.
To estimate integral I4, we need the Hölder and the Young inequalities, as well as (77),

(78), (84), (97), and (104). We have

|I4| = R
∣∣
∣∣

∫ L

0
rnθn ∂ρn

∂x
∂2vrn

∂x2 dx
∣∣
∣∣ ≤ C max

x∈[0,L]

∣
∣θn∣∣

∫ L

0

∣∣
∣∣
∂ρn

∂x
∂2vrn

∂x2

∣∣
∣∣dx

≤ C max
x∈[0,L]

∣
∣θn∣∣

∥∥
∥∥
∂ρn

∂x
(t)

∥∥
∥∥

∥∥
∥∥
∂2vrn

∂x2 (t)
∥∥
∥∥ ≤ ε

∥∥
∥∥
∂2vrn

∂x2 (t)
∥∥
∥∥

2

+ C
(

max
x∈[0,L]

∣∣θn∣∣2 +
∥
∥∥
∥
∂ρn

∂x
(t)

∥
∥∥
∥

2)
≤ ε

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

16

+ C
(

1 +
∥
∥∥
∥
∂θn

∂x
(t)

∥
∥∥
∥

16

+
∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

16

+
(∫ t

0

∥∥
∥∥
∂Vn

∂x
(τ )

∥∥
∥∥

2

dτ

)8

+
(∫ t

0

∥∥
∥∥
∂2Vn

∂x2 (τ )
∥∥
∥∥

2

dτ

)8)
. (110)

In the same way we estimate integrals I36 and I37.
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We base the estimate of integral I6 on (77), (78), (84), and (85) as well as on the Young
inequality. We obtain

|I6| =
∣
∣∣
∣

∫ L

0

(vϕn)2

rn
∂2vrn

∂x2 dx
∣
∣∣
∣ ≤ ε

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

2

+ C
(

1 +
∥
∥∥
∥
∂vϕn

∂x
(t)

∥
∥∥
∥

16)
. (111)

We perform the estimates of integrals I39, I40, I42, I43, I45, I46, I48, I49, I50, I51, and I56–I58

analogously.
We still have to estimate integrals I11, I20, I25, I38, I41, I44, I47, I52–I55, and I59–I61. To do

this, we use (77), (85), and the Young and the Hölder inequalities. For instance, we have

|I11| =
∣∣∣
∣

∫ L

0

vrnvϕn

rn
∂2vϕn

∂x2 dx
∣∣∣
∣ ≤ C

∥∥∥
∥
∂vϕn

∂x
(t)

∥∥∥
∥

∫ L

0

∣∣∣
∣v

rn ∂2vϕn

∂x2

∣∣∣
∣dx

≤ C
∥∥∥
∥
∂vϕn

∂x
(t)

∥∥∥
∥

∥∥∥
∥
∂vrn

∂x
(t)

∥∥∥
∥

∥∥∥
∥
∂2vϕn

∂x2 (t)
∥∥∥
∥

≤ ε

∥
∥∥
∥
∂2vϕn

∂x2 (t)
∥
∥∥
∥

2

+ C
(∥

∥∥
∥
∂vϕn

∂x
(t)

∥
∥∥
∥

4

+
∥
∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥

4)

≤ ε

∥∥
∥∥
∂2vϕn

∂x2 (t)
∥∥
∥∥

2

+ C
(

1 +
∥∥
∥∥
∂vϕn

∂x
(t)

∥∥
∥∥

16

+
∥∥
∥∥
∂vrn

∂x
(t)

∥∥
∥∥

16)
. (112)

Using the obtained estimates with a sufficiently small ε together with (77)–(79), from
(106) we obtain (105). �

Lemma 8 There exists such T0 (0 < T0 ≤ T) that, for each n ∈ N, the Cauchy problem
(73)–(76) has a unique solution defined on [0, T0]. Moreover, for the functions Vn, Wn, θn,
ρn, and rn, we have

max
t∈[0,T0]

(∥
∥∥
∥
∂Vn

∂x
(t)

∥
∥∥
∥

2

+
∥
∥∥
∥
∂Wn

∂x
(t)

∥
∥∥
∥

2

+
∥
∥∥
∥
∂θn

∂x
(t)

∥
∥∥
∥

2)

+ C1

∫ T0

0

(∥
∥∥
∥
∂2Vn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2Wn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2θn

∂x2 (τ )
∥
∥∥
∥

2)
dt ≤ C2, (113)

a
2

≤ rn(x, t) ≤ 2M,
a1

2
≤ ∂rn

∂x
(x, t) ≤ 2M1, (114)

m
2

≤ ρn(x, t) ≤ 2M, (x, t) ∈ Q0, (115)

max
t∈[0,T0]

∥∥
∥∥
∂ρn

∂x
(t)

∥∥
∥∥ ≤ C, (116)

max
(x,t)∈Q0

∣
∣θn(x, t)

∣
∣ ≤ C, (117)

max
t∈[0,T0]

∥∥∥
∥
∂2rn

∂x2 (t)
∥∥∥
∥ ≤ C, (118)

max
t∈[0,T0]

(∥∥Vn(t)
∥
∥2 +

∥
∥Wn(t)

∥
∥2 +

∥
∥θn(t)

∥
∥2) ≤ C, (119)

where a, a1, m, and M are defined by (36) and (40)–(41).
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Proof To obtain estimate (113), we use a similar approach as in [11], Lemma 4.7, [10],
Lemma 5.6, and [15] pp. 64–67. First, we introduce the function

yn(t) =
∥∥
∥∥
∂Vn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂Wn

∂x
(t)

∥∥
∥∥

2

+
∥∥
∥∥
∂θn

∂x
(t)

∥∥
∥∥

2

+ C1

∫ t

0

∥∥
∥∥
∂2Vn

∂x2 (τ )
∥∥
∥∥

2

dτ , (120)

where C1 is the constant introduced in (105). Using Lemma 7, we find that function yn

satisfies the differential inequality

ẏn(t) ≤ C
(
1 + y8

n(t)
)
. (121)

Let C be a constant defined by

C =
∥∥
∥∥

dV0

dx

∥∥
∥∥

2

+
∥∥
∥∥

dW0

dx

∥∥
∥∥

2

+
∥∥
∥∥

dθ0

dx

∥∥
∥∥

2

, (122)

where V0 = (vr
0, vϕ

0 , vz
0) and W0 = (ωr

0,ωϕ
0 ,ωz

0). It is easy to see that we have

yn(0) ≤ C. (123)

Now, we compare the solution of problem (121)–(123) with the solution of the Cauchy
problem

ẏ(t) = C
(
1 + y8(t)

)
, (124)

y(0) = C. (125)

Let [0, T ′[, 0 < T ′ ≤ T be an existence interval of the solution to problem (124)–(125).
Because of the property of the maximal solution for problem (121)–(123), we conclude
that

yn(t) ≤ y(t), t ∈ [0, T ′[. (126)

Let T0 be such that 0 < T0 ≤ T ′. From (126) we have

max
t∈[0,T0]

yn(t) ≤ max
t∈[0,T0]

y(t) = C3, (127)

which together with (120) and (105) implies

d
dt

(∥
∥∥
∥
∂Vn

∂x
(t)

∥
∥∥
∥

2

+
∥
∥∥
∥
∂Wn

∂x
(t)

∥
∥∥
∥

2

+
∥
∥∥
∥
∂θn

∂x
(t)

∥
∥∥
∥

2)

+ C1

(∥
∥∥
∥
∂2Vn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2Wn

∂x2 (t)
∥
∥∥
∥

2

+
∥
∥∥
∥
∂2θn

∂x2 (t)
∥
∥∥
∥

2)
≤ C4. (128)

Integrating (128) over [0, t], 0 < t ≤ T0 and using (123), we immediately obtain (113).
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Now, using inequalities (84)–(85) for the function vrn and (113), we derive the following
estimate:

∫ T0

0

∣
∣vrn(x, t)

∣
∣dτ ≤ 4

∫ T0

0

∥∥
∥∥
∂2vrn

∂x2 (t)
∥∥
∥∥dτ

≤ 4
(∫ T0

0

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥

2

dτ

) 1
2

T
1
2

0 ≤ 4
(
C2C–1

1
) 1

2 T
1
2

0 . (129)

In the same way we get

∫ T0

0

∣
∣∣
∣
∂vrn

∂x
(t)

∣
∣∣
∣dτ ≤ 2

∫ T0

0

∥
∥∥
∥
∂2vrn

∂x2 (t)
∥
∥∥
∥dτ ≤ 2

(
C2C–1

1
) 1

2 T
1
2

0 , (130)

where C1 and C2 are taken from (113). Estimates (129) and (130) are also valid for the
functions vϕn, vzn, ωrn, ωϕn, and ωzn.

With the help of (41), (129), and (130), we can easily conclude that for

T0 = min

{
T ′,

a2C1

64C2
,

a2
1C1

16C2
,

C1

64M2(2M1 + M)

}
(131)

from (47) and (49) we obtain (114) and (115).
Because of (96) and the same inequality for the function W, from (113) for t ∈ [0, T0],

we obtain

∥∥Vn∥∥2 +
∥∥Wn∥∥2 ≤ C. (132)

From (113) and (46) we obtain

∥
∥∥
∥
∂θn

∂x
(t)

∥
∥∥
∥ =

n∑

k=1

(
θn

k (t)
)2

(
πk
L

)2 ∫ L

0
sin2 πkx

L
dx =

n∑

k=1

(
θn

k (t)
)2 (πk)2

2L
≤ C2. (133)

Also, taking into account (113) from (93), for t ∈ [0, T0], we have

∣∣θn
0 (t)L

∣∣ =
∣
∣∣
∣

∫ L

0
θn(x, t) dx

∣
∣∣
∣ ≤ C. (134)

Therefore, we obtain

max
t∈[0,T0]

∥∥θn(t)
∥∥2 ≤ C. (135)

Estimates (132) and (135) give (119). Finally, from (104), (97), and (86), we immediately
get (116), (117), and (118), respectively. �

Lemma 9 Let T0 be defined by Lemma 8. Then, for each n ∈ N, we have

∫ T0

0

(∥
∥∥
∥
∂Vn

∂t
(τ )

∥
∥∥
∥

2

+
∥
∥∥
∥
∂Wn

∂t
(τ )

∥
∥∥
∥

2

+
∥
∥∥
∥
∂θn

∂t
(τ )

∥
∥∥
∥

2)
dτ ≤ C, (136)

max
t∈[0,T0]

∥∥
∥∥
∂ρn

∂t
(t)

∥∥
∥∥ ≤ C, (137)
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max
t∈[0,T0]

∥∥
∥∥
∂rn

∂t
(t)

∥∥
∥∥ ≤ C, max

t∈[0,T0]

∥∥
∥∥

∂2rn

∂x∂t
(t)

∥∥
∥∥ ≤ C,

∫ T0

0

∥
∥∥
∥
∂2rn

∂x2 (τ )
∥
∥∥
∥

2

dτ ≤ C.

(138)

Proof First, we multiply (62)–(68) respectively by dvrn
i

dt , dvϕn
i

dt , dvzn
i

dt ,
ωrn

j
dt ,

ω
ϕn
j
dt ,

ωzn
j

dt , θn
k

dt , sum-
marize over i1, i2, i3, j1, j2, j3 = 1, 2, . . . , n, k = 0, 1, 2, . . . , n. After we integrate the obtained
equality over [0, L], we get the equality which is very similar to (106). We estimate it in the
same way as in the proof of Lemma 7 and obtain (136).

From (48), after we use the Hölder inequality as well as (77) and (78), we get

∥
∥∥
∥
∂ρn

∂t
(t)

∥
∥∥
∥

2

≤ C
(∥∥vrn∥∥2 +

∥∥vrn∥∥
∥
∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥ +

∥
∥∥
∥
∂vrn

∂x
(t)

∥
∥∥
∥

2)
. (139)

Using (113) and (119) from (139), by integrating over [0, T0], we easily obtain (137). Esti-
mates (138) follow directly from (47) and (49). �

Using the results from Lemmas 8 and 9, we easily derive the following statements.

Proposition 1 Let T0 be defined by Lemma 8. Then, for the sequence

{(
rn,ρn, Vn, Wn, θn) : n ∈ N

}
, (140)

we have:
(i) {rn} is bounded in L∞(Q0), L∞(0, T0; H2(]0, L[)) and H2(Q0);

(ii) { ∂rn

∂x } is bounded in L∞(Q0);
(iii) {ρn} is bounded in L∞(Q0), L∞(0, T0; H1(]0, L[)), and H1(Q0);
(iv) {Vn} and {Wn} are bounded in (L∞(0, T0; H1(]0, L[)))3, (H1(Q0))3, and

(L2(0, T0; H2(]0, L[)))3;
(v) {θn} is bounded in L∞(0, T0; H1(]0, L[)), H1(Q0), and L2(0, T0; H2(]0, L[)).

5 The proof of Theorem 1
To prove Theorem 1, we extract the convergent subsequence of sequence (140) and show
that the limit of this subsequence is a solution to our problem. The proof is very similar to
the proof of Theorem 2.1 in [11]; therefore, we omit the details of some proofs hereafter
and refer to the corresponding results from [11].

Let T0 ∈ R+ be defined by Lemma 8. Theorem 1 follows directly from the following
lemmas.

Lemma 10 (in [11], Lemma 5.1) There exist a function

r ∈ L∞(
0, T0; H2(]0, L[

)) ∩ H2(Q0) ∩ C(Q0) (141)

and a subsequence (for simplicity reasons denoted again as {rn}) of {rn} with the properties

rn ∗
⇁ r in L∞(

0, T0; H2(]0, L[
))

, (142)

rn ⇁ r in H2(Q0), (143)
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rn → r in C(Q0), (144)

∂rn

∂x
→ ∂r

∂x
in C(Q0). (145)

The function r satisfies the conditions

a
2

≤ r ≤ 2M in Q0, (146)

r(x, 0) = r0(x), x ∈ [0, L], (147)

where r0 is defined by (24).

Lemma 11 (in [11], Lemma 5.2) There exists a function

ρ ∈ L∞(
0, T0; H1(]0, L[

)) ∩ H1(Q0) ∩ C(Q0) (148)

and a subsequence (for simplicity reasons denoted again as {ρn}) of {ρn} with the properties

ρn ∗
⇁ ρ in L∞(

0, T0; H1(]0, L[
))

, (149)

ρn ⇁ ρ in H1(Q0), (150)

ρn → ρ in C(Q0). (151)

The function ρ satisfies the conditions

m
2

≤ ρ(x, t) ≤ 2M in Q0, (152)

ρ(x, 0) = ρ0(x), x ∈ [0, L]. (153)

Lemma 12 There exist functions V = (vr , vϕ , vz,ωr), W = (ωr ,ωϕ ,ωz), and θ such that

V, W ∈ (
L∞(

0, T0; H1(]0, L[
)))3 ∩ (

H1(Q0)
)3 ∩ (

L2(0, T0; H2(]0, L[
)))3, (154)

θ ∈ L∞(
0, T0; H1(]0, L[

)) ∩ H1(Q0) ∩ L2(0, T0; H2(]0, L[
))

(155)

and a subsequence of {(Vn, Wn, θn)} (for simplicity reasons denoted again as {(Vn, Wn, θn)})
of {(Vn, Wn, θn)} with the properties:

(
Vn, Wn, θn) ∗

⇁ (V, W, θ ) in
(
L∞(

0, T0; H1(]0, L[
)))7, (156)

(
Vn, Wn, θn) ⇁ (V, W, θ ) in

(
H1(Q0)

)7, (157)
(
Vn, Wn, θn) ⇁ (V, W, θ ) in

(
L2(0, T0; H2(]0, L[

)))7, (158)
(
Vn, Wn, θn) → (V, W, θ ) in

(
L2(Q0)

)7. (159)

The functions V, W, and θ satisfy the conditions

V(0, t) = V(L, t) = W(0, t) = W(0, t) = 0, t ∈ [0, T0], (160)
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∂θ

∂x
(0, t) =

∂θ

∂x
(L, t) = 0, a.e. in ]0, T0[, (161)

V(x, 0) = V0(x), W(x, 0) = W0(x), θ (x, 0) = θ0(x), x ∈ [0, L], (162)

where V0 = (vr
0, vϕ

0 , vz
0), W0 = (ωr

0,ωϕ
0 ,ωz

0), and θ0 are defined by (35).

Proof As in [11], Lemma 5.3, conclusions (156)–(159) follow from Proposition 1.
To verify the boundary and initial conditions (160)–(162), we use the Green formula in

the same way as in [11]. Here, we demonstrate the proof for the boundary condition (161)
at x = 0.

Let ϕ be a function from C∞([0, L]), which is equal to zero in a neighborhood of L, with
ϕ(0) �= 0 and u ∈ L∞(]0, T0[). Using the integration by parts for ∂θ

∂x and ∂θn

∂x , we obtain

∫ T0

0

∫ L

0

∂2θ

∂x
(x, t)u(t)ϕ(x) dx dt +

∫ T0

0

∫ L

0

∂θ

∂x
(x, t)u(t)

dϕ

dx
(x) dx dt

= –ϕ(0)
∫ T0

0

∂θ

∂x
(0, t)u(t) dt, (163)

∫ T0

0

∫ L

0

∂2θn

∂x
(x, t)u(t)ϕ(x) dx dt +

∫ T0

0

∫ L

0

∂θn

∂x
(x, t)u(t)

dϕ

dx
(x) dx dt

= –ϕ(0)
∫ T0

0

∂θn

∂x
(0, t)u(t) dt = 0. (164)

Passing to the limit when n → ∞ in (164), comparing (164) and (163), and by using the
convergence (158), we obtain

∂θ

∂x
(0, t) = 0 a.e. in t ∈ ]0, T0[. (165)

In a similar way, we obtain all the remaining equalities in (160)–(162). �

Lemma 13 The functions r, ρ , v, ω, θ , defined by Lemmas 10, 11, and 12 satisfy equations
(1)–(8) a.e. in Q0.

Proof The proof of this lemma is based on strong and weak convergences from Proposi-
tion 1. As the procedure is the same as in [11], Lemma 5.4, we will demonstrate here the
idea of the proof just for equation (8), which is the most complex.

Let {(rn,ρn, Vn, Wn, θn) : n ∈ N} be the subsequence defined by Lemmas 10, 11, and 12,
and let ϕ ∈D(]0, T0[), where D denotes the space of test functions. We first rewrite equa-
tion (68) in the following form:

∫ T0

0

∫ L

0

∂θn

∂t
cos

πkx
L

ϕ(t) dx dt –
k
cv

∫ T0

0

∫ L

0

∂

∂x

(
(
rn)2

ρn ∂θn

∂x

)
cos

πkx
L

ϕ(t) dx dt

–
1
cv

∫ T0

0

∫ L

0
ρn

[
(λ + 2μ)

∂

∂x
(
rnvrn) – Rθn

]
∂

∂x
(
rnvrn) cos

πkx
L

ϕ(t) dx dt

–
μ + μr

cv

∫ T0

0

∫ L

0
ρn

(
∂

∂x
(
rnvϕn)

)2

cos
πkx

L
ϕ(t) dx dt

–
cd + ca

cv

∫ T0

0

∫ L

0
ρn

(
∂

∂x
(
rnωϕn)

)2

cos
πkx

L
ϕ(t) dx dt
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–
c0 + 2cd

cv

∫ T0

0

∫ L

0
ρn

(
∂

∂x
(
rnωrn)

)2

cos
πkx

L
ϕ(t) dx dt

–
μ + μr

cv

∫ T0

0

∫ L

0
ρn(rn)2

(
∂vzn

∂x

)2

cos
πkx

L
ϕ(t) dx dt

–
cd + ca

cv

∫ T0

0

∫ L

0
ρn(rn)2

(
∂ωzn

∂x

)2

cos
πkx

L
ϕ(t) dx dt

+ 2
cd

cv

∫ T0

0

∫ L

0

∂

∂x
((

ωrn)2 +
(
ωϕn)2)

cos
πkx

L
ϕ(t) dx dt

+ 2
μ

cv

∫ T0

0

∫ L

0

∂

∂x
((

vrn)2 +
(
vϕn)2)

cos
πkx

L
ϕ(t) dx dt

– 4
μr

cv

∫ T0

0

∫ L

0

(
(ωrn)2

ρn +
(ωϕn)2

ρn +
(ωzn)2

ρn

)
cos

πkx
L

ϕ(t) dx dt = 0. (166)

Now, we should show the convergence for each integrand on the left-hand side of (166).
Here we will demonstrate the following convergence:

∫ T0

0

∫ L

0
ρn

(
∂

∂x
(
rnωrn)

)2

cos
πkx

L
ϕ(t) dx dt

→
∫ T0

0

∫ L

0
ρ

(
∂

∂x
(
rωr)

)2

cos
πkx

L
ϕ(t) dx dt, (167)

when n → ∞. Using integration by parts, as well as the Hölder inequality, we have

∣
∣∣
∣

∫ T0

0

∫ L

0

[
ρn

(
∂

∂x
(
rnωrn)

)2

– ρ

(
∂

∂x
(
rωr)

)2]
cos

πkx
L

ϕ(t) dx dt
∣
∣∣
∣

≤ C max
Q0

∣∣ρn – ρ
∣∣
(∥∥ωrn∥∥2 +

∥
∥∥
∥
∂ωrn

∂x

∥
∥∥
∥

2)

+ C
∫ T0

0
ϕ(t)

∫ L

0

(
∂

∂x
(
rnωrn) –

∂

∂x
(
rωr)

)

×
(

∂

∂x
(
rnωrn) +

∂

∂x
(
rωr)

)
ρ cos

πkx
L

dx dt

= C max
Q0

∣∣ρn – ρ
∣∣
(∥∥ωrn∥∥2 +

∥
∥∥
∥
∂ωrn

∂x

∥
∥∥
∥

2)
– C

∫ T0

0
ϕ(t)

∫ L

0

(
rnωrn – rωr)

×
(

∂

∂x
(
rnωrn) +

∂

∂x
(
rωr)

)
∂

∂x

(
ρ cos

πkx
L

)
dx dt

– C
∫ T0

0
ϕ(t)

∫ L

0

(
rnωrn – rωr) ·

(
∂2

∂x2

(
rnωrn) +

∂2

∂x2

(
rωr)

)
ρ cos

πkx
L

dx dt

≤ C max
Q0

∣
∣ρn – ρ

∣
∣
(∥

∥ωrn∥∥2 +
∥∥
∥∥
∂ωrn

∂x

∥∥
∥∥

2)

+ C
(∫ T0

0

∥
∥rnωrn – rωr∥∥2 dt

) 1
2
(∫ T0

0

∥∥
∥∥

∂

∂x
(
rnωrn) +

∂

∂x
(
rωr)

∥∥
∥∥

2

dt
) 1

2

+ C
(∫ T0

0

∥∥rnωrn – rωr∥∥2 dt
) 1

2
(∫ T0

0

∥
∥∥
∥

∂2

∂x2

(
rnωrn) +

∂2

∂x2

(
rωr)

∥
∥∥
∥

2

dt
) 1

2
. (168)
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Taking into account the strong convergences ρn → ρ and rnωrn → rωr , from (168) we
easily obtain (167).

In the same way, we can derive the convergences of other integrals in (166). �

Let us note that from (47) we have

∫ T0

0

∫ L

0
rn(x, t)ϕ(x, t) dx dt =

∫ T0

0

∫ L

0

(
r0(x) +

∫ t

0
vrn(x, τ ) dτ

)
ϕ(x, t) dx dt (169)

for all ϕ ∈ L2(Q0), which together with (144) and (159) implies

r(x, t) = r0(x) +
∫ t

0
vr(x, t) dτ , (x, t). (170)

For the function θ , we have the following property.

Lemma 14 (in [11], Lemma 5.5) There exists T0, 0 < T0 ≤ T , such that the function θ

defined by Lemma 12 satisfies the condition

θ > 0 in Q0. (171)

The conclusions of Theorem 1 are an immediate consequence of the above lemmas.

6 Conclusion
The initial boundary problem for the 3-D flow of a compressible viscous micropolar fluid
with cylindrical symmetry and homogeneous boundary conditions for velocity, microro-
tation, and heat flux has a generalized solution locally in time.
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