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Abstract
In this investigation the attention is given to a mathematical model of the
non-Newtonian Casson liquid over an unsteady stretching sheet under the combined
effects of different natural parameters with heat transfer in the presence of
suction/injection phenomena. The movement of a laminar thin liquid film and
associated heat transfer from a horizontal stretching surface is studied. Magnetic field
is proposed perpendicular to the direction of flow, while surface tension is varied
quadratically with temperature of the conducting fluid. Further, variable viscosity and
thermal conductivity (linear function of temperature) of the flow are examined. The
transformation allows to convert the boundary layer model to a system of nonlinear
ODEs (ordinary differential equations). Analytical and numerical solutions of the
resulting nonlinear ODEs are obtained by using HAM and BVP4C package. Thickness
of the boundary layer is investigated by both methods for a classical selection of the
unsteadiness parameter. A selection of the parameter ranges is studied for better
solution of the problem. Present observation displays the joined effects of magnetic
field, surface tension, suction/injection, and slippage at the boundary is to improve
the thermal boundary layer thickness. Results for the heat flux (Nusselt number), skin
friction coefficient, and free surface temperature are granted graphically and in a
table form. Similarly, the effects of natural parameters on the velocity and
temperature profiles are investigated.

Keywords: Parameter range; Viscosity parameter; Suction/injection parameter; Slip
effect at the boundary; Thermal conductivity parameter

1 Introduction
A large number of industrial processes, the effect of boundary layer flow with heat trans-
fer over an unsteady stretching sheet with free surface flow have wide use in wire coating,
drawing of plastic sheets, metal and polymer extrusion, foodstuff processing, daily life
uses equipments, etc. Rate of heat transfer in the stretching sheet describes the good and
bad quality of coating during manufacturing of the wire. Therefore, a number of experi-
ments have been discussed under the primary effects of the boundary layer phenomena in
a different frame of reference. Crane [1] started his work from the steady stretching sheet
by considering Newtonian liquids under the assumption that velocity will vary in the di-
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rection of flow and that it must be linear to the distance from the specific point. Soon a
researcher Winter [2] added a viscous dissipated term to the temperature equation that
contributed a very important role to the energy distribution and determined the effects of
energy during the heat transfer in the sheet. Meanwhile, Wang [3] took Newtonian fluid
and discussed the time-dependent stretching sheet under the lead of Newtonian flow on
the sheet. Navier–Stokes equations were converted to the sample equations of one inde-
pendent variable called ordinary differential equations by the use of well form transfor-
mation, and solution was achieved by two methods, numerical and analytical. Similarly,
Thompson and Troian [4] investigated the effects of slip velocity by assuming that slip
velocity is directly dependent on the wall shear rate, i.e., slip length and shear rate (due
to the diverging slip length). Dandapat et al. [5] presented the analysis of the heat trans-
fer by considering the work of Wang [3]. Then they [6] extended his work by considering
surface tension and constructed thermocapillary number in the work of Dandapat et al.
[5]. They presented different physical effects on the heat transfer. The power-law model
of the non-Newtonian liquid was discussed by assuming the unsteady liquid flow over a
stretching sheet and a brief result on the heat transfer was presented; this was done by
Chen [7]. Wang and Pop [8] took a step towards the solution of the problem presented by
Chen [7] and solved it by HAM. Again Chen [9] discussed viscous dissipation effects to
his work [7]. Abbas et al. [10] studied the effects of second grade liquid by introducing an
unsteady stretching sheet of second grade liquid. Mahmoud and Megahed [11] developed
a variation of thermal conductivity and viscosity in the thin liquid fluid over an unsteady
stretching sheet in the presence of Hartmann number to the power-law liquid. Abel et
al. [12] continued the concept of previous work and introduced viscous dissipation with
magnetic effects to a plane stretching sheet over laminar fluid film.

Mukhopadhay et al. [13] presented a two-dimensional problem of unsteady non-
Newtonian liquid over a stretching surface with defined surface temperature. They used
the Casson liquid model for the observation of non-Newtonian liquid with its physical
behavior, and the result was obtained by the well-known method called shooting method.
Moreover, an approximate solution was obtained for the steady momentum equation.
Meanwhile, Nadeem et al. [14] discussed the effects of MHD Casson liquid flow with
boundary layer momentum equation attached with the exponentially admitted shrinking
sheet. They used Adomian decomposition method (ADM) for the analytical solution to
the ODEs, and different graphs were constructed for arbitrary parameters to the velocity
profiles and their possible conclusions. Mahdy [15] presented a numerical solution for the
unsteady MHD Casson liquid over the stretching sheet with the presence of slip effect at
the boundary, suction/blowing, and the defined surface temperature. Different physical
behaviors were discussed for the local similar result of Casson model with the admission
of robust computer algebra software MATLAB. Recently, Prasad et al. [16] discussed heat
transfer of a Casson liquid flow having laminar boundary layer phenomena in a horizon-
tal cylinder with heat and hydrodynamic slip boundary, where constant temperature was
considered at the surface of the cylinder. The naturally parabolic boundary layer equation
was normalized with the use of non-similar form, and then they used a scheme, which
is efficient, well-tested, stable, and implicit, called Keller– box finite-difference scheme.
A conducted viscoplastic fluid passing from a conducted channel was discussed for the
MHD flow and heat transfer to their theoretical results by Akbar et al. [17]. They pro-
posed a robust Casson model in the presence of magnetic field applied to the flow side
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along viscous dissipation term. Makinde and Rundora [18] studied heat decomposition
in a time-dependent mixed convection reactive Casson liquid flow in a filled perpendic-
ular channel existing saturated suction/injection medium. Walls of the channel were also
porous with injection from the right wall and suction out from the left wall. Solution was
discussed by using a finite difference method, a semi-discretized method, and along with
the scheme of Runge–Kutta–Fehlberg integration of fourth order. Recently, a numeri-
cal solution for the flow of unsteady Casson thin film liquid over an unsteady sheet with
the presence of variation in heat flux and viscous dissipation along the slip parameter at
boundary condition were discussed by Megahed [19]. Results were obtained for the heat
transfer with respect to different parameters by the help of shooting method, while the
results of previous papers were compared. Furthermore, the influence of MHD on fluid
flow in various geometries was studied in [20–22]. These are very resent works in the fluid
mechanics having MHD flow over thin film with heat and mass transfers.

Motivated by the given investigation, the formulation of the constructed problem is to
investigate the unsteady non-Newtonian Casson liquid over a stretching sheet under the
combined effects of different natural parameters with Casson boundary layer flow and heat
transfer. The movement of a laminar thin liquid film and associated heat transfer from a
horizontal stretching surface will be studied. Magnetic field will be normal to the flow
direction and surface tension will vary quadratically with temperature of the conducting
fluid for viscous incompressible free surface flow. Further, the observation of variation of
thermal conductivity and viscosity of the fluid flow will be observed for their linear func-
tions of temperatures. The transformation will allow us to convert the boundary layer
model to a system of nonlinear ODEs. Solutions of the resulting nonlinear ODEs will be
obtained by using HAM and shooting method. Thickness of the boundary layer is investi-
gated by both methods for a classical selection of the unsteadiness parameter. Present ob-
servation displays the joined effects of Casson liquid, suction/injection, and slip effect at
the boundary, and magnetic field is to improve the thermal boundary layer thickness. Dif-
ferent parameters will be discussed for their physical importance such as Nusselt number,
skin friction coefficient, free surface temperature, suction/injection, Casson parameter,
slip parameter, Hartmann number, thermocapillary number, and Prandtl number.

2 Problem formulation
2.1 Governing equations
Assume that an infinite elastic flat sheet is set at y = 0 in a Cartesian coordinate system of
fixed reference frame, while the sheet is emerging from a narrow slit placed at the origin
of a system. Unsteady flow of the Casson fluid is considered in two dimensions with uni-
form thickness denoted by h(t) over a sheet. Magnetic field expressed by B = B0/(1 – αt)1/2

is proposed to be normal to the direction of the stretched sheet with admission of trans-
verse velocity. Furthermore, the sheet is stretched in the direction of horizontal axis, while
thermal conductivity and viscosity are considered to be varied in the linear format of tem-
perature. Meanwhile, the flow is considered under the suction/injection and slip effects at
the boundary for the physical phenomena on heat transfer to the boundary layer model.
Assume that there is no gravity, no entrance and exit effects, and thickness is uniform for
the viscous incompressible free surface flow. The governing equations for MHD unsteady
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Casson flow of momentum with heat equation are

∂u
∂x

+
∂ν

∂y
= 0, (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ ν
∂u
∂y

)

=
(

1 +
1
β

)[
2
∂μ

∂x
∂u
∂x

+ 2μ
∂2u
∂x2 +

∂μ

∂y
∂u
∂y

+ μ
∂2u
∂y2 +

∂μ

∂y
∂ν

∂x
+ μ

∂2ν

∂y ∂x

]
– σ̂B2u, (2)

ρ

(
∂ν

∂t
+ u

∂ν

∂x
+ ν

∂ν

∂y

)

=
(

1 +
1
β

)[
∂μ

∂x
∂u
∂y

+ μ
∂2u
∂x ∂y

+ μ
∂2ν

∂x2 +
∂μ

∂x
∂ν

∂x
+ 2μ

∂2ν

∂y2 + 2
∂μ

∂y
∂ν

∂y

]
, (3)

ρCp

(
∂T
∂t

+ u
∂T
∂x

+ ν
∂T
∂y

)
=

[
κ

∂2T
∂x2 +

∂κ

∂x
∂T
∂x

+ κ
∂2T
∂y2 +

∂κ

∂y
∂T
∂y

]
. (4)

Deformation equation describing flow matter of the Casson fluid is defined by Mustafa et
al. [23] as follows:
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the notation τp,q represents stress tensor, where (p, q) refers to the component. Similarly,
ep,q represents the deformation rate of the (p, q)th component, where ϕ = ep,qep,q denotes
the square of a deformation rate, the expression μβ is a non-Newtonian plastic dynamic
viscosity of the fluid, the expression ϕc is used for square of the deformation rate depending
on the model of the non-Newtonian liquid, and Py expresses a fluid yield stress. The reason
for solid structure is when shear stress is less than Py and the flow motion stopped; simi-
larly, if Py is less than shear stress, then fluid flows and deformation starts. Equations (1)–
(4) can be converted to their dimensionless form by using the following non-dimensional
scalings:

x = Lx∗, y = y∗δ̂, u = Uu∗, ν = ν∗ U δ̂

L
,

T = (Ts – T0)T∗ + T0, t = t∗ L
U

,
(5)

the notations δ̂ and L are the respective non-dimensional vertical and horizontal length
parameters, where the possible fraction is δ̂1

L1
� 1, the temperature T0 is the temperature

at the surface of the sheet, and the temperature Ts is a temperature at the surface of the
fluid. After the instalment of the above scaling in Eqs. (1)–(4), the following equations can
obtained:
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As L is very large and δ̂ is very small, so L
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L � 1. Similarly, Re � 1 and 1
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and the mentioned boundary conditions [6] imply that

u = ζ1

(
1 +

1
β

)
∂u
∂y

+ Us, ν = Vw, T = Ts at y = 0, (12)

(
1 +

1
β

)
μ

∂u
∂y

=
∂σ

∂x
, ν =

dh
dt

,
∂T
∂y

= 0, at y = h, (13)

where x, y are in the directions of u and ν , respectively, ζ1 = ζ (1 + αt) 1
2 β depends on time

and is called velocity slip factor, where ζ denotes the initial value of the factor, Casson
parameter is β = μ

√
2ϕc/Py, the velocity Vw represents mass transfer, the notation κ rep-

resents thermal diffusivity, and μ represents viscosity. Similarly, temperature is denoted by
T , h(t) is the fluid thickness (uniform thickness), electrical conductivity is denoted by σ̂ , t
expresses time, the kinematic viscosity is υ , ρ is density, the expression B = B0/(1 – αt)1/2

represents magnetic field, and the surface tension is denoted by σ which quadratically
depends on temperature. This implies that
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the notations δ and h1 are non-negative fluid constants. The surface stretching velocity is
defined in [24] and mass transfer velocity as follows:

Us =
α

2
x
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αβI0

2

√
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, (15)

both α and b are constants and always positive. Further, b is a rate of initial stretch, while
b/(1 – αt) is called an effective stretching rate. For simplicity, we suppose that the surface
is smooth and has no waves. In 2008, Liu and Anderson [25] considered the stretching
surface velocity free of location for developing uniform film thickness as shown in (15),
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and this was first proposed by Dandapat [26], denoted by h(t), and named unsteady film
thickness. Surface temperature at the stretching sheet implies that

Ts = T0 – Tref
α2

2
x2

(1 – αt)
, (16)

here subscript ref means reference, so the constant Tref is a reference temperature pro-
vided that t < 1/α, where the temperature of the stretching sheet is T0.

2.2 Similarity transformation
The following transformations will be used to transform the modeled equations from
PDEs to ODEs:
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the film thickness in a dimensionless form is β selected from [8] as
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The variation of viscosity μ and thermal conductivity κ are defined as follows:
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the notations μ0 and κ0 refer to the viscosity and thermal conductivity of the fluid at tem-
perature T0, respectively, where A = (T0 – Ts)h1, and the notation N = (T0 – Ts)h2 refers
to the viscosity and thermal conductivity parameters, while h1 and h2 are liquid(fluid)
constants. By the use of Eqs. (14)–(23) into Eqs. (9)–(13), we get the following nonlinear
ODEs:
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with the boundary conditions

f ′′(1) = Mθ (1), f (1) = 1, θ ′(1) = 0, (26)
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The prime notation represents derivatives with respect to the non-dimensional variable
η, I0 > 0 is the suction parameter, where I0 < 0 is the injection parameter, unsteady pa-
rameter is S = α
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In view of the formulation structure, some limitations of the model problem are the
following: The modeled problem is invalid for the flow of gases due to η mentioned in
(20), because by the use of viscosity it becomes undefined. Similarly, for S = 0, the problem
reduces from unsteady to steady state. Further, if Ma = 0, then there is no magnetic force,
and we get a model having no magnetic force.

The obtained Eqs. (24) and (25) are analytically calculated by applying the method of
HAM (Liao [27]) with the physical boundary conditions(constrains) mentioned in Eqs.
(26) and (27) and the initial guesses for the functions θ (η) and f (η) are

θ0(η) = 1, (28)
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and for Eqs. (28) and (29) the linear operators are $θ = ∂2/∂η2 and $f = ∂4/∂η4, respectively,
with the following equations:

$θ [Ç1 + Ç2η] = 0, (30)

$f
[
Ç1 + Ç2η + Ç3η

2 + Ç4η
3] = 0, (31)

the constants Ç1, Ç2, Ç3, and Ç4 are used to represent constants of integral.

3 Solution approach
For solution purpose, we have the following subsections.

3.1 Skin friction coefficient and Nusselt number
The interesting physical parameters are the skin friction coefficient Cfx and the Nus-
selt number Nux mentioned in [19]. The statements of these quantities are Cfx = τw

ρU2/2 ,
Nux = xqw

κ(Tref ) , respectively. The notation τw represents wall surface shearing stress, and qw

expresses the rate of heat transfer from an elastic sheet. The detailed expressions are as
follows: τw = (1 + 1

β
)μ( ∂u

∂y )y=0, qw = –κ( ∂T
∂y )y=0.
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By the admission of the transformation to the above quantities, we get the following:

Cfx ≡
(

1 +
1
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2 3
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βS

f ′′(0)Re–1
x , (32)

Nux ≡ 2Us
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where Rex = Usx/υ is called local Reynolds number.

3.2 Optimal convergence control parameters
To reduce the total average square residual error, we use a package BVPh2.0 with the help
of Mathematica introduced by Zhao and Liao [28]. Before discussing physical investiga-
tion of the problem, first it is important to discuss error for the validity of the method. For
this purpose, different parameters are varied and Figs. 2–6 are drawn. Similarly, Tables
1–3 are constructed to know the error and convergence for the corresponding order of

Figure 1 Geometry of the problem

Figure 2 Maximum average squared residual error at different orders of approximation, where λ = 0.2,
A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1, Υ = 0.127013, Pr = 1, I0 = 0, and β = 0.2

Figure 3 Error of azimuthal velocity f at 20th-order
HAM viaMathematica package BVPh2.0
approximation, where β = 0.2, I0 = 0, λ = 0.2,
A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1,
Υ = 0.127013, Pr = 1
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Figure 4 Error of θ (η) at 20th-order HAM via
Mathematica package BVPh2.0 approximation,
where β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, S = 0.4,
Ma = 1, M = 1, Υ = 0.127013, Pr = 1

Figure 5 Error of azimuthal velocity f at 20th-order
HAM viaMathematica package BVPh2.0
approximation, where β = 1, I0 = 0, λ = 0.2, A = 0.3,
N = 0.2, S = 0.4, Ma = 1, M = 1, Υ = 0.127013, Pr = 1

Figure 6 Error of θ (η) at 20th-order HAM via
Mathematica package BVPh2.0 approximation,
where β = 1, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, S = 0.4,
Ma = 1, M = 1, Υ = 0.127013, Pr = 1

Table 1 Optimal value of convergence control parameters versus different orders of approximation

Order of approximation �f �θ εtm

2 –0.126785 –0.773882 4.23292× 10–6

3 –0.129292 –0.727522 1.11854× 10–5

4 –0.130459 –0.778901 5.97889× 10–9

5 –0.127917 –0.787161 1.98668× 10–9

6 –0.130066 –0.787120 1.91613× 10–13

approximation and auxiliary number. It is to be noted that during calculation minimum
error 10–35 is adjusted in package BVPh2.0. The basic influence of HAM package is the
self-decision of the solution area with the attached rate of homotopy expansion series in
the form of auxiliary parameters �θ 	= 0 and �f 	= 0. For the optimal values of �θ and �f ,
Liao [27] introduced the average residual error as follows:

εθ
� =

1
n + 1

n∑
j=0

[
ℵθ

(
�∑

i=0

F(η)
�∑

i=0

Θ(η)

)
η=jδη

]2

dη, (34)
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Table 2 Individual averaged squared residual errors using optimal values of auxiliary parameters

m εfm εθ
m CPU time

2 3.59250× 10–5 2.69667× 10–7 3.93754 seconds
4 9.18224× 10–10 7.82572× 10–11 7.96887 seconds
6 4.18373× 10–13 1.99647× 10–14 16.2815 seconds
8 3.59431× 10–16 6.63613× 10–18 27.1254 seconds
10 2.18166× 10–19 2.56076× 10–21 41.0319 seconds
16 2.75479× 10–29 2.04838× 10–31 104.892 seconds
20 4.73921× 10–33 2.61926× 10–34 169.253 seconds
26 4.84321× 10–33 2.31112× 10–34 301.348 seconds
30 4.84321× 10–33 2.31112× 10–34 423.631 seconds
40 4.84321× 10–33 2.31112× 10–34 883.045 seconds

Table 3 Convergence of HAM on the basis of skin friction f ′′(0) and heat flux –θ ′(0) for selected
values of β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1, Υ = 0.127013, Pr = 1

m f ′′(0) (skin friction) –θ ′(0) (heat flux)
1 0.87518974409683891741 0.07914447507774416643
5 0.87583582258625018543 0.08221669124276321393
10 0.87583587982339187017 0.08221658417434317797
15 0.87583587982465930304 0.08221658417178512573
20 0.87583587982465936218 0.08221658417178505904
25 0.87583587982465936218 0.08221658417178505903
30 0.87583587982465936218 0.08221658417178505903
35 0.87583587982465936218 0.08221658417178505903
40 0.87583587982465936218 0.08221658417178505903

ε
f
� =

1
n + 1

n∑
j=0

[
ℵf

(
�∑

i=0

F(η)
�∑

i=0

Θ(η)

)
η=jδη

]2

dη, (35)

by Liao [27] the sum of all these are the total average residual error with δη = 0.5, n = 20
written as

εt
� = εθ

� + ε
f
� . (36)

Different values for parameter β have been selected with β2 = 0.127013, I0 = 0.0, A = 0.3,
S = 0.4, Ma = 1.0, N = 0.2, M = 1.0, λ = 0.2, and Pr = 1.0 to discuss the error as shown in
Fig. 2. Here Fig. 2 illustrates that while increasing the orders of approximation, we observe
their corresponding maximum average squared residual error. When β = 0.2 is selected,
then Fig. 2(a) is plotted, and we observe that with the increase in the order of approxi-
mation, the corresponding averaged squared residual errors and the corresponding total
averaged squared residual errors become smaller and smaller, but when we select β = 1.0,
then the errors are reduced as compared to the case for β = 0.2, shown in Fig. 2(a) and
Fig. 2(b). Further, we also discuss error for f (azimuthal velocity) and θ (temperature) for
arbitrary values of β as displayed in Figs. 3–6.

Further, Table 1 explores different orders of approximation to the optimal values of con-
vergence control parameters and to the total averaged squared residual error for λ = 0.2,
β = 0.20, I0 = 0.0, N = 0.20, A = 0.30, Ma = 1.0, S = 0.40, β2 = 0.1270130, M = 1.0, and
Pr = 1.0. In addition, selecting the parameter values of λ = 0.20, I0 = 0.0, β = 0.20, N = 0.20,
A = 0.30, Ma = 1.0, S = 0.40, β2 = 0.1270130, M = 1.0, Pr = 1.0 and keeping different quan-
tities of an auxiliary parameter, the corresponding separate average squared residual er-
rors using self-determination of optimal values by using Mathematica, package BVPh2.0,



Rehman et al. Boundary Value Problems         (2019) 2019:26 Page 11 of 24

are shown in Table 2. Furthermore, Table 3 represents the twenty decimal place accuracy
when λ = 0.20, β = 0.20, I0 = 0.0, N = 0.20, A = 0.30, Ma = 1.0, S = 0.40, β2 = 0.1270130,
M = 1.0, and Pr = 1.0 for f ′′(0) (local skin fraction) and –θ (0) (local Nusselt number) af-
ter fifteen orders of approximation. Hence, to obtain convergence results, the optimal
HAM is an excellent choice for selecting the set of local convergence control parame-
ters.

3.3 Results and discussion
The modeled problem consists of a couple of ODEs shown in Eqs. (24) and (25) with the
defined physically admitted boundary conditions mentioned in (26) and (27). They are
solved by the well-known methods called HAM and shooting method for arbitrary val-
ues of the interesting non-dimensional parameters listed as Grashof number, unsteady
parameter, skin friction, thermal conductivity parameter, heat flux, Hartmann parameter,
variable viscosity parameter, film thickness, free surface temperature, suction/injection
parameter, Prandtl number, Casson parameter, slip velocity parameter, and thermocapil-
lary number.

Interesting effects of convergence control parameters �f and �θ on the physical param-
eters –θ ′(0), Υ = β2, θ (1), and f ′′(0) are shown in Table 4 for selected values of A = 0.3,
Pr = 1.0, I0 = 0.0, N = 0.2, S = 0.4, M = 1.0, Ma = 1.0, β = 0.2, 1.0 at λ = 0.2 by using HAM
20th order approximation. Similarly the same case is discussed in Table 4 for the fixed
quantities of all the parameters except λ = 0.5, 1.0 at β = 0.2. The importance of β , λ, Pr,
M, Ma, and S on –θ ′(0), f ′′(0), β2, and θ (1) is illustrated in Tables 5–10. Further, for the
purpose of solution, two methods, HAM and shooting method, are used to compare the
results.

In addition to Table 5, as the Casson parameter β is increased and the film thick-
ness β2 is reduced, i.e., by stretching the sheet, heat flux and skin friction are reduced,
while free surface temperature is raised for fixed values of the remaining parameters.
Similarly, by increasing the Casson parameter β and reducing the film thickness β2,
4th decimal place accuracy was noticed between both the methods, HAM and shoot-

Table 4 Variation of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM viaMathematica package

BVPh2.0 approximation when A = 0.3, I0 = 0, N = 0.2, S = 0.4, Ma = 1, M = 1, Pr = 1

�f �θ β f ′′(0) θ (1) –θ ′(0)
β = 0.2, λ = 0.2
–0.0265314 –0.292062 2.82701 –0.0156117 0.177729 2.19976
–0.0296361 –0.315862 2.62701 –0.0189389 0.211150 2.02976
–0.0333679 –0.341349 2.42701 –0.0229204 0.250369 1.85697
β = 1.0, λ = 0.2
–0.330660 –0.460604 1.62701 –0.0915227 0.478447 1.133350
–0.343891 –0.502384 1.42701 –0.1097190 0.553971 0.943595
–0.352134 –0.554164 1.22701 –0.1299110 0.635164 0.753939
λ = 0.5, β = 0.2
–0.0270687 –0.290661 2.82701 –0.00718384 0.177708 2.19878
–0.0301325 –0.314454 2.62701 –0.00872102 0.211112 2.02871
–0.0982505 –0.315507 2.42701 –0.01055900 0.250307 1.85587
λ = 1.0, β = 0.2
–0.0584564 –0.486120 1.62701 –0.0114765 0.477491 1.129600
–0.1158530 –0.494437 1.42701 –0.0135242 0.552856 0.940594
–0.1173810 –0.549646 1.22701 –0.0157667 0.633955 0.751751
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Table 5 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and shooting method for the case λ = 0.2, I0 = 0,
A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1, Pr = 1 and several values of β

β HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.2 2.927010 –0.0141535 0.162948 2.28385 2.927010 –0.0141539 0.162955 2.28392
0.5 2.627010 –0.0281333 0.211237 2.03197 2.627010 –0.0281332 0.211238 2.03197
1.0 2.327010 –0.0454676 0.272640 1.77295 2.327010 –0.0454676 0.272640 1.77294
1.5 2.162701 –0.0575470 0.312715 1.62763 2.162701 –0.0575470 0.312714 1.62762
2.0 1.827010 –0.0843351 0.410243 1.32158 1.827010 –0.0843277 0.410241 1.32160
2.5 1.527010 –0.1159610 0.515644 1.03948 1.527010 –0.1159575 0.515643 1.03948

Table 6 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and shooting method for the case β = 0.2, I0 = 0,
A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1, Pr = 1 and several values of λ

λ HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.0 2.927010 –0.0651851 0.163076 2.29018 2.927010 –0.0650983 0.163074 2.29021
0.2 2.627010 –0.0189389 0.211150 2.02976 2.627010 –0.0189335 0.211149 2.02977
0.5 2.327010 –0.0116064 0.272305 1.76827 2.327010 –0.0116024 0.272307 1.76833
1.0 2.162701 –0.0071275 0.312168 1.62200 2.162701 –0.0071262 0.312169 1.62204
1.5 1.827010 –0.0065553 0.409284 1.31620 1.827010 –0.0065549 0.409284 1.31622
2.0 1.527010 –0.0064081 0.514285 1.03508 1.527010 –0.0064080 0.514284 1.03508

Table 7 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and BVP4C for the case β = 0.2, I0 = 0, λ = 0.2, A = 0.3,
N = 0.2, S = 0.4, Ma = 1, M = 1 and several values of Pr

Pr HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.7 2.927010 –0.0215291 0.245797 1.87652 2.927010 –0.0215291 0.245798 1.87652
1.0 2.627010 –0.0189333 0.211146 2.02976 2.627010 –0.0189335 0.211149 2.02977
2.0 2.327010 –0.0108576 0.118714 2.58480 2.327010 –0.0108139 0.118543 2.58522
3.0 2.162701 –0.0074303 0.080081 2.95425 2.162701 –0.0073173 0.079346 2.95632
4.0 1.827010 –0.0082316 0.086707 2.87997 1.827010 –0.0081283 0.086067 2.88159
5.0 1.527010 –0.0103011 0.106688 2.68538 1.527010 –0.0102314 0.106327 2.68614

ing method, in Table 5. In view of Table 6, by increasing the velocity slip parameter
λ and reducing the thickness of the sheet β2, free surface temperature and skin fric-
tion are increased, while heat flux is decreased for fixed values of the remaining pa-
rameters and by the use of HAM. In the display of Table 7, by increasing the value of
Prandtl number Pr and reducing the film thickness β2, heat flux and local skin fric-
tion are first increased and then decreased, while free surface temperature is decreased
up to some extent and then increased for fixed values of the remaining parameters.
In the arrangement of Table 8, by increasing the Hartmann number Ma and reducing
the film thickness β2, heat flux and local skin friction are decreased, while free sur-
face temperature is increased for fixed values of the remaining parameters. In the con-
struction of Table 9, by increasing the thermocapillary number M and reducing the film
thickness β2, heat flux and skin friction are reduced, while free surface temperature be-
comes increased for fixed values of the remaining parameters. In Table 10, by increas-
ing the unsteady parameter S and reducing the film thickness β2, i.e., by stretching the
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Table 8 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and shooting method for the case β = 0.2, I0 = 0,
λ = 0.2, A = 0.3, N = 0.2, S = 0.4, Pr = 1, M = 1 and several values of Ma

Ma HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.0 1.927011 –0.037135 0.378277 1.40976 1.927011 –0.037132 0.378276 1.40978
1.0 1.627012 –0.047255 0.47781 1.13090 1.627012 –0.047254 0.477809 1.13091
3.0 1.327013 –0.059117 0.593312 0.84702 1.327013 –0.059116 0.593311 0.84703
5.0 1.162704 –0.066144 0.661408 0.69259 1.162704 –0.066144 0.661407 0.69259
7.0 0.827015 –0.082756 0.801535 0.39413 0.827015 –0.082755 0.801534 0.39413
10 0.527016 –0.096483 0.910891 0.17387 0.527016 –0.096483 0.910891 0.17387

Table 9 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and shooting method for the case β = 0.2, I0 = 0,
λ = 0.2, A = 0.3, N = 0.2, S = 0.4, Pr = 1, Ma = 1 and several values of M

M HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.0 1.927011 0.00000000 0.380657 1.42266 1.927011 0.00000000 0.380657 1.42265
0.3 1.627012 –0.0142617 0.48024 1.13867 1.627012 –0.0142609 0.48023 1.13868
0.5 1.327013 –0.0302575 0.59549 0.85101 1.327013 –0.0302571 0.595489 0.85102
0.7 1.162704 –0.0477753 0.662731 0.69433 1.162704 –0.0477751 0.662730 0.69433
1.0 0.827015 –0.0845684 0.801455 0.39407 0.827015 –0.0845683 0.801454 0.39408
1.2 0.527016 –0.117232 0.910344 0.17375 0.527016 –0.1172314 0.910343 0.17375

Table 10 Comparison of the values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM via

Mathematica package BVPh2.0 approximation and shooting method for the case β = 0.2, I0 = 0,
λ = 0.2, A = 0.3, N = 0.2, M = 1, Pr = 1, Ma = 1 and several values of S

S HAM BVP4C

β f ′′(0) θ (1) –θ ′(0) β f ′′(0) θ (1) –θ ′(0)
0.4 1.927011 –0.036380 0.378317 1.41000 1.927011 –0.036377 0.378316 1.41002
0.6 1.627012 –0.034292 0.35886 1.47003 1.627012 –0.034288 0.358859 1.47006
0.8 1.327013 –0.038051 0.393797 1.36371 1.327013 –0.038048 0.393796 1.36373
1.0 1.162704 –0.039363 0.405902 1.32835 1.162704 –0.039360 0.405900 1.32837
1.2 0.827015 –0.055462 0.551115 0.94681 0.827015 –0.055462 0.551114 0.94681
1.4 0.527016 –0.076787 0.735821 0.53102 0.527016 –0.076787 0.735820 0.53102

sheet, heat flux and skin friction are increased up to some limit and then decreased,
while free surface temperature is decreased and then increased for fixed values of the
remaining parameters. In this very last Table 11, observations are done for the arbi-
trary choice of suction/injection parameter on the heat flux –θ ′(0), free surface tem-
perature θ (1), and skin friction f ′′(0) while keeping fixed values for the remaining pa-
rameters. For understanding, this investigation is divided into two parts, one is named
suction case and the other is named injection case. Usually, we have two types of op-
erations on the porous medium: one is called suction and the other is called injection.
For the operation at the suction side, a low pressure is exerted at the suction face called
inlet, therefore fluid can easily enter the medium through inlet. Similarly, for the oper-
ation at the injection side, a high pressure is exerted at the injection face called outlet,
therefore by force fluid can out to the medium through outlet. Pressure sensing device
is used at the medium on the suction side for the operation of the fluid flow through
media.
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Table 11 Different values of β =Υ
1
2 , f ′′(0), θ (1), and –θ ′(0) using 20th-order HAM viaMathematica

package BVPh2.0 approximation for the case S = 0.4, β = 0.2, λ = 0.2, A = 0.3, N = 0.2, M = 1, Pr = 1,
Ma = 1 and several values of I0

I0 > 0 β f ′′(0) θ (1) –θ ′(0)
0.20 1.927011 –0.212293 0.793334 0.402894
0.25 1.627012 –0.249894 0.833711 0.320317
0.30 1.327013 –0.287485 0.873305 0.240635
0.35 1.162704 –0.323504 0.900353 0.186803
0.40 0.827015 –0.360966 0.937495 0.114535
0.45 0.527016 –0.397485 0.966743 0.059133

I0 < 0 β f ′′(0) θ (1) –θ ′(0)
–0.20 1.927011 0.057075 0.715539 0.553116
–0.25 1.627012 0.086068 0.744323 0.492561
–0.30 1.327013 0.114487 0.777895 0.424047
–0.35 1.162704 0.144611 0.797593 0.384115
–0.40 0.827015 0.171291 0.845510 0.290587
–0.45 0.527016 0.197796 0.894847 0.196312

Figure 7 The effect of β on velocity profile with
λ = 0.2, I0 = 0, A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1,
Pr = 1, Υ = 1.927011

Suction case I0 > 0:
Based on Table 11, by increasing the value of suction parameter I0 and reducing the

film thickness β2, heat flux and local skin friction coefficient of suction side are de-
creased, while free surface temperature is increased for fixed values of the remaining pa-
rameters. Physically, due to the low pressure at the inlet face, the fluid enters through
medium, and due to the higher pressure at the outlet face, the fluid outs at the discharge
side.

Injection case I0 < 0:
Similarly, based on Table 11, by decreasing the value of injection parameter I0 and reduc-

ing the thickness of the sheet β2, free temperature and skin friction coefficient of suction
side are increased, while heat flux is decreased for fixed values of the remaining parame-
ters. Usually, it happens that due to the higher pressure at the injection face, the fluid is
forced out through medium, and due to the lower pressure at the suction face, the fluid
enters at the discharge side. Excellent agreements are observed between both the tech-
niques, shooting method and HAM, for a variety of physical parameter values as displayed
in Table 5.

The velocity and temperature profiles for hydrodynamics of the non-Newtonian MHD
unsteady viscous incompressible free surface flow over a sheet with variable thermal con-
ductivity and viscosity for the physical phenomena on heat transfer to the boundary layer
model appear in Figs. 7–24 when λ, β , N , A, S, Ma, Pr, β2, M are kept varied individually.
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Figure 8 The effect of β on temperature profile
with λ = 0.2, I0 = 0, A = 0.3, N = 0.2, S = 0.4, Ma = 1,
M = 1, Pr = 1, Υ = 1.927011

Figure 9 The effect of λ on velocity profile with β

= 0.2, I0 = 0, A = 0.3, N = 0.2, S = 0.4, Ma = 1, M = 1,
Pr = 1, Υ = 1.927011

Figure 10 The effect of λ on temperature profile
with β = 0.2, I0 = 0, A = 0.3, N = 0.2, S = 0.4, Ma = 1,
M = 1, Pr = 1, Υ = 1.927011

Figure 11 The effect of A on velocity profile with β

= 0.2, I0 = 0, λ = 0.2, N = 0.2, S = 0.4, Ma = 1,M = 1,
Pr = 1, Υ = 1.927011

One can see the effects of β (Casson parameter) in Figs. 7 and 8 for the corresponding
velocity and temperature profiles. By increasing the value of β , velocity is increased up
to η = 0.47 and then decreased as shown in Fig. 7. Similarly, with the increase of β , the
flow temperature remains unchanged; as a result, no change in heat flux takes place for a
fixed value of N = 0.2, A = 0.3, I0 = 0.0, β2 = 1.927011, Ma = 1.0, S = 0.4, Pr = 1.0, M = 1.0,
and λ = 0.2 (see Fig. 8). In Fig. 9, the increase in λ (velocity slip parameter) leads to the
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Figure 12 The effect of A on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, N = 0.2, S = 0.4, Ma = 1,
M = 1, Pr = 1, Υ = 1.927011

Figure 13 The effect of N on velocity profile with β

= 0.2, I0 = 0, λ = 0.2, A = 0.3, S = 0.4, Ma = 1, M = 1,
Pr = 1, Υ = 1.927011

Figure 14 The effect of N on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, S = 0.4, Ma = 1,
M = 1, Pr = 1, Υ = 1.927011

Figure 15 The effect of S on velocity profile with β

= 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1,M = 1,
Pr = 1, Υ = 1.927011

decrease in velocity for a fixed value of N = 0.2, A = 0.3, I0 = 0.0, β2 = 1.927011, Ma = 1.0,
S = 0.4, Pr = 1.0, M = 1.0, and β = 0.2. Further, in Fig. 10, the increase in λ has no effect on
temperature profile for a fixed value of N = 0.2, A = 0.3, I0 = 0.0, β2 = 1.927011, Ma = 1.0,
S = 0.4, Pr = 1.0, M = 1.0, and β = 0.2. In view of Fig. 11, as the value of A (viscosity) is
increased, the corresponding flow velocity slightly rises and then decelerates; therefore,
the corresponding temperature of the flow rises slightly as shown in Fig. 12 for a fixed
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Figure 16 The effect of S on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1,
M = 1, Pr = 1, Υ = 1.927011

Figure 17 The effect of Υ on velocity profile with
β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1,M
= 1, Pr = 1, S = 0.4

Figure 18 The effect of Υ on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1,
M = 1, Pr = 1, S = 0.4

Figure 19 The effect of M on velocity profile with β

= 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1, Pr = 1,
S = 0.4, Υ = 1.927011

value of N = 0.2, λ = 0.2, I0 = 0.0, β2 = 1.927011, Ma = 1.0, S = 0.4, Pr = 1.0, M = 1.0, and
β = 0.2. It can be noted that during fluid flow the velocity and friction both are in opposite
effects. Therefore, this leads to physical phenomena as by increasing viscosity of the fluid,
the corresponding friction between the molecules is increased and it is a fact that inter-
nally the force of attraction increases, which causes resistance to the speed of the fluid
molecules and as a result velocity reduces finally. A reaction heat transfer rate decreases
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Figure 20 The effect of M on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, Ma = 1,
Pr = 1, S = 0.4, Υ = 1.927011

Figure 21 The effect of Ma on velocity profile with
β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, M = 1, Pr = 1,
S = 0.4, Υ = 1.927011

Figure 22 The effect of Ma on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, M = 1, Pr
= 1, S = 0.4, Υ = 1.927011

Figure 23 The effect of Pr on velocity profile with β

= 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, M = 1,Ma = 1,
S = 0.4, Υ = 1.927011

and free temperature increases slightly, and this phenomenon is agreeable with the phys-
ical phenomena. In addition, in Figs. 13 and 14, as the value of N (thermal conductivity)
is increased, the corresponding flow velocity is decreased while the corresponding tem-
perature rises for fixed values of the remaining parameters. This leads to the fact that,
with the increase of thermal conductivity, the flow speed reduces and the fluid flow tem-
perature increases, and hence skin friction and heat flux are increased while free surface
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Figure 24 The effect of Pr on temperature profile
with β = 0.2, I0 = 0, λ = 0.2, A = 0.3, N = 0.2, M = 1,
Ma = 1, S = 0.4, Υ = 1.927011

temperature is decreased. Furthermore, Figs. 15 and 16 are constructed for the variation
of S (unsteady number) to the different flow properties. When S is increased, velocity pro-
file increases while temperature decreases as displayed in Figs. 15, 16 for fixed values of
the remaining parameters. The compatible physical phenomenon is as follows: increase
in S leads to speeding up and cooling down of the fluid flow. As an output, the decrease of
heat flux is seen in the boundary layer domain. Similarly, in Figs. 17 and 18, the increasing
of β2 (film thickness) decreases velocity and increases temperature, respectively, for fixed
values of the remaining parameters, and this is agreeable with the physical phenomena.
Further, to check the effectiveness of M (surface tension), when we increased M, the flow
velocity is decreased while temperature is slightly decreased as shown in Figs. 19 and 20,
respectively, for fixed values of the remaining parameters. According to the physical phe-
nomena, when M is increased, higher heat diffusivity is seen on the sheet, and thus the
non-dimensional number Nux (Nusselt number) increases and flow cools down; there-
fore, the decrease in temperature leads to the vibrating force between the fluid molecules.
According to the law of mass conservations, when force is reduced in the direction of fluid
flow, then Cf (skin friction) also reduces. For further investigation, in Figs. 21 and 22, we
increase the value of Ma (Hartmann number), the corresponding velocity increases while
temperature is unchanged as shown in Figs. 21 and 22, respectively, for fixed values of the
remaining parameters. This physical phenomenon is due to the reason that the presence
of Ma (magnetic field) leads to the Lorentz force or resistance force, and the reduction
in the Lorentz force leads to low resistance to the flow molecules, which provides speed
up to the fluid flow. In extension of Figs. 23 and 24, by increasing the value of Pr (Prandtl
number), the flow velocity increases while temperature decreases for fixed values of the
remaining parameters. It is very clear from Fig. 24 that by increasing Pr, heat flux reduces
and this reduction is seen in the whole fluid region, which causes the temperature to rise
and therefore flow speed increases (see Fig. 23).

In addition, Figs. 25 and 26 are plotted for the observation of azimuthal velocity, veloc-
ity, and temperature profiles by varying some parameters. In Fig. 25 we vary the Casson
parameter and check the effect of suction/injection(I0 > 0 and I0 < 0) parameter on dif-
ferent physical properties. The increasing of β (Casson parameter) increases azimuthal
velocity in the suction case. For the injection case, however, the same azimuthal velocity
is decreased as shown in Fig. 25(a). It is also observed that in the injection case the az-
imuthal velocity is lower than that of the suction case for a fixed value of I0 = 0.5, –0.5,
λ = 0.2, Ma = 1.0, A = 0.3, N = 0.2, S = 0.4, M = 1.0, Pr = 1.0, and β2 = 0.127013. Similarly,
the increasing of β increases velocity up to η = 0.45 and then decreases in the suction
case, but for the injection case, the same velocity decreases up to η = 0.45 and then in-
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Figure 25 The effect of β on azimuthal velocity, velocity, and temperature profiles with Pr = 1, λ = 0.2,
A = 0.3, N = 0.2, M = 1, Ma = 1, S = 0.4, Υ = 0.127013, Pr = 1

Figure 26 The effect of I0 on azimuthal velocity, velocity, and temperature profiles with β = 0.2, Pr = 1,
λ = 0.2, A = 0.3, N = 0.2, M = 1, Ma = 1, S = 0.4, Υ = 0.127013, Pr = 1

creases as shown in Fig. 25(b). It is also observed that in the injection case the azimuthal
velocity is lower than that of the suction case for a fixed value of I0 = 0.5, –0.5, λ = 0.2,
Ma = 1.0, A = 0.3, N = 0.2, S = 0.4, M = 1.0, Pr = 1.0, and β2 = 0.127013. Furthermore, the
increasing of β increases temperature in the suction case. For the injection case, however,
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the same temperature is decreased as shown in Fig. 25(c). It is also seen that in the injec-
tion case the temperature of liquid flow is lower than that of the suction case for a fixed
value of I0 = 0.5, –0.5, λ = 0.2, Ma = 1.0, A = 0.3, N = 0.2, S = 0.4, M = 1.0, Pr = 1.0, and
β2 = 0.127013. Now, in Fig. 26, we check the effect of I0 for the suction and injection case.
By the increase of I0 (in both cases, suction and injection) the corresponding azimuthal
velocity increases (see Fig. 26(a)). Further, by the increase of I0 (in both cases, suction and
injection) the corresponding velocity decreases (see Fig. 26(b)). Meanwhile, for both cases
the increase of the porosity parameter I0 causes the rise in temperature and the flow be-
comes heated, while comparatively the temperature of injection is lower than that of the
suction case (see Fig. 26(c)).

Further, parameter’ ranges are picked to achieve enough error by the use of HAM
method. We have chosen the lower limit and the upper limit of a parameter in such a
way that the minimum error 10–6 and the maximum error 10–25 are obtained. For this
purpose, we plotted error versus various non-dimensional parameters as shown in Figs.
27(a)–27(f ). Here, the domain for each sub-figure is captured from the available previous
information used in this analysis. If the existing judgment leads to the engineering aim, the
exact physical parameters with the required accuracy must be selected from these ranges.

Figure 27 Error versus parameters range for velocities and temperature profiles
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Figure 28 (a) h-curve for velocity field f ′′(0) and (b) h-curve for temperature field θ ′(0)

At the end we have given the auxiliary parameter profiles for both velocity field and tem-
perature field to determine the region for the solution of the problem. Profile of h-curve
for the case of velocity field f ′′(0) is given by Fig. 28(a) and profile of h-curve for the case
of temperature field θ ′(0) is given by Fig. 28(b).

4 Concluding remarks
In this manuscript, the Casson liquid is considered for the thin film flow that admitted the
constitutive equations of non-Newtonian liquid with possible heat transfer over a time-
dependent stretching sheet in lead of the variation of thermal conductivity and viscosity
with the attachment of magnetic number. The governing nonlinear PDEs obtained from
momentum and temperature equations are transformed to the system of ODEs by the use
of well-defined transformations attached to the physical geometry of the model. Presen-
tation of the non-dimensional parameters is adopted for the possible effects of different
physical phenomena in the style of tables and graphs. These results are possible with the
establishment of a numerical method (shooting method) and an analytical method (HAM)
for their comparison. Satisfactory results are seen from both methods in the form of a ta-
ble. The following conclusions have been drawn during this investigation:

1. As β is increased, the corresponding velocity increases and the corresponding
temperature remains unchanged.

2. As λ is increased, the corresponding flow speed reduces but the corresponding
temperature is unchanged.

3. The increase of A causes the flow velocity slightly rise and then decelerate;
therefore, the corresponding temperature of the flow rises slightly.

4. When N is increased, the corresponding flow velocity decreases while the
corresponding temperature rises.

5. Increasing of S increases the velocity profile while temperature decreases.
6. The increasing of β2 decreases velocity and increases temperature.
7. Increased M leads to decrease in flow velocity while temperature is slightly

decreased.
8. Increased value of Ma results in the increased corresponding velocity while

temperature is unchanged.
9. Increasing the value of Pr increases the flow velocity while decreasing the

temperature.
10. The increase in I0 (in both cases, suction and injection) the corresponding

azimuthal velocity increases while velocity decreases and the rise of temperature is
seen.
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