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Abstract
We shall apply the phase-field method to investigate the dynamics of sea ice growth.
The model consists of two parabolic equations. The existence and uniqueness of
weak solutions to an initial-boundary value problem of this model is proved. Then the
regularity, large-time behavior of solutions are studied, also the existence of global
attractor is proved. The main technique in this article is energy method. Our existence
proof is only valid in one space dimension.
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1 Introduction
Due to global warming, which leads to significant climate changes and more and more
frequently occurring severe weather disasters, the study of global warming seems more
important than ever since sea ice has begun to melt (see, e.g., [1–3]) and this makes sea
level rise considerably so that some islandish countries may vanish. In this paper we shall
employ a phase-field approach to model the growth of sea ice. This approach, though it
has been developed since 1980s, thus is very young, is now a very powerful tool for both
theoretical and numerical studies in many fields (see, e.g., [4, 5]). To our knowledge, the
application of a two-phase field model to investigation of sea ice growth presented in this
paper is the first one in phase-field modeling for sea ice evolution.

The evolution of macroscopic sea ice has been studied by means of the classic Stefan’s
problem (see, e.g., [6]). Fluid flow through sea ice is another point of interest. The perme-
ability of sea ice is important in many physical processes such as the melting and draining
from sea ice surface during the melting season (see, e.g., [7]). A new simple model which
includes turbulent transport of heat and salt between ice and ocean is introduced and
solved analytically (see, e.g., [8]). The mesoscopic numerical simulation of sea ice crys-
tals growth has been studied through Voronoi dynamics during the freezing season (see,
e.g., [9]). Overall, sea ice interacts with the climate system of the polar. A one-dimensional
enthalpy-based model of sea ice allows for quantitative studies of sea ice and its interac-
tion (see, e.g., [10]). These references need to add appropriate conditions at the interface
of tracking movement. Theoretical analysis and numerical simulation are very difficult. In
this paper we study a phase-field model for the evolution of the phase interface region in
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sea water-ice interface phase change problems, which was derived in [5]. The author only
simulated dendritic crystal growth without theoretical analysis. We will use the phase-
field method in the sea ice growth, more precisely, I do theoretical analysis, regularities,
and large time behavior. We formulate this initial-boundary value problem in the one-
dimensional case and conclude the introduction by stating our main result.

Let Ω ⊂ R
3 be an open set. We introduce a phase-field variable (the order parameter

p ∈ R) to represent the physical state of the system in time and space, that is, to distin-
guish the liquid phase and solid phase, such as the solid state when the variable is 1. The
liquid phase is expressed when the variable is 0. We restrict ourselves to that type of order
parameter p, which describes the evolution of phase interfacial region.

Now let us establish the free energy function F of the system based on the order param-
eter p, their spatial derivatives ∇p, and the local temperature:

F[p, T] =
∫

Ω

(
ε2

12
2

|∇p|2 + ψ̂(p) + e0T2
)

dV . (1.1)

Setting

ψ̂(p) =
1

4a12

(
p2(1 – p)2 – m2

12

(
1
3

p3 + p2(1 – p) –
1
3

(1 – p)3 – (1 – p)2p
))

,

we choose for ψ̂ ∈ C2(R, [0,∞)) a direct extension of the double well potential with min-
ima at p = 0 and p = 1. Here, e0, ε12, a12, m12 are thermophysical data.

T is temperature, it satisfies

T =
e
e0

+
1
2

h(p),

where h(p) is a non-decreasing smooth function satisfying h(0) = 0 near p = 0 and h(1) = 1
near p = 1, e is the local enthalpy, and e0 satisfies

e0 =
L2

TMcp∗
,

L is the latent heat of fusion for sea-water, TM is the melting temperature, and cp∗ is the
specific heat of sea water.

For the two-phase case, we get the following systems:

∂p
∂t

=
1

τ12

(
ε2

12�p –
1

2a12
p(1 – p)(1 – 2p) +

m12

a12
p(1 – p)

)
– κT

∂h
∂p

, (1.2)

∂T
∂t

= ∇ · (D∇T) +
1
2

∂h
∂p

∂p
∂t

(1.3)

for (t, x) ∈ (0,∞) × Ω , κ , D are constants. The boundary and initial conditions are

p(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω , (1.4)

T(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω , (1.5)

p(0, x) = p0(x), x ∈ Ω , (1.6)

T(0, x) = T0(x), x ∈ Ω . (1.7)
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Now we make some assumptions. We assume that all functions depend on the variables
x1 and t and, to simplify the notation, denote x1 by x. The set Ω is a bounded open interval.
We write QTe := (0, Te) × Ω , where Te is a positive constant, and define

(υ,ϕ)Z =
∫
Z

υ(y)ϕ(y) dy

for Z = Ω or Z = QTe .
Then, under these assumptions, equations (1.2)–(1.3) in the case of one dimension can

be rewritten as follows:

pt =
1

τ12

(
ε2

12pxx –
1

2a12
p(1 – p)(1 – 2p) +

m12

a12
p(1 – p)

)

– κT
∂h
∂p

, in (t, x) ∈ (0, Te) × Ω , (1.8)

Tt = DTxx +
1
2

∂h
∂p

∂p
∂t

, in (t, x) ∈ (0, Te) × Ω , (1.9)

where κ = 2e0
τ12

. The boundary and initial conditions therefore are

p(t, x) = 0, on (t, x) ∈ [0, Te] × ∂Ω , (1.10)

T(t, x) = 0, on (t, x) ∈ [0, Te] × ∂Ω , (1.11)

p(0, x) = p0(x), in x ∈ Ω , (1.12)

T(0, x) = T0(x), in x ∈ Ω . (1.13)

Definition 1.1 Let p0 ∈ H1
0 (Ω), T0 ∈ L2(Ω). A function (p, T) with

p ∈ L∞(
0, Te; H1

0 (Ω)
) ∩ L2(0, Te; H2(Ω)

)
, (1.14)

T ∈ L∞(
0, Te; L2(Ω)

) ∩ L2(0, Te; H1
0 (Ω)

)
, (1.15)

is a weak solution to problem (1.8)–(1.13) if, for all ϕ ∈ C∞
0 ((–∞, Te) × Ω), there hold

0 = (p,ϕt)QTe –
1

τ12
ε2

12(px,ϕx)QTe –
1

τ12

1
2a12

(
p(1 – p)(1 – 2p),ϕ

)
QTe

+
1

τ12

m12

a12

(
p(1 – p),ϕ

)
QTe

– κT
(

∂h
∂p

,ϕ
)

QTe

+
(
p0,ϕ(0)

)
Ω

, (1.16)

0 = (T ,ϕt)QTe – (DTx,ϕx)QTe +
1
2

(
∂h
∂p

,ϕ
)

QTe

+
(
T0,ϕ(0)

)
Ω

. (1.17)

The main results of this article are as follows.

Theorem 1.1 For all p0 ∈ H1
0 (Ω) and T0 ∈ L2(Ω), there exists a unique weak solution

(p, T) of problem (1.8)–(1.13), which in addition to (1.14)–(1.15) satisfies

pt ∈ L2(QTe ), p ∈ L4(QTe ), Tt ∈ L2(0, Te; H–1(Ω)
)
. (1.18)
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Theorem 1.2 Assume that p0 ∈ H2(Ω), T0 ∈ H1
0 (Ω), then there exists a weak solution

(p, T) of problem (1.8)–(1.13), which in addition to (1.14)–(1.15) satisfies

p ∈ L∞(
0, Te; H2(Ω)

)
, pt ∈ L∞(

0, Te; L2(Ω)
) ∩ L2(0, Te; H1

0 (Ω)
)
,

ptt ∈ L2(0, Te; H–1(Ω)
)
, (1.19)

T ∈ L2(0, Te; H2(Ω)
) ∩ L∞(

0, Te; H1
0 (Ω)

)
, Tt ∈ L2(0, Te; H–1(Ω)

)
.

Remark Assume that p0 ∈ Hk(Ω), T0 ∈ Hk–1(Ω), regularity will continue to improve,
when k is sufficiently large, then weak solution becomes the classical solution.

Definition 1.2 Let X be a Banach space. A one-parameter family S(t), 0 ≤ t < ∞, of
bounded linear operators from X into X is a semigroup bounded linear operator on X
if

(i) S(0) = I (I is an identity operator on X),
(ii) S(s + t) = S(s)S(t) for every t, s ≥ 0 (the semigroup property).

Theorem 1.3 Let Ω denote an open bounded set of R and g1 denote a polynomial. The
semigroup p(t) associated with the initial-boundary-value problem (1.8)–(1.13) possesses
a maximal attractor A which is bounded in H1

0 (Ω), compact and connected in L2(Ω). Its
basin of attraction is the whole space L2(Ω), A attracts the bounded sets of L2(Ω). Assume
that the coefficient is suitably large. Then ‖p‖L∞(Ω) and ‖T‖2 decrease exponentially to 0
as t → ∞.

Notation Let Ω be a domain in R
n, and let r be a positive real number. We denote by

Lp(Ω) the class of all measurable functions u defined on Ω for which

∫
Ω

∣∣u(x)
∣∣r dx < ∞.

The Sobolev space W k,r(Ω) is defined by

W k,r(Ω) =
{

u ∈ Lr(Ω) : Dαu ∈ Lr(Ω), 0 ≤ |α| ≤ k, 1 ≤ r ≤ ∞}
,

where k is any positive integer and Dαu is the weak partial derivative. ‖ · ‖, | · |, C, A, S(t)
denote L2(Ω)-norm, the absolute value, various constants, attractor, semigroup, respec-
tively; ∂t or d

dt or a subscript t and ∂x or a subscript x denote the derivative with respect to
t and x in the distribution sense, respectively.

The remaining sections are devoted to the proof of Theorem 1.1, Theorem 1.2, and The-
orem 1.3. In order to obtain the local solution of the initial-boundary value problem for
nonlinear equations (1.8)–(1.13), we construct the approximate sequence

{
(p, T)n(t, x) =

(
pn, Tn)(t, x)

}∞
n=3.

We prove the existence of weak solutions by iterative method: Choose a known approxi-
mate solution pn–1, Tn–1 and determine the next pn, Tn by solving equations to (1.8)–(1.9),
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proving existence solution by using of Banach’s fixed point theorem. When we regard the
term pn in (1.9) as known by use of solution of (1.8), a solution will be obtained if conver-
gence of this procedure can be shown. In Sect. 2 we shall establish some a priori estimates
for the solution.

We will discuss the regularity of our weak solutions p, T for the parabolic systems in
Sect. 3.

Section 4 is devoted to investigation of the large time behavior of a solution by using the
a priori estimates.

2 A priori estimates
In this section we establish a priori estimates for solutions (p, T) to the initial-boundary
value problem (1.8)–(1.13).

Lemma 2.1 There holds, for any t ∈ [0, Te],

∫ t

0
‖pt‖2 dτ + κD

∫ t

0
‖Tx‖2 dτ +

∥∥T(t)
∥∥2 +

∥∥px(t)
∥∥2 +

∥∥p(t)
∥∥4

L4(Ω) ≤ C. (2.1)

Proof Multiplying (1.8), (1.9) by pt , 2κT and integrating by parts with respect to x ∈ Ω ,

1
2

d
dt

‖T‖2 +
ε12

τ12

d
dt

‖px‖2 + 2κD‖Tx‖2 +
1

2τ12a12

∫
Ω

p(1 – p)(1 – 2p)pt dx

–
m12

τ12a12

∫
Ω

p(1 – p)pt dx = 0. (2.2)

Integrating (2.2) in τ ∈ [0, t], we have

∫ t

0
‖pt‖2 dτ + 4κD

∫ t

0
‖Tx‖2 dτ + 2

∥∥T(t)
∥∥2 +

ε12

τ12

∥∥px(t)
∥∥2 + c

∥∥p(t)
∥∥4

L4(Ω)

≤ ε12

τ12
‖p0x‖2 + 2‖T0‖2 + C

(‖p0‖4
L4(Ω) + C

) ≤ C. (2.3)

Thus we obtain pt ∈ L2(Qt), p ∈ L∞(0, t; H1
0 (Ω)) ∩ L4(Qt), T ∈ L∞(0, t; L2(Ω)) ∩ L2(0, t;

H1
0 (Ω)). �

Lemma 2.2 There holds, for any t ∈ [0, Te],

∫ t

0

∥∥p(t)
∥∥4

L4(Ω) dτ ≤ C, (2.4)

∫ t

0
‖Tt‖2

H–1(Ω) dτ ≤ C. (2.5)

Proof Noting that f |∂Ω = 0, we have the Gagliardo–Nirenberg inequality in the form

‖f ‖L4(Ω) ≤ c‖fx‖
1
4
L2(Ω)‖f ‖ 3

4
L2(Ω).

We have
∫ t

0

∥∥p(τ )
∥∥4 dτ ≤ C

∥∥p(t)
∥∥3

L∞(0,t;L2(Ω))

∫ t

0

∥∥px(τ )
∥∥dτ ≤ Ct

1
2 ≤ Ct . (2.6)
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Using equations (1.8), (1.9), we have

1
τ12

ε2
12pxx = pt + κT

∂h
∂p

–
1

τ12

(
–

1
2a12

p(1 – p)(1 – 2p) +
m12

a12
p(1 – p)

)

= f1, (2.7)

Tt = DTxx +
1
2

∂h
∂p

∂p
∂t

. (2.8)

Taking the L2(Ω)-norm on both sides of equation (2.7), squaring and integrating it in τ ∈
(0, t), using relation (2.1), we have

1
τ12

ε2
12

∫ t

0
‖pxx‖2 dτ ≤ C

(∫ t

0
‖pt‖2 dτ +

∫ t

0
‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)

+
1

τ12

(∥∥∥∥ 1
2a12

p(1 – p)(1 – 2p)
∥∥∥∥

2

+
m12

a12

∥∥p(1 – p)
∥∥2

))
dτ ≤ C.

Next we invoke the inequality

β‖p‖2
H2(Ω) ≤ ‖f1‖ + γ ‖p‖2 (

p ∈ H2(Ω) ∩ H1
0 (Ω)

)
(2.9)

for constants β > 0, γ ≥ 0. Integrating (2.9) in τ ∈ (0, t), we have

∫ t

0
‖p‖2

H2(Ω) dτ ≤ C
∫ t

0

(‖f1‖2
L2(Ω) + ‖p‖2

L2(Ω)
)

dτ

≤ C
∫ t

0
‖f1‖2

L2(Ω) dτ + ‖p‖2
L∞(0,Te ;L2(Ω)

∫ t

0
dτ ≤ Ct .

It remains to show that Tt ∈ L2(0, t; H–1(Ω)). To do so, (2.8) is changed to

‖Tt‖H–1(Ω) ≤ C
(

‖Txx‖H–1(Ω) +
∥∥∥∥∂h
∂p

∂p
∂t

∥∥∥∥
)

.

Thus

∫ t

0
‖Tt‖2

H–1(Ω) dτ ≤ C
∫ t

0

(
‖Txx‖2

H–1(Ω) +
∥∥∥∥∂h
∂p

∂p
∂t

∥∥∥∥
2)

dτ

≤ C(‖Txx‖2
L2(0,t,H–1(Ω)) +

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(0,t;L∞(Ω))
‖pt‖2

L2(0,t;L2(Ω))

≤ C

and Tt is bounded in L2(0, t; H–1(Ω)).
We have the solution p, T of (1.8), (1.9). This allows us to extend the solution p, T step-

by-step to all of Te. �

Theorem 2.1 (Uniqueness) Assume that p and T are the weak solution of (1.8)–(1.9). Then
the weak solution is unique.
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Proof If p̃, T̃ are another solution, write w1 := p – p̃, w2 := T – T̃ . Setting ϕ = w1 in (1.16),
ϕ = w2 in (1.17) and integrating by parts, by using Young’s inequality, we have

∫ Te

0

d
dt

∥∥w1(τ )
∥∥2 dτ +

∫ Te

0
‖w1x‖2 dτ +

∫ Te

0

∫
Ω

w2
1
(
p2 + p̃2)dx dτ

≤ C
∫ Te

0
‖w1‖2 dτ , (2.10)

∫ Te

0

d
dt

∥∥w2(τ )
∥∥2 dτ +

∫ Te

0
‖w2x‖2 dτ ≤ 0. (2.11)

(2.10) is changed to

‖w1‖2 ≤ C
∫ Te

0
‖w1‖2 dτ .

By using of Gronwall’s inequality, we obtain p = p̃ for almost everywhere QTe .
(2.11) is changed to

‖w2‖2 ≤ 0,

we obtain T = T̃ for almost everywhere QTe . �

3 Regularity
In this section we discuss the regularity of the weak solutions p, T to the initial-boundary
value problem for parabolic-parabolic systems in Sect. 1. Assume that all conditions in
Sect. 1 are met and p0 ∈ H2(Ω), T0 ∈ H1

0 (Ω). For this initial p0 ∈ H2(Ω), T0 ∈ H1
0 (Ω),

solutions p, T can be constructed as in Sect. 2. Our eventual goal is to prove that p, T is
smooth.

Lemma 3.1 There holds, for any t ∈ [0, Te],

‖p‖L∞(0,Te ;H2(Ω)) + ‖pt‖L∞(0,Te ;L2(Ω)) + ‖pt‖L2(0,Te ;H1
0 (Ω)) + ‖ptt‖L2(0,Te ;H–1(Ω))

+ ‖T‖L∞(0,Te ;H1
0 (Ω)) + ‖T‖L2(0,Te ;H2(Ω)) + ‖T‖L2(0,Te ;L2(Ω))

≤ (
C + ‖p0‖H2(Ω) + ‖T0‖H1

0 (Ω)
)
. (3.1)

Proof Differentiating (1.8) formally with respect to t yields

ptt =
1

τ12

(
ε2

12pxxt –
1

2a12

(
1 – 6p + 6p2)pt +

m12

a12
(1 – 2p)pt

)

– κT
∂2h
∂p2 pt – κTt

∂h
∂p

, (3.2)

Tt = DTxx +
1
2

∂h
∂p

∂p
∂t

. (3.3)

Multiplying (3.3) by –Txx and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖Tx‖2 + D‖Txx‖2 = –
1
2

∫
Ω

Txx
∂h
∂p

pt dx ≤ ε‖Txx‖2 + cε

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
‖pt‖2.
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Thus

1
2

d
dt

‖Tx‖2 + (D – ε)‖Txx‖2 ≤ cε

∥∥∥∥ ∂h
∂p1

∥∥∥∥
2

L∞(Ω)
‖pt‖2. (3.4)

Integrating (3.4) in τ ∈ (0, t), we have

‖Tx‖2 + 2(D – ε)
∫ t

0
‖Txx‖2 dτ ≤ ‖T0x‖2 + C ≤ C. (3.5)

(3.3) be changed to

DTxx = Tt –
1
2

∂h
∂p

∂p
∂t

= f3.

We use the result of regularity theory of elliptic equations

‖T‖H2(Ω) ≤ C
(‖f3‖ + ‖T‖). (3.6)

Squaring and integrating (3.6) in τ ∈ (0, t), we have

∫ Te

0
‖T‖2

H2(Ω) dτ ≤ C
∫ Te

0

(‖f3‖2 + ‖T‖2)dτ

≤ C
(

C + ‖T‖2
L∞(0,Te ;L2(Ω))

∫ Te

o
dτ

)
≤ C, (3.7)

we obtain T ∈ L2(0, Te; H2(Ω)).
Squaring and integrating (3.3) in Ω , we have

‖Tt‖2 ≤ C‖Txx‖2 + C
∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
‖pt‖2. (3.8)

Integrating (3.8) in τ ∈ (0, t), we have

∫ t

0
‖Tt‖2 dτ ≤ C

∫ t

0
‖Txx‖2 dτ + C

∫ t

0

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
‖pt‖2 dτ ≤ C, (3.9)

we obtain Tt ∈ L2(QTe ).
Multiplying (3.2) by pt and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖pt‖2 +
1

2τ12a12

∫
Ω

(
1 – 6p + 6p2)p2

t dx

+
ε2

12
τ12

‖pxt‖2 –
m12

τ12a12

∫
Ω

(1 – 2p)(pt)2 dx

≤ C
∥∥∥∥∂2h
∂p2

∥∥∥∥
L∞(Ω)

‖T‖L∞(Ω)‖pt‖2 +
1
2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
‖Tt‖2 +

1
2
‖pt‖2

≤ C‖pt‖2 + C‖Tt‖2.
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Thus

1
2

d
dt

‖pt‖2 +
ε2

12
2τ12

‖pxt‖2 + c
∫

Ω

p2(pt)2 dx ≤ C‖pt‖2 + C‖Tt‖2. (3.10)

We thereupon conclude from (3.10) that

∥∥pt(t)
∥∥2 +

∫ Te

0
‖pxt‖2 dτ + c

∫ Te

0

∫
Ω

p2p2
1t dx dτ

≤ eCt
(

‖p0t‖2 + C
∫ Te

0
‖Tt‖2 dτ

)
≤ C

(‖p0‖2
H2(Ω) + C

)
. (3.11)

Multiplying (1.8) by pxx and integrating it in x ∈ Ω , we have

1
τ12

ε2
12(pxx, pxx) =

(
pt + κT

∂h
∂p

, pxx

)

–
1

τ12

(
–

1
2a12

p(1 – p)(1 – 2p) +
m12

a12
p(1 – p), pxx

)

= (g3 + pt , pxx). (3.12)

Next we invoke the inequality

β‖p‖2
H2(Ω) ≤ (g3 + pt , pxx) + γ ‖p‖2,

(
p ∈ H2(Ω) ∩ H1

0 (Ω)
)

for constants β > 0, γ ≥ 0.
We thereupon conclude from (3.12) that

‖p‖H2(Ω) ≤ C
(‖g3‖ + ‖pt‖ + ‖p‖) ≤ C,

we obtain p ∈ L∞(0, Te; H2(Ω)).
It remains to show that ptt ∈ L2(0, Te; H–1(Ω)). To do so, equation (3.2) is changed to

ptt =
1

τ12

(
ε2

12pxxt –
1

2a12

(
1 – 6p + 6p2)pt +

m12

a12
(1 – 2p)pt

)
– κT

∂2h
∂p2 pt – κTt

∂h
∂p

.

Thus

‖ptt‖H–1(Ω) ≤ C
(‖pxxt‖H–1(Ω) + ‖pt‖L2(Ω) + ‖Tt‖L2(Ω)

)
,

and so ptt is bounded in L2(0, Te; H–1(Ω)). �

4 Global attractor
In this section we discuss the existence of a global attractor and the stability of solution to
problem (1.8)–(1.13). This amounts to proving that the solutions of the evolution problem
remain bounded as t → ∞. Usually, proving the existence of absorbing sets amounts to
proving a priori estimates. Once the properties of the semigroup are established, we may
apply the general results of the attractor. That theorem produces the existence of an attrac-
tor which is maximal among the bounded attractors and among the bounded functional
invariant sets; it fully describes the long-time behavior of the solutions of the equations.
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4.1 Global attractor
Let

g1(p) =
1

2τ12a12
p(1 – p)(1 – 2p) –

1
τ12m12

p(1 – p) (4.1)

be a polynomial with a positive leading coefficient. Using Young’s inequality, we infer from
(4.1) the existence of a constant c1 > 0 such that

∣∣∣∣ 1
2τ12a12

p
(
1 – 3p2) –

1
τ12m12

p(1 – p)
∣∣∣∣ ≤ 1

2τ12a12
p4 + c1, (4.2)

and hence

–
1

2τ12a12
p4 – c1 ≤ g1(p)p ≤ 1

2τ12a12
p4 + c1. (4.3)

Lemma 4.1 (The uniform Gronwall Lemma) Let g , h, y be three positive locally integral
functions on (t0,∞) such that y′ is locally integrable on (t0,∞), and which satisfies

dy
dt

≤ gy + h for t ≥ t0,
∫ t+r

t
g(s) ds ≤ a1,

∫ t+r

t
h(s) ds ≤ a2,

∫ t+r

t
y(s) ds ≤ a3 for t ≥ t0,

where r, a1, a2, a3 are positive constants. Then

y(t + r) ≤
(

a3

r
+ a2

)
ea1 , ∀t ≥ t0.

Proof of Theorem 1.3 (a) Absorbing set in L2(Ω) of p. Using relation (4.3), we obtain, mul-
tiplying (1.8) by p and integrating by parts with respect to x over Ω , where we take the
boundary condition (1.10) into account, that for almost all t

1
2

d
dt

‖p‖2 +
ε2

12
τ12

‖px‖2 +
1

2τ12a12
‖p‖4

≤ κ‖T‖‖p‖L2(Ω)

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

+ 2c1|Ω|

≤ cε‖T‖2
∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
+ ε‖p‖2 + 2c1|Ω|, (4.4)

|Ω| = the measure (volume) of Ω . Due to Poincaré’s inequality, there exists a constant
c0 = c0(Ω) such that

‖p‖ ≤ c0‖px‖, ∀p ∈ H1
0 (Ω),
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and setting c2 = 4c1|Ω|, we infer from (4.4) that

d
dt

‖p‖2 +
(

2ε2
12

c2
0τ12

– 2ε

)
‖p‖2 +

1
τ12a12

‖p‖4 ≤ c2 + 2cε‖T‖2
∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
,

where ε = 2ε2
12

c2
0τ12

– 2ε > 0.
Using the uniform Gronwall Lemma 4.1 we see that

∥∥p(t)
∥∥2 ≤ ‖p0‖2e–εt + e–εt

∫ t

0
eετ

(
c2 + 2cε‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)

)
dτ

≤ ‖p0‖2e–εt + e–εt
∫ t

0
eετ (c2 + 2c3cε) dτ

≤ ‖p0‖2e–εt +
c2 + 2c3cε

ε

(
1 – e–εt). (4.5)

Thus

lim sup
t→∞

∥∥p(t)
∥∥ ≤ ρ0, ρ2

0 =
c2 + 2c3cε

ε
. (4.6)

There exists an absorbing set B0 in L2(Ω), namely, any ball of L2(Ω) centered at 0 of
radius ρ ′

0 > ρ0. If B is a bounded set of L2(Ω), included in a ball B(0, R) of L2(Ω) centered
at 0 of radius R, then S(t)B ⊂ B(0,ρ ′

0) for t ≥ t0(B;ρ ′
0)

t0 =
1
ε

log
R2

(ρ ′
0)2 – ρ2

0
. (4.7)

We also infer from (4.4), after integration in t, that

∫ t+r

t

2ε2
12

τ12
‖px‖2 dτ +

1
τ12a12

∫ t+r

t
‖p‖4 dτ

≤ c2r + 2ε

∫ t+r

t

∥∥p(τ )
∥∥2 dτ + rc3cε +

∥∥p(t)
∥∥2, r > 0. (4.8)

With (4.6) we conclude that

lim sup
t→∞

(
2ε

∫ t+r

t
‖px‖2 dτ +

1
τ12a12

∫ t+r

t
‖p‖4 dτ

)

≤ (c2 + c3cε)r + (2εr + 1)ρ2
0 , r > 0, (4.9)

and if p0 ∈ B ⊂ B(0, R) and t ≥ t0(B,ρ ′
0), then

2ε

∫ t+r

t
‖px‖2 dτ +

2
2τ12a12

∫ t+r

t
‖p‖4 dτ

≤ (c2 + c3cε)r + (2εr + 1)
(
ρ ′

0
)2, r > 0. (4.10)

(b) Absorbing set in H1
0 (Ω) of p. We now prove the existence of an absorbing set in

H1
0 (Ω) and the uniform compactness of S(t). For that purpose we need another energy-

type equality; it is obtained by multiplying (1.8) by –pxx and integrating by parts with
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respect to x over Ω , where we take the boundary condition (1.10) into account, that for
almost all t

1
2

d
dt

‖px‖2 +
ε2

12
τ12

‖pxx‖2 + c
∫

Ω

(
p2 – 1

)
(px)2 dx = κ

∫
Ω

Tpxx
∂h
∂p

dx. (4.11)

As in (4.3), we can prove with repeated applications of Young’s inequality that there
exists c′

2 > 0 such that

3
4τ12a12

p2 – c′
2 ≤ dg1

dp
≤ 9

4τ12a12
p2 + c′

2, ∀p ∈ R. (4.12)

We also infer from general results on the Dirichlet problem in Ω that |�p| is, on H1
0 (Ω)∩

H2(Ω), a norm equivalent to that induced by H2(Ω).
Setting c′

3 = 3
4τ12a12

> 0, we then deduce from (4.12)

d
dt

‖px‖2 + ε′‖px‖2 + c′
3

∫
Ω

(p)2(px)2 dx ≤ 2cε‖T‖2
∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
, (4.13)

where ε′ =
2ε2

12
τ12

–2ε

c′20
– 2c′

2 > 0. If p0 ∈ H1
0 (Ω), then the uniform Gronwall Lemma 4.1 shows

that

∥∥px(t)
∥∥2 ≤ ‖p0‖2

H1
0 (Ω)e

–ε′t +
2c3cε

ε′
(
1 – e–ε′t), t > 0. (4.14)

A bound valid for all t ∈ R+ is obtained by application of the uniform Gronwall lemma;
for arbitrary fixed r > 0, we write (4.13)

d
dt

‖px‖2 ≤ 2c′
2‖px‖2 + 2cε‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
.

Multiplying by e–2c′2t , we obtain the relation

d
dt

(
e–2c′2t‖px‖2) ≤ 2e–2c′2tcε‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
≤ 2cε‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
.

Then, by integration between t and t + r, we have

∥∥px(t + r)
∥∥2 ≤

(∫ t+r
t ‖px(t)‖2 dτ

r
+ a2

)
ea1 ≤

(
a3

r
+ a2

)
ea1 , t ≥ t∗, (4.15)

provided

∫ t+r

t

∥∥px(t)
∥∥2 dτ ≤ a3, a1 = 2c′

2r, a2 = 2cεc3r, t ≤ t∗.

An explicit value of a3 can be derived from (4.4) and the computation above when t∗ = 0.
Hence (4.15) provides a uniform bound for px, t > r, while (4.13) provides a uniform bound
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for px for 0 < t < r. For our purpose, it is simpler and sufficient to set t∗ = t0, in which case,
the value of a3 is given by (4.10),

a3 =
(c2 + c3cε)r + (2εr + 1)(ρ ′

0)2

2ε
. (4.16)

It follows that the ball of H1
0 (Ω) centered at 0 of radius ρ1 is absorbing in H1

0 (Ω), when

ρ2
1 =

(
a3

r
+ a2

)
ea1 ,

and if p0 belongs to the ball B(0, R′) of H1
0 (Ω) centered at 0 of radius r, then p(t) enters this

absorbing set denoted by B1 at a time t ≤ t0 + r and remains in it for t ≥ t0 + r. At the same
time, this result provides the uniform compactness of S(t): any bounded set B of L2(Ω) is
included in such a ball B(0, R′), and for p0 ∈ B and ≥ t0 + r, t0, r as above, p(t) belongs to
B1 which is bounded in H1

0 (Ω) and relatively compact in L2(Ω).
(c) Absorbing set in L2(Ω) of T . Making use of relations (4.10) and (4.15), we obtain

∥∥px(t + r)
∥∥2 +

(
ε2

12
τ12

– ε

)∫ t+r

t
‖pxx‖2 dτ + c

∫ t+r

t

∫
Ω

p2(px)2 dx dτ

≤ 2cε

∫ t+r

t
‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
dτ + c′

3

∫ t+r

t
‖px‖2 dτ +

∥∥px(t)
∥∥2

≤ 2c3cεr + c′
3a3 + ρ2

0 .

Squaring and integrating (1.8) over Ω , we have

‖pt‖2 ≤ 2ε2
12

τ12
‖pxx‖2 + 4κ2‖T‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)

+ C
(∥∥p(1 – p)(1 – 2p)

∥∥2 +
∥∥p(1 – p)

∥∥2). (4.17)

Integrating (4.17) in τ ∈ (t, t + r), we have

∫ t+r

t
‖pt‖2 dτ ≤ ε2

12
τ12

2c3cεr + c′
3a3 + ρ2

0
ε2

12
τ12

– ε

+ (c2 + 2c3cε)r + 2(2εr + 1)ρ2
0 + 2c1r + 4c3cεr.

We multiply (1.9) by T and integrate by parts with respect to x over Ω , where we take
the boundary condition (1.11) into account, that for almost all t

1
2

d
dt

‖T‖2 + D‖Tx‖2 =
1
2

∫
Ω

T
∂h
∂p

pt dx ≤ ε‖T‖2 + cε

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2. (4.18)

Due to Poincaré’s inequality, there exists a constant c0 = c0(Ω) such that

‖T‖ ≤ c0‖Tx‖, ∀T ∈ L2(Ω).

We infer from (4.18) that

1
2

d
dt

‖T‖2 +
(

D
c2

0
– ε

)
‖T‖2 ≤ cε

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2.
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Using the uniform Gronwall lemma, we see that

∥∥T(t)
∥∥2 ≤ e

–2( D
c2
0

–ε)∥∥T(0)
∥∥2 + 2C1cε .

Thus

lim sup
t→∞

‖T‖ ≤ ρ2, ρ2
2 = 2C1cε . (4.19)

There exists an absorbing set B2 in L2(Ω), namely, any ball of L2(Ω) centered at 0 of
radius ρ ′

2 > ρ2. If B is a bounded set of L2(Ω), included in a ball B(0, R) of L2(Ω) centered
at 0 of radius R, then S(t)B ⊂ B(0,ρ ′

2) for t ≥ t0(B;ρ ′
2)

t1 =
1

2( D
c2

0
– ε)

log
R2

(ρ ′
2)2 – ρ2

2
.

We also infer from (4.18), after integration in t, that

2D
∫ t+r

t
‖Tx‖2 dτ ≤ ∥∥T(t)

∥∥2 + 2ε

∫ t+r

t

∥∥T(t)
∥∥2 dτ

+ 2cε

∫ t+r

t

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2 dτ , r > 0.

With (4.19) we conclude that

lim sup
t→∞

2D
∫ t+r

t
‖Tx‖2 dτ

≤ (1 + 2rε)ρ2
2 + 2cε

ε2
12

τ12

2c3cεr + c′
3a3 + ρ2

0
ε2

12
τ12

– ε

+ 2cε

(
(c2 + 2c3cε)r + 2(2εr + 1)ρ2

0 + 2c1r + 4c3cεr
)
, r > 0,

and if T0 ∈ B ⊂ B(0, R) and t ≥ t1(B,ρ ′
2), then

2D
∫ t+r

t
‖Tx‖2 dτ

≤ (1 + 2rε)
(
ρ ′

2
)2 + 2cε

ε2
12

τ12

2c3cεr + c′
3a3 + ρ2

0
ε2

12
τ12

– ε

+ 2cε

(
(c2 + 2c3cε)r + 2(2εr + 1)

(
ρ ′

0
)2 + 2c1r + 4c3cεr

)
, r > 0. �

4.2 Large-time behavior of the solutions
Lemma 4.2 Let f = f (t), which satisfies f ∈ L1(R+), df

dt ∈ L1(R+), and

∫ ∞

0

∣∣f (t)
∣∣dt ≤ C,

∫ ∞

0

∣∣∣∣df
dt

∣∣∣∣dτ ≤ C.
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Then

lim
t→∞ f (t) = 0. (4.20)

Theorem 4.1 Let p = p(t, x), T = T(t, x), ‖p‖2 ∈ L1(R+), d
dt ‖p‖2 ∈ L1(R+), ‖T‖2 ∈ L1(R+),

d
dt ‖T‖2 ∈ L1(R+), and

∫ ∞

0
‖px‖2 dt ≤ C,

∫ ∞

0

∣∣∣∣ d
dt

‖px‖2
∣∣∣∣dτ ≤ C,

∫ ∞

0
‖T‖2 dt ≤ C,

∫ ∞

0

∣∣∣∣ d
dt

‖T‖2
∣∣∣∣dτ ≤ C.

Then

lim
t→∞‖p‖L∞(Ω) = 0, lim

t→∞‖T‖2 = 0. (4.21)

Proof Multiplying (1.8) by p and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖p‖2 +
(

ε2
12

τ12
– ε – cc0

)
‖px‖2 +

c
τ12a12

‖p‖4
L4(Ω) ≤ cε‖Tx‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
, (4.22)

where α = ε2
12

τ12
– ε – cc0 > 0. Integrating (4.22) in τ ∈ (0, t), we have

∥∥p(t)
∥∥2 + α

∫ t

0
‖px‖2 dτ +

c
τ12a12

∫ t

0
‖p‖4

L4(Ω) dτ ≤ ∥∥p(0)
∥∥2 + Cε

∫ t

0
‖Tx‖2 dτ ≤ C.

Thus we obtain

∫ t

0
‖px‖2 dτ ≤ C, (4.23)

∫ t

0
‖p‖4

L4(Ω) dτ ≤ C. (4.24)

Multiplying (1.8) by –pxx and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖px‖2 +
(

ε2
12

τ12
– ε

)
‖pxx‖2 +

1
τ12a12

∫
Ω

p2p2
x dx – c′

2

∫
Ω

(px)2 dx

≤ cε

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
+ ‖Tx‖2, (4.25)

where β = ε2
12

τ12
– ε > 0. Integrating (4.25) in τ ∈ (0, t), using relations (4.23) and (4.24), we

have

‖px‖2 + β

∫ t

0
‖pxx‖2 dτ +

1
τ12a12

∫ t

0

∫
Ω

p2p2
x dx dτ

≤ ∥∥px(0)
∥∥2 + c′

2

∫ t

0
‖px‖2 dx dτ + C

∫ t

0
‖Tx‖2 dτ ≤ C.
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Thus we obtain
∫ t

0
‖pxx‖2 dτ ≤ C, (4.26)

∫ t

0

∫
Ω

p2(px)2 dx dτ ≤ C. (4.27)

Multiplying (1.8) by –pxx and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖px‖2 = –
ε2

12
τ12

‖pxx‖2 +
1

2a12τ12

∫
Ω

p(1 – p)(1 – 2p)pxx dx

+ κ

∫
Ω

Tpxx
∂h
∂p

dx. (4.28)

Taking the absolute value on both sides of equation (4.28) and integrating it in τ ∈ (0, t),
using relations (4.26), (4.27), we have

1
2

∫ t

0

∣∣∣∣ d
dt

‖px‖2
∣∣∣∣dτ ≤ 1

2a12τ12

∫ t

0

∣∣∣∣
∫

Ω

p(1 – p)(1 – 2p)pxx dx
∣∣∣∣dτ

+
ε2

12
τ12

∫ t

0
‖pxx‖2 dτ + κ

∫ t

0

∣∣∣∣
∫

Ω

Tpxx
∂h
∂p

dx
∣∣∣∣dτ

≤ ε2
12

τ12

∫ t

0
‖pxx‖2 dτ + C

∫ t

0

(
p2(px)2 + p2

x
)

dτ + cε

∫ t

0
‖px‖2 dτ

+ ε

∫ t

0
‖Tx‖2

∥∥∥∥∂h
∂p

∥∥∥∥
2

L∞(Ω)
dτ ≤ C. (4.29)

Thus we obtain

1
2

∫ t

0

∣∣∣∣ d
dt

‖px‖2
∣∣∣∣dτ ≤ C. (4.30)

By use of Lemma 4.2 and relations (4.23), (4.30), we obtain

lim
t→∞‖px‖2 = 0. (4.31)

By use of Poincaré’s inequality, since p ∈ H1
0 (Ω), we have

‖p‖L∞(Ω) ≤ C
(∫

Ω

|px|2 dx
) 1

2 → 0. (4.32)

Multiplying (1.9) by T and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖T‖2 + (D – ε)‖Tx‖2 ≤ cε

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2, (4.33)

where D – ε > 0. Integrating (4.33) in τ ∈ (0, t), we get

‖T‖2 + (D – ε)
∫ t

0
‖Tx‖2 ≤ C. (4.34)
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Multiplying (1.9) by T and integrating by parts with respect to x over Ω , we have

1
2

d
dt

‖T‖2 +
(

D
c2

0
– ε

)
‖T‖2 ≤ cε

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2, (4.35)

where D
c2

0
– ε > 0. Integrating (4.35) in τ ∈ (0, t), we have

‖T‖2 +
(

D
c2

0
– ε

)∫ t

0
‖T‖2 ≤ C. (4.36)

Taking the absolute value on both sides of equation (4.33) and integrating it in τ ∈ (0, t),
using relation (4.34), we have

∫ t

0

∣∣∣∣1
2

d
dt

‖T‖2
∣∣∣∣dτ ≤ C

∫ t

0
‖Tx‖2 dτ + C

∫ t

0

∥∥∥∥∂h
∂p

∥∥∥∥
L∞(Ω)

‖pt‖2 dτ ≤ C. (4.37)

Since T |∂Ω = 0, we have

‖T‖2 = 0, t → ∞. (4.38)
�

5 Conclusion
With the help of Banach’s fixed point theorem, we prove the existence of weak solutions
and study the regularity of weak solutions for the phase-field model. Also we study the
existence of a global attractor for this simplified model and investigate the large time be-
havior of weak solutions.

Acknowledgements
I gratefully acknowledge the help of Professor Peicheng Zhu, he has offered me valuable suggestion in this study. The
author would like to deeply thank all the reviewers for their insightful and constructive comments.

Funding
This article is in part supported by start-up grant for 1000-plan scholar from Shanghai University, P.R. China.

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests
The author declares that there is no conflict of interests regarding the publication of this paper.

Authors’ contributions
The author carried out the paper and drafted the manuscript. The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 August 2018 Accepted: 15 January 2019

References
1. Feltham, D.: Arctic sea ice reduction: evidence, models and impacts. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci.

(2015). https://doi.org/10.1098/rsta.2014.0171
2. Mernild, S.H., Mote, T.L., Liston, G.E.: Greenland ice sheet surface melt extent and trends: 1960–2010. J. Glaciol.

57(204), 621–627 (2011)
3. Stroeve, J.C., Markus, T., Boisvert, L., Miller, J., Barrett, A.: Changes in Arctic melt season and implications for sea ice loss.

Geophys. Res. Lett. 41(4), 1216–1225 (2014)
4. Alber, H.-D., Zhu, P.: Solutions to a model for interface motion by interface. Proc. R. Soc. Edinb. 138A, 923–955 (2008)

https://doi.org/10.1098/rsta.2014.0171


Tang Boundary Value Problems         (2019) 2019:24 Page 18 of 18

5. Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)
6. Leppäranta, M.: A review of analytical models of sea-ice growth. Atmos.-Ocean 31(1), 123–138 (1993)
7. Freita, J., Eicken, H.: Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field

experiments. J. Glaciol. 166, 349–358 (2003)
8. Mcguinness, M.J.: Modelling sea ice growth. ANZIAM J. 50, 306–319 (2009)
9. Kawano, Y., Ohashi, T.: A mesoscopic numerical study of sea ice crystal growth and texture development. Cold Reg.

Sci. Technol. 57, 39–48 (2009)
10. Notz, D., Grae Worster, M.: A one-dimensional enthalpy model of sea ice. Ann. Glaciol. 44, 123–128 (2006)


	Solutions to a phase-ﬁeld model of sea ice growth
	Abstract
	MSC
	Keywords

	Introduction
	A priori estimates
	Regularity
	Global attractor
	Global attractor
	Large-time behavior of the solutions

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


