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Abstract
The rotational motion of fractional Maxwell fluids in an infinite circular cylinder that
applies a time-dependent but not oscillating couple stress to the fluid is investigated
using the integral transform technique. Such a flow model was not analyzed in the
past both for ordinary and fractional rate type fluids. This is due to their constitutive
equations which contain differential expressions acting on the shear stresses. The
obtained solutions fulfill all the enforced initial and boundary conditions and are
easily reduced to the solutions of Newtonian or ordinary Maxwell fluids having similar
motion. At the end, the influence of pertinent parameters on velocity and shear stress
variations is graphically underlined and discussed.
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1 Introduction
Each field of life depends on fluids such as water, milk, juices, blood, glycerin, grease,
paints, oils, polymer solutions, etc. and their direct or indirect motions. For most of these
fluids, a linear stress-strain relationship does not exist [1] and the classical Navier–Stokes
equation cannot describe their behavior. There are lots of fluid models in literature de-
pending upon their response under different circumstances. Among them, the model that
has received more attention is the rate type fluid model. The first rate type model, which
is viscoelastic and still utilized generally, was given by Maxwell [2]. Although Maxwell de-
veloped this model for air, not for polymeric liquids, his methodology can be summed up
to provide a plethora of models. Rajagopal and Srinivasa [3] developed a comprehensive
thermodynamic framework by using the concept of Maxwell’s work, which provides a base
for making a class of rate type viscoelastic fluids. In the presence of transverse magnetic
field, Nayak [4] studied both the heat and mass flow rate of viscous fluid through a medium
which is porous considering both heat source and sink. Shateyi [5] used a numerical ap-
proach to study the MHD flow of a Maxwell fluid past a stretching plate in the presence of
chemical reaction. Shah et al. [6] analyzed the unsteady flow of a magnetohydrodynamic
(MHD) second grade fluid over a stretching sheet by using similarity transformations.

Many types of fluid motions, in different geometries, have important applications in
chemical industry, bioengineering, mechanical engineering, plasma physics, geophysics,
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etc. The movement of fluids in circular cylinders has a lot of applications in biological
analysis, food industry, petroleum industry, and oil exploitation [7–9]. A variety of New-
tonian fluid motions was studied by Bathchelor [10] in circular pipes, but Ting [11] was
the first author who found exact solutions about the movement of non-Newtonian fluids.
Srivastava [12] was the first who studied the motions of Maxwell fluids through a circular
cylinder and obtained analytical solutions. Other exact solutions for motions of Maxwell
fluids in cylindrical domains have been obtained by Rahaman and Ramkisson [13], Fetecau
and Corina Fetecau [14], Vieru et al. [15], Jamil and Fetecau [16], Jamil et al. [17], Zeb et al.
[18], and Corina Fetecau et al. [19]. Recently, Nehad et al. [20] provided the first general
solutions for rotational motions of rate type fluids between circular cylinders.

However, in all the above discussed articles, the effects of long-term memory as one of
viscoelastic properties of non-Newtonian fluids have been ignored. As far as we know, the
memory formalism can be represented using fractional derivatives [21], and the fractional
models have gained an increasing interest in many fields including viscoelasticity. The
first authors who used fractional derivatives in viscoelasticity were Bagley and Torvik [22],
while Caputo and Mainardi [23, 24] got a very good agreement with experimental data us-
ing fractional calculus. Recently, the applicability of fractional calculus in fluid mechanics
has been continuously increasing because differential equations can describe some impor-
tant physical phenomena’ more accurately with fractional derivatives instead of ordinary
derivatives. Makris et al. [25] utilized exploratory information in order to calibrate a frac-
tional derivative Maxwell model. All the more precisely, they found an estimation of the
partial parameter for the relating material properties to be in superb concurrence with
test results.

Based on the above-mentioned remarks, in the last decade many researchers used the
fractional derivatives as a remarkable tool to analyze the properties of viscoelastic fluids
[26–34]. However, in all these works the motion of the fluid is generated by a cylinder that
is rotating around its axis with a given velocity or applies to the fluid a shear stress that
is given by a partial differential equation. Consequently, in the existing literature, there is
no exact solution about the motions of fractional rate type fluid developed by an infinite
cylinder that applies a constant, accelerated, or oscillating shear stress to the fluid. Such
solutions for ordinary rate type fluids were recently obtained by Fetecau et al. [35] and
Rauf et al. [36] for constant and oscillating stress, respectively, which is on the boundary,
while the solutions from [28] and [37] do not examine the constant shear on the boundary
as the researchers claimed there. On the other hand, as it was shown by Renardy [38,
39], the boundary conditions on tangential stresses are very significant and a well-posed
boundary problem can be generated in this way.

Our objective in this note is to determine closed form solutions of rotational motion of
fractional Maxwell fluid in an infinite circular pipe that applies a couple to the fluid which
is time dependent. To do that, contrary to the usual rule from the literature, we use the
constitutive equation for the tangential stress, which is the result of elimination of velocity
field between the constitutive equations and relevant motion of fluid. The solutions for
the current flow model that have been achieved fulfill all imposed initial and boundary
conditions. Solutions for Newtonian and ordinary Maxwell fluids having similar motion
are also obtained as limiting cases. Finally, the effect of fractional parameter and relaxation
time on the velocity and shear stress fields as well as some comparisons with ordinary
Maxwell and Newtonian fluids are graphically underlined and discussed.
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2 Governing equations
Let us consider an incompressible fractional Maxwell fluid at rest in an infinite circular
cylinder of radius R. After time t = 0 the cylinder is set in rotational motion about its axis
by a time-dependent torque per unit length 2πRgt [40], where g is a constant. Because of
shear, the fluid is steadily moved and its velocity is

v = v(r, t) = w(r, t)eθ (1)

in a suitable cylindrical coordinate system r, θ , and z. Here, eθ is the unit vector in the θ

direction. For such a movement the imperative of incompressibility is fulfilled.
In addition, we assume that the extra-stress S corresponding to such a motion is also a

function of r and t. The fluid being at rest up to the moment t = 0 results in

v(r, 0) = 0, S(r, 0) = 0. (2)

In view of Eqs. (1) and (2), the constitutive equation of Maxwell fluids implies Srr = Srz =
Sθz = Szz = 0 and the appropriate partial differential equation [26]

(
1 + λ

∂

∂t

)
τ (r, t) = μ

(
∂

∂t
–

1
r

)
w(r, t), (3)

where τ (r, t) = Srθ (r, t) is the non-trivial shear stress, μ is the dynamic viscosity, and λ is
the relaxation time. Without body forces, the balance of linear momentum becomes

ρ
∂w(r, t)

∂t
=

(
∂

∂t
+

2
r

)
τ (r, t). (4)

The significant conditions (initial and boundary) are

τ (r, t)|t=0 =
∂τ (r, t)

∂t

∣∣∣∣
t=0

= 0, w(r, 0) = 0, r ∈ [0, R], (5)

τ (r, t)|r=R = gt for t > 0. (6)

As we have to solve a motion problem with shear stress on the boundary, we follow [41]
and eradicate the velocity field between Eqs. (3) and (4). The control equation for shear
stress is

(
1 + λ

∂

∂t

)
∂τ (r, t)

∂t
= ν

(
∂2

∂r2 +
1
r

∂

∂r
–

4
r2

)
τ (r, t). (7)

To make the governing equation corresponding to the fractional model, namely

(
1 + ληDη

t
)∂τ (r, t)

∂t
= ν

(
∂2

∂r2 +
1
r

∂

∂r
–

4
r2

)
τ (r, t), (8)

we replaced the inner time derivative with fractional differential operator [42] from Eq. (7)

Dη
t g(t) =

⎧⎨
⎩

1
Γ (1–η)

d
dt

∫ t
0

g(τ )
(t–τ )η dτ , 0 ≤ η < 1;

d
dt g(t), η = 1,

(9)
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where Γ (·) is the gamma function. In the following, Laplace and finite Hankel transforms
are used to solve the fractional partial differential Eq. (8) with the help of initial and bound-
ary conditions (5) and (6). At once the shear stress is determined, the velocity field is ob-
tained using Eq. (4).

3 Solution of the flow problem
3.1 Calculation of the stress field
By applying Laplace transformation on Eqs. (6) and (8), we get

(
s + ληsη+1)τ (r, s) = ν

(
∂2

∂r2 +
1
r

∂

∂r
–

4
r2

)
τ (r, s), (10)

τ (r, s) =
g
s2 . (11)

In the above relations, Laplace transform of τ (r, t) is τ (r, s) and s is the Laplace transform
parameter. Finite Hankel transform and its inverse are [43]

ΨH (rn) =
∫ R

0
rΨ (r)J2(rrn) dr, (12)

Ψ (r) =
2

R2

∞∑
n=1

J2(rrn)
[J ′

2(Rrn)]2 ΨH (rn). (13)

In the above relations, J ′
2(Rrn) = J1(Rrn) [43], J2(·) represents the second order Bessel func-

tion of the first kind, and rn are the positive roots of J2(Rrn) = 0. Multiplying Eq. (10) with
rJ2(rrn) and then integrating from 0 to R and using the identity [35]

∫ R

0

(
∂2τ (r, s)

∂r2 +
1
r

∂τ (r, s)
∂r

–
4τ (r, s)

r2

)
rJ2(rrn) dr

= –RrnJ ′
2(Rrn)τ (R, s) – r2

nτH (rn, s), (14)

we obtain

τH (rn, s) =
–gRνrnJ1(Rrn)

s2[s + ληsη+1 + νr2
n]

, (15)

or in an equivalent form

τH (rn, s) =
–gRJ1(Rrn)

rns2 +
gRJ1(Rrn)(1 + ληsη)
rns[s + ληsη+1 + νr2

n]
. (16)

By using the identity

1
(s + ληsη+1 + νr2

n)
=

1
λη

∞∑
�=0

(
–νr2

n
λη

)� s–�–1

(sη + λ–η)�+1 , (17)
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in Eq. (16), we get

τH (rn, s)

=
–gRJ1(Rrn)

rns2 +
gR

ληrn
J1(Rrn)

∞∑
�=0

(
–νr2

n
λη

)�[ s–�–2 + ληsη–�–2

(sη + λ–η)�+1

]
. (18)

Applying the inverse Hankel transform and bearing in mind the identity

r2 = –2R
∞∑

n=1

J2(rrn)
rnJ1(Rrn)

, (19)

we get

τ (r, s) =
gr2

R2s2 +
2g
ληR

∞∑
n=1

J2(rrn)
rnJ1(Rrn)

∞∑
�=0

(
–νr2

n
λη

)�[ s–�–2 + ληsη–�–2

(sη + λ–η)�+1

]
. (20)

To obtain the final expression for stress field, we apply the inverse Laplace transform to
Eq. (20) and use the definition of generalized G�,j ,ζ (σ , t) function [44]

G�,j ,ζ (σ , t)

= L–1
{

sj

(s� – σ )ζ

}

=
∞∑
i=0

σ iΓ (ζ + i)
Γ (ζ )Γ (i + 1)

t(ζ+i)�–j–1

Γ [(ζ + i)� – j ]
; Re(�ζ – j ) > 0, Re(s) > 0,

∣∣∣∣σs�

∣∣∣∣ < 1. (21)

The obtained solution

τ (r, t) = gt
(

r
R

)2

+
2g
ληR

∞∑
n=1

J2(rrn)
rnJ1(Rrn)

∞∑
�=0

(
–νr2

n
λη

)�

× [
Gη,–�–2,�+1

(
–λ–η, t

)
+ ληGη,η–�–2,�+1

(
–λ–η, t

)]
(22)

clearly satisfies the boundary condition (6). Direct computation also proves that both ini-
tial conditions are satisfied. In order to prove the second initial condition, Eq. (22) has to
be again taken into consideration.

3.2 Calculation of the velocity field
For velocity field we substitute Eq. (22) in Eq. (4), we get

∂w(r, t)
∂t

=
4grt
ρR2 +

2g
ληRρ

∞∑
n=1

J1(rrn)
J1(Rrn)

∞∑
�=0

(
–νr2

n
λη

)�

× [
Gη,–�–2,�+1

(
–λ–η, t

)
+ ληGη,η–�–2,�+1

(
–λ–η, t

)]
. (23)

Integrating with respect to t, using Eq. (2) and the relation

∫
G�,j ,ζ (σ , t) dt = G�,j–1,ζ (σ , t) + c, (24)
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where c is the constant of integration, we get

w(r, t) =
2gr
ρ

(
t
R

)2

+
2g

ληRρ

∞∑
n=1

J1(rrn)
J1(Rrn)

∞∑
�=0

(
–νr2

n
λη

)�

× [
Gη,–�–3,�+1

(
–λ–η, t

)
+ ληGη,η–�–3,�+1

(
–λ–η, t

)]
. (25)

If we substitute t = 0 in Eqs. (22) and (25), then both equations reduce to Eqs. (5) and (2),
respectively. Boundary condition Eq. (6) can be obtained by taking r = R in Eq. (22). This
implies that our general solution satisfies all imposed conditions.

4 Limiting cases
4.1 Ordinary Maxwell fluid
By taking η → 1 in Eqs. (22) and (25), we get

τOMF(r, t) = gt
(

r
R

)2

+
2g
λR

∞∑
n=1

J2(rrn)
rnJ1(Rrn)

∞∑
�=0

(
–νr2

n
λ

)�

× [
G1,–�–2,�+1

(
–λ–1, t

)
+ λG1,–�–1,�+1

(
–λ–1, t

)]
, (26)

wOMF(r, t) =
2gr
ρ

(
t
R

)2

+
2g

λRρ

∞∑
n=1

J1(rrn)
J1(Rrn)

∞∑
�=0

(
–νr2

n
λ

)�

× [
G1,–�–3,�+1

(
–λ–1, t

)
+ λG1,–�–2,�+1

(
–λ–1, t

)]
, (27)

which are the solutions corresponding to the ordinary Maxwell fluid performing the same
motion.

4.2 Newtonian fluid
Now letting λ → 0 in Eqs. (26) and (27) and using the relation

1
λc Gm,n,c

(
–λ–1, t

)
=

t–n–1

Γ (–n)
, n < 0, when λ → 0,

we recover the solutions

τNF(r, t) = gt
(

r
R

)2

+
2g
νR

∞∑
n=1

J2(rrn)
r3

nJ1(Rrn)
(
1 – e–νr2

nt), (28)

wNF(r, t) =
2gr
ρ

(
t
R

)2

–
2g

μνR

∞∑
n=1

J1(rrn)
r4

nJ1(Rrn)
(
1 – νr2

nt – e–νr2
nt), (29)

corresponding to Newtonian fluids. Indeed, Eq. (29) is identical to Eq. (24) obtained by
Fetecau et al. [45].

5 Numerical results and conclusions
In this note, the flow of a fractional Maxwell fluid through an infinite circular cylinder
that applies a time-dependent torque per unit length to the fluid is analytically studied
using the integral transform technique. To do that, contrary to the usual line from the
literature, the governing equation for the non-trivial shear stress is used and the first exact
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solutions for such motions of rate type fluids are obtained. These solutions, which are
presented in series form in terms of some generalized functions, satisfy all imposed initial
and boundary conditions and are easily reduced to similar solutions for Newtonian and
ordinary Maxwell fluids. It is worth pointing out the fact that our limiting solution (28)
for the shear stress corresponding to a Newtonian fluid is identical to that obtained in
[45, Eq. (24)], while the adequate velocity field (29) corrects a similar result from the same
reference.

In order to bring to light some relevant physical aspects of the present results, the pro-
files of the velocity field w(r, t) and the shear stress τ (r, t), given by Eqs. (25) and (22), have
been displayed against r for different values of the relaxation time λ, the fractional pa-
rameter η, time t, and kinematic viscosity ν . The variations of the two physical entities
at different times are presented in Fig. 1. As it was to be expected, both the velocity and
the shear stress are increasing functions of t on the whole flow domain. They smoothly
increase from the zero value at the middle of the channel up to the maximum values on
the boundary. Moreover, as it clearly results from Fig. 1(a), the boundary condition (6) is
satisfied. Figure 2 indicates that both stress and velocity fields are decreasing functions of

Figure 1 Profiles of the shear stress τ (r, t) and the velocity w(r, t) given by Eqs. (22) and (25), respectively, for
R = 1, g = 2, ν = 0.001, η = 0.001, λ = 10, ρ = 800, and different values of t

Figure 2 Profiles of the shear stress τ (r, t) and the velocity w(r, t) given by Eqs. (22) and (25), respectively, for
R = 1, g = 2, η = 0.45, ν = 0.2, t = 7, ρ = 800, and different values of λ
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Figure 3 Profiles of the shear stress τ (r, t) and the velocity w(r, t) given by Eqs. (22) and (25), respectively, for
R = 1, g = 2, ν = 0.134, t = 1, λ = 0.2, ρ = 800, and different values of η

Figure 4 Profiles of the shear stress τ (r, t) and the velocity w(r, t) given by Eqs. (22) and (25), respectively, for
R = 1, g = 2, η = 0.1, λ = 0.9, t = 4, ρ = 800, and different values of ν

the relaxation time λ.The effect of fractional parameter η can be observed in Fig. 3, it is
noted that both velocity field and shear stress on the fluid decrease by increasing the value
of η. The behavior of shear stress and velocity field against kinematic viscosity ν can be
seen in Fig. 4. It is clear that as fluid becomes more viscous, stress increases but the ve-
locity decreases as expected. Figure 5(a) and 5(b) represent the comparison between the
three models: fractional Maxwell, ordinary Maxwell, and Newtonian. Newtonian fluid is
more sensitive than other fluids. The effect of stress on Newtonian fluid is significant as
compared to fractional or ordinary Maxwell fluid. Due to quick response, the velocity field
of Newtonian fluid is also greater than that of other fluid models. In graphical illustration
we observe the following aspects.

• It is observed that with the passage of time velocity field and shear stress both increase
for the above fractional fluid flow model.

• It is noted that both shear stress and velocity field are decreasing functions of
relaxation time λ and fractional parameter η.

• As expected, velocity of the fluid decreases as fluid becomes more thick but tangential
stress increases.



Sadiq et al. Boundary Value Problems         (2019) 2019:20 Page 9 of 11

Figure 5 Comparison of stress fields τ (r), velocity fields w(r) for fractional Maxwell, ordinary Maxwell, and
Newtonian fluid for R = 1, ν = 0.29, ρ = 800, g = 2, λ = 0.1, t = 0.3, η = 0.14

• It can be seen from graphs that, for every physical parameter, shear stress and velocity
field decrease smoothly from maximum (near the circular cylinder) to zero (at the
center or axis of cylinder).

• The effect of stress on Newtonian fluid is higher as compared to that on the fractional
and ordinary Maxwell fluids. Due to quick response, the value of velocity field is
greater than that of other fluid models.

• From general solution, we recover the solution for shear stress for Newtonian fluid
[45, Eq. (24)].

• In all figures we use SI units, and roots are approximated by rn = (4n–1)π
(4R) .
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