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Abstract
In this paper, we consider a Sturm–Liouville problem with finite discontinuous points
inside an interval and with abstract linear functionals in the boundary and
transmission conditions. For such a problem, the properties such as isomorphism,
Fredholmness, and coerciveness with respect to the spectral parameter are
investigated.

Keywords: Sturm–Liouville problems; Transmission conditions; Isomorphism;
Coerciveness; Solvability

1 Introduction
We will discuss the following differential equation:

M(λ)y := –
(
py′)′(x) + λ2y(x) + Ty(x) = f (x), x ∈ I (1.1)

with nonclassical boundary conditions

Mky := a01y(nk )(ξ0) +
n∑

h=1

(
ahky(nk )(ξh–) + ãhky(nk )(ξh+)

)

+ a(n+1)ky(nk )(ξn+1) +
nk∑

j=1

χkjy(nk )(xkj) + Fky = fk , (1.2)

where k = 1, 2, . . . , 2(n + 1), ξ0 = –1, ξh ∈ (–1, 1), ξn+1 = 1, ξ0 < ξ1 < · · · < ξn+1; set I1 = [ξ0, ξ1),
It = (ξt–1, ξt), In+1 = (ξn, ξn+1], I =

⋃n+1
i=1 Ii, and Ji = (ξi–1, ξi), J =

⋃n+1
i=1 Ji (h = 1, 2, . . . , n; t =

2, 3, . . . , n); p(x) is a piecewise constant function, p(x) = pi for x ∈ Ii (i = 1, 2, . . . , n + 1); T is
a linear operator; a0k , ahk , ãhk , a(n+1)k , χkj, pi (j = 1, 2, . . . , nk) are complex coefficients, and
assume that pi �= 0, |a0k| +

∑n
h=1(|ahk| + |ãhk|) + |a(n+1)k| �= 0; λ is the complex parameter;

nk are integers; xkj ∈ J are internal points; Fk is a linear function in the space Lq[–1, 1]
(Lq[–1, 1] is a set of qth order integrable functions on [–1, 1]).

In recent years, the classical Sturm–Liouville problem has been generalized into vari-
ous types for its new importance in physical sciences and applied mathematics. For exam-
ple, theoretical investigations have become focused on the discontinuous Sturm–Liouville
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problems for their application in physics. The discontinuity of the coefficients of the equa-
tions in the Sturm–Liouville problems corresponds to the fact that the heterogeneous me-
dia consist of two different materials. Moreover, boundary value problems with disconti-
nuities arise in many physical problems such as heat and mass transfer, electrostatics, and
diffraction problem [1, 2]. It should be noted that some works on the spectral properties
and coercive solvability of boundary value problems in Sobolev spaces can be found in
[3, 4]. Some boundary value problems for differential equations with discontinuous co-
efficients were investigated by Rasulov [5]. Note that an abstract theory of the boundary
value problems with continuous coefficients and an eigenvalue parameter in the bound-
ary conditions have been constructed by Yakubov and Yakubov (see [4] and correspond-
ing bibliography). Many authors have been devoted to the study of discontinuous prob-
lems [6–22]. To deal with the discontinuity of the problem, transmission conditions are
imposed on the discontinuous points. There are also other terminologies such as point
interaction, interface condition, etc. [18, 23]. The properties of isomorphism, Fredholm-
ness, and coerciveness of Sturm–Liouville problems with one discontinuous point were
investigated by Mukhtarov and his coauthors in [6, 8, 9, 24].

In this paper, we investigate a Sturm–Liouville problem with discontinuities at finite
points and with abstract linear functionals in the boundary-transmission conditions. We
obtain the properties such as isomorphism, Fredholmness, and coerciveness of this prob-
lem.

2 Boundary value problems with nonhomogeneous transmission conditions
In this section, we consider the homogeneous differential equation

M0(λ)y := –
(
py′)′(x) + λ2y(x) = 0, x ∈ I (2.1)

with the nonclassical boundary conditions

Mk0y := a0ky(nk )(ξ0) +
n∑

h=1

(
ahky(nk )(ξh–) + ãhky(nk )(ξh+)

)
+ a(n+1)ky(nk )(ξn+1) = fk , (2.2)

where k = 1, 2, . . . , 2(n + 1). We shall use the notations

Γky :=
nk∑

j=1

χkjy(nk )(xkj), k = 1, 2, . . . , 2(n + 1),

w2i–1 := p–1/2
i , w2i := –p–1/2

i , i = 1, 2, . . . , n + 1,

α := min
1≤i≤n+1

{arg pi}, β := max
1≤i≤n+1

{arg pi},

ω =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

a01wn1
1 a11wn1

2 ã11wn1
3 · · · a(n+1)1wn1

2(n+1)
a02wn2

1 a12wn2
2 ã12wn2

3 · · · a(n+1)2wn2
2(n+1)

a03wn3
1 a13wn3

2 ã13wn3
3 · · · a(n+1)3wn3

2(n+1)
...

...
...

...
...

a0,2(n+1)w
n2(n+1)
1 a1,2(n+1)w

n2(n+1)
2 ã1,2(n+1)w

n2(n+1)
3 · · · a(n+1),2(n+1)w

n2(n+1)
2(n+1)

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦
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and

Ωε(α,β) :=
{
λ ∈C

∣∣
∣
1
2

(π + β + ε) < argλ <
1
2

(3π + α – ε)
}

for real ε > 0 sufficiently small.
Note that the direct sum of Sobolev spaces W m

q = W m
q (J1) ⊕ W m

q (J2) ⊕ · · ·⊕ W m
q (Jn) (for

an integer m ≥ 0 and real q > 1) is defined as a Banach space of complex-valued function
y = y(x) on I which belongs to W m

q (Ji) (i = 1, 2, . . . , (n + 1)) in intervals Ji respectively, with
the norm

‖y‖q,m :=
n+1∑

i=1

‖y‖W m
q (Ji).

Here, as usual, W m
q (a, b) is the Sobolev space, i.e., the Banach space consisting of all

measurable functions that have generalized derivatives up to mth order in the interval
(a, b) inclusive with the finite norm

‖y‖W m
q (a,b) :=

m∑

v=0

(∫ b

a

∣∣y(v)(x)
∣∣q dx

)1/q

.

Theorem 2.1 If ω �= 0, then for any ε > 0 there exists με > 0 such that, for all λ ∈ Ωε(α,β)
for which |λ| > με , problem (2.1)–(2.2) has a unique solution y(x,λ) ∈ W σ

q for arbitrary
σ ≥ max{2, max1≤k≤2(n+1){nk} + 1} and λ has the following coercive estimate:

σ∑


=1

‖y‖q,
 ≤ C(ε)
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|. (2.3)

Proof Let yk(x,λ) (k = 1, 2, . . . , 2(n + 1)) be the basic solution of equation (2.1), then yk(x,λ)
can be represented as

yk(x,λ) =

⎧
⎨

⎩
exp(wkλ(x – ξ̃k)), for x ∈ Ĩk ;

0, for x /∈ Ĩk ,
(2.4)

where Ĩ2i–1 = Ĩ2i = Ii for every i, k = 2i – 1, 2i (i = 1, 2, . . . , n + 1), ξ̃1 = ξ0, ξ̃2h = ξ̃2h+1 = ξi,
ξ̃2(n+1) = ξn+1 (h = 1, 2, . . . , n). It is clear that the general solution of (2.1) can be written as

y(x,λ) =
2(n+1)∑

k=1

Ckyk(x,λ). (2.5)

Substituting equation (2.5) into boundary-transmission conditions (2.2), we obtain a lin-
ear system with respect to Ck (k = 1, 2, . . . , 2(n + 1))

(w1λ)nk
(
a0k + a1kew1λ(ξ1–ξ0))C1 + (w2λ)nk

(
a1k + a0kew2λ(ξ0–ξ1))C2

+
n+1∑

t=2

[
(w2t–1λ)nk

(
ã(t–1)k + atkew2t–1λ(ξt–ξt–1))C2t–1

+ (w2tλ)nk
(
atk + ã(t–1)kew2tλ(ξt–1–ξt ))C2t

]
= fk , (2.6)
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where k = 1, 2, . . . , 2(n + 1). It follows from λ ∈ Ωε(α,β) that

1
2

(π + ε) < arg(wkλ) <
1
2

(3π – ε), k = 1, 3, . . . , 2n + 1;

–
1
2

(π – ε) < arg(wkλ) <
1
2

(π – ε), k = 2, 4, . . . , 2(n + 1).

Therefore, for this λ and ε > 0 (sufficiently small), we obtain

(–1)k+1 Re(wkλ) < –|λ||wk| sin
ε

2
, k = 1, 2, . . . , 2(n + 1).

Thus, the determinant of system (2.6) has the form

A(λ) = λñ(ω + θ (λ)
)
,

where ñ = n1 + n2 + · · · + n2(n+1),

θ (λ) = eκ

⎡

⎢⎢⎢
⎢
⎣

a11wn1
1 a01wn1

2 · · · ãn1wn1
2(n+1)

a12wn2
1 a02wn2

2 · · · ãn2wn2
2(n+1)

...
...

...
...

a1,2(n+1)w
n2(n+1)
1 a0,2(n+1)w

n2(n+1)
2 · · · ãn,2(n+1)w

n2(n+1)
2(n+1)

⎤

⎥⎥⎥
⎥
⎦

,

κ = λ
∑n+1

i=1 (ξi – ξi–1)(w2i–1 – w2i) and θ (λ) → 0 as |λ| → ∞ in the angle Ωε(α,β). Since
ω �= 0, there exists με > 0 such that, for all λ ∈ Ωε(α,β) and |λ| > με , we have A(λ) �= 0. So,
for these λ, the unique solution for the system of linear homogeneous equations (2.6) has
the following representation:

Ck(λ) =
1

A(λ)

2(n+1)∑

η=1

Aηk(λ)fη, k = 1, 2, . . . , 2(n + 1),

where Aηk(λ) is an algebraic cofactor of (η, k)th element of the determinant A(λ). It is
obvious that each of the determinants Aηk(λ) can be represented as

Aηk(λ) = λñ–nη
(
ωηk + θηk(λ)

)
,

where ωηk ∈ C and θ (λ) → 0 as |λ| → ∞ in the angle Ωε(α,β). Hence, we have

Ck(λ) =
2(n+1)∑

η=1

λ–nη
ωηk + θηk(λ)

ω + θ (λ)
fη, k = 1, 2, . . . , 2(n + 1).

So, the solution of (2.1)–(2.2) has the following representation:

y(x,λ) =
2(n+1)∑

k=1

2(n+1)∑

η=1

λ–nη
ωηk + θηk(λ)

ω + θ (λ)
fηyk(x,λ).
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From the expression of y(x,λ) we obtain that, for each integer τ ≥ 0 and λ ∈ Ωε(α,β),
|λ| → ∞, the estimate

∥
∥y(τ )∥∥

Lq(–1,1) ≤ C
2(n+1)∑

η=1

(

|λ|τ–nη |fη|
2(n+1)∑

k=1

∥
∥yk(x,λ)

∥
∥

Lq(Ĩk )

)

(2.7)

is valid. Further, the inequalities

∥
∥y2i–1(x,λ)

∥
∥q

Lq(Ĩ2i–1) =
∫ ξi

ξi–1

eq Re(w2i–1λ)(x–ξi–1) dx

≤
∫ ξi

ξi–1

e–q|w2i–1||λ|(x–ξi–1) sin ε
2 dx

= t=|λ|(x–ξi–1)
∫ |λ|(ξi–ξi–1)

0
e–q|w2i–1|(sin ε

2 )td
(

t
|λ| + ξi–1

)

≤ |λ|–1
∫ +∞

0
e–q|w2i–1|(sin ε

2 )tdt

= |λ|–1
(

q|w2i–1| sin
ε

2

)–1

= C2i–1(ε)|λ|–1, (2.8)

∥∥y2i(x,λ)
∥∥q

Lq(Ĩ2i)
=

∫ ξi

ξi–1

eq Re(w2iλ)(x–ξi) dx

≤
∫ ξi

ξi–1

e–q|w2i||λ|(ξi–x) sin ε
2 dx

= t=|λ|(ξi–x)
∫ 0

|λ|(ξi–ξi–1)
e–q|w2i|(sin ε

2 )td
(

ξi –
t

|λ|
)

≤ |λ|–1
∫ +∞

0
e–q|w2i|(sin ε

2 )tdt

= |λ|–1
(

q|w2i| sin
ε

2

)–1

= C2i(ε)|λ|–1, (2.9)

where i = 1, 2, . . . , (n + 1), hold by (2.4). Substituting (2.8), (2.9) into (2.7) yields

∥∥y(τ )(x)
∥∥

Lq(–1,1) ≤ C(ε)
2(n+1)∑

η=1

|λ|τ–nη–q–1 |fη|,

which in turn gives us the needed estimation (2.3). The proof is completed. �

3 Fredholm property for multi-point boundary value problem with functional
conditions

Let M̃ be the linear operator corresponding to problem (1.1)–(1.2). Suppose that σ ≥
max{2, max1≤k≤2(n+1){nk} + 1} and define M̃ from W σ

q into W σ–2
q ⊕C

2(n+1) by the rule

M̃y =
(
M(λ), M1y, M2y, . . . , M2(n+1)y

)
.
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Theorem 3.1 Assume that the following conditions hold:
(1) For x ∈ Ii, pi �= 0;
(2) Fk (k = 1, 2, . . . , 2(n + 1)) are continuous functionals in W σ

q ;
(3) The operator T from W σ

q into W σ–2
q is compact.

Then M̃ is bounded and Fredholm operator.

Proof The operator M̃ can be represented as

M̃0y =
(
M0(λ)y, M10y, M20y, . . . , M2(n+1)0y

)
,

M̃1y = (Ty,Γ1y + F1y,Γ2y + F2y, . . . ,Γ2(n+1)y + F2(n+1)y).

The operator M̃0 is an isomorphism from W σ
q onto W σ–2

q ⊕C2(n+1) by Theorem 2.1. Fur-
thermore, it follows from (2) and (3) that the operator M̃1 acts compactly from W σ

q onto
W σ–2

q ⊕C
2(n+1).

Therefore, by the definition of isomorphism and Theorem 1.2.8 in [3] (or [25, p. 238]),
the operator M̃ = M̃0 + M̃1 is Fredholm. Moreover, it is obvious that the operator M̃ is
bounded. So, the desired results are obtained. �

4 Isomorphism and coerciveness of the principal part of the problem
We consider the principle part of main problem (1.1)–(1.2) without internal points, that
is,

M0(λ)y := –
(
py′)′(x) + λ2y(x) = f (x), x ∈ I, (4.1)

Mk0y := a0ky(nk )(ξ0) +
n∑

h=1

(
ahky(nk )(ξh–) + ãhky(nk )(ξh+)

)

+ a(n+1)ky(nk )(ξn+1) = fk (4.2)

for k = 1, 2, . . . , 2(n + 1). The corresponding operator is

M̂0y :=
(
M0(λ)y, M10y, M20y, . . . , M2(n+1)0y

)
.

Theorem 4.1 Let the condition ω �= 0 and σ ≥ max{2, max1≤k≤2(n+1){nk} + 1} be satisfied.
Then, for each ε > 0, there exists με > 0 such that, for all complex numbers λ ∈ Ωε(α,β),
|λ| > με , the operator M̂0 from W σ

q onto W σ–2
q ⊕ C

2(n+1) is an isomorphism, and for these
λ the inequality

σ∑


=0

|λ|σ–
‖y‖q,
 ≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|
)

(4.3)

holds for the solution of (4.1)–(4.2).

Proof Obviously, the linear operator M̂0 acts continuously from the space W σ
q into

W σ–2
q ⊕ C

2(n+1). Let us prove that, for any (f (x), f1, f2, . . . , f2(n+1)) ∈ W σ–2
q ⊕ C

2(n+1) and fi,
problem (4.1)–(4.2) has a unique solution belonging to W σ

q . Denote by fi(x) the restric-
tion of f (x) on the interval Ji. Let f̃i(x) ∈ W σ–2

q (R) be an extension of fi(x) ∈ W σ–2
q (Ji). By
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Lemma 1.7.6 in [3] there exists an extension operator Tifi := f̃i from W σ–2
q into W σ–2

q (R)
is bounded for i = 1, 2, . . . , n + 1, where as usual R = (–∞, +∞). We shall find the solu-
tion y(x,λ) of problem (4.1)–(4.2) in the form of y(x,λ) = y1(x,λ) + y2(x,λ), where y1(x,λ) =
(y1i(x,λ)), the function y1i(x,λ) is the restriction of the solution ỹ1i(x,λ) on Ji of the follow-
ing equation:

–
(
piỹ′)′(x) + λ2ỹ(x) = f̃i(x), x ∈R

for i = 1, 2, . . . , n + 1.
By virtue of Theorem 3.2.1 in [3], we get that this equation has a unique solution ỹ1i =

ỹ1i(x,λ) ∈ W σ
q (R), and for y1i, the estimate

σ∑


=0

|λ|σ–
‖y1i‖W

q (Ji) ≤ C(ε)

(‖f ‖Wσ–2
q (Ji) + |λ|σ–2‖f ‖Lq(Ji)

)
, (4.4)

where i = 1, 2, . . . , n + 1, holds for all λ ∈ Ωε(α,β) sufficiently large in modulus.
Hence, the function

y1(x,λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y11(x,λ), for x ∈ J1;

y12(x,λ), for x ∈ J2;
...

y1,n+1(x,λ), for x ∈ Jn+1,

(4.5)

satisfies equation (4.1), and from (4.4) the following estimate

σ∑


=0

|λ|σ–
‖y1‖q,
 ≤ C(ε)
(‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0

)
(4.6)

holds for all λ ∈ Ωε(α,β) sufficiently large in modulus. In light of solution (4.5), consider
the following boundary value problem:

–
(
py′)′(x) – λ2y(x) = 0, x ∈ J ,

Mk0y = fk – Mk0y1(x,λ), k = 1, 2, . . . , 2(n + 1).

By Theorem 2.1, this problem has a unique solution y2 = y2(x,λ) ∈ W σ
q for all complex

numbers λ ∈ Ωε(α,β) sufficiently large in modulus, and for these λ the estimate

σ∑


=0

|λ|σ–
‖y2‖q,
 ≤ C(ε)
2(n+1)∑

k=1

|λ|σ–nk –q–1(|fk| + |Mk0y1|
)

(4.7)

is valid. Applying Theorem 1.7.7/2 in [3] and (2.3), one has that, for all λ ∈ Ωε(α,β) and
σ ≥ max{2, max1≤k≤2(n+1){nk} + 1}, the following estimates hold:

|λ|σ–nk –q–1 |Mk0y1| ≤ C|λ|σ–nk –q–1
n+1∑

i=1

‖y1‖Cnk (Ii)

≤ C
n+1∑

i=1

(|λ|σ ‖y1i‖Lq(Ji) + ‖y1i‖Wσ
q (Ji)

)
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≤ C
(|λ|σ ‖y1‖q,0 + ‖y1‖q,σ

)

≤ C(ε)
(|λ|σ–2‖f ‖q,0 + ‖f ‖q,σ–2

)
. (4.8)

Via (4.7) and (4.8) we have the inequality

σ∑


=0

|λ|σ–
‖y2‖q,
 ≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|
)

. (4.9)

It is easy to see that y(x,λ) = y1(x,λ) + y2(x,λ) is the solution of problem (4.1)–(4.2).
Taking into account estimates (4.6) and (4.9), we see that for this solution the needed
estimation (4.3) is valid. Moreover, from estimate (4.3) the uniqueness of the solution fol-
lows. On the other hand, by Theorem 3.1 the operator M̂0 is Fredholm from W σ

q onto
W σ–2

q ⊕ C
2(n+1). Now, an isomorphism of this operator follows from the fact that it is a

Fredholm and one-to-one operator. So, the proof of the theorem is completed. �

5 Solvability and coerciveness of the main problem with nonclassical
boundary conditions

Now, we will study the main problem (1.1)–(1.2).

Theorem 5.1 Assume that the following conditions hold:
(1) ω �= 0 and σ ≥ max{2, max1≤k≤2(n+1){nk} + 1};
(2) The operator T from W σ

q into W σ–2
q is compact, and for all ε > 0

‖Ty‖q,0 ≤ ε‖y‖q,2 + C(ε)‖y‖q,0, y ∈ W 2
q ;

‖Ty‖q,σ–2 ≤ ε‖y‖q,σ + C(ε)‖y‖q,0, y ∈ W σ
q ;

(3) Functionals Fk in W nk
q (k = 1, 2, . . . , 2(n + 1)) are continuous.

Then, for each ε > 0, there exists με > 0 such that, for all λ ∈ Ωε(α,β) and |λ| > με , the
operator

M̂y =
(
M(λ)y, M1y, M2y, . . . , M2(n+1)y

)

is an isomorphism from W σ
q onto W σ–2

q ⊕ C
2(n+1), and for these λ we have the following

coercive estimate for the solution of problem (1.1)–(1.2):

σ∑


=0

|λ|σ–
‖y‖q,
 ≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|
)

, (5.1)

where C(ε) is a constant which depends only on ε.

Proof Let (f (x), f1, f2, . . . , f2(n+1)) be any element of W σ–2
q ⊕C

2(n+1). Suppose that there ex-
ists a solution y = y(x,λ) of problem (1.1)–(1.2) corresponding to this element. Then this
solution satisfies the equalities

M0(λ)y := –
(
py′)′ + λ2y = M(λ)y – Ty, (5.2)



Bai et al. Boundary Value Problems         (2019) 2019:17 Page 9 of 12

Mk0y := a0ky(nk )(ξ0) +
n∑

h=1

(
ahkynk (ξh–) + ãhky(nk )(ξh+)

)

+ a(n+1)ky(nk )(ξn+1) = Mky – Γky – Fky, (5.3)

where k = 1, 2, . . . , 2(n + 1). By Theorem 4.1 we have that for this solution the following a
priori estimates hold:

σ∑


=0

|λ|σ–
‖y‖q,
 ≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|
)

= C(ε)

(
∥
∥M(λ)y – Ty

∥
∥

q,σ–2 + |λ|σ–2∥∥M(λ)y – Ty
∥
∥

q,0

+
2(n+1)∑

k=1

|λ|σ–nk –q–1 |Mky – Γky – Fky|
)

≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 + ‖Ty‖q,σ–2 + |λ|σ–2‖Ty‖q,0

+
2(n+1)∑

k=1

|λ|σ–nk –q–1(|fk| + |Γky| + |Fky|)
)

. (5.4)

Let ζ be any real number satisfying

0 < ζ

< min

{
ξi – ξi–1

2
, |ξi – xkj|, |ξ0 – xkj| :

i = 1, 2, . . . , n + 1; k = 1, 2, . . . , 2(n + 1); j = 1, 2, . . . , nk

}
.

Using the same method in [15, Sect. 2.8.3], it is not difficult to construct a function φ(x) ∈
C

∞
0 (R) such that

φ(x) =

⎧
⎨

⎩
1, x ∈ ⋃n+1

i=1 [ξi–1 + ζ , ξi – ζ ];

0, x ∈ ⋃n+1
i=1 [ξ0, ξ0 + ζ

2 ] ∪ (
⋃n

i=1[ξi – ζ

2 , ξi + ζ

2 ]) ∪ [ξn+1 – ζ

2 , ξn+1]

and 0 ≤ φ(x) ≤ 1 for all x ∈ [–1, 1]. It is obvious that

|Γky| ≤ C
∥∥y(nk )∥∥

C(
⋃n+1

i=1 [ξi–1+ζ ,ξi–ζ ]) ≤ C
∥∥(φy)(nk )∥∥

C[–1,1]. (5.5)

By Theorem 3.10.4 in [15], for y ∈ W σ
q , the estimate

|λ|σ–nk –q–1∥∥y(nk )∥∥
C[–1,1] ≤ C

(‖y‖q,σ + |λ|σ ‖y‖q,0
)

(5.6)
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holds. By Theorem 4.1, from (5.4), (5.5) it follows that, for all λ ∈ Ωε(α,β) sufficiently large
in modulus, the following estimates hold:

|λ|σ–nk –q–1 |Γky| ≤ C|λ|σ–nk –q–1∥∥(φy)(nk )∥∥
C[–1,1]

≤ C
(‖φy‖q,σ + |λ|σ‖φy‖q,0

)

≤ C(ε)
(∥∥M0(λ)(φy)

∥∥
q,σ–2 + |λ|σ–2∥∥M0(λ)(φy)

∥∥
q,0

)

≤ C(ε)

(
∥∥M0(λ)y

∥∥
q,σ–2 + |λ|σ–2∥∥M0(λ)y

∥∥
q,0 +

σ–1∑


=0

|λ|σ–1–
‖y‖q,


)

≤ C(ε)

(
∥∥M(λ)y

∥∥
q,σ–2 + |λ|σ–2∥∥M(λ)y

∥∥
q,0 + ‖Ty‖q,σ–2

+ |λ|σ–2‖Ty‖q,0 +
σ–1∑


=0

|λ|σ–1–
‖y‖q,


)

≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 + ‖Ty‖q,σ–2

+ |λ|σ–2‖Ty‖q,0 +
σ–1∑


=0

|λ|σ–1–
‖y‖q,


)

. (5.7)

By virtue of Theorem 1.7.7/2(b) and Remark 1.1.7/5 in [3], the following inequality

‖y‖q,
 ≤ δ‖y‖q,
+1 + C(δ)‖y‖q,0

holds for any δ > 0. Then, by virtue of (5.7),

|λ|σ–nk –q–1‖Γky‖ ≤ C(ε)

(
∥∥M(λ)y

∥∥
q,σ–2 + |λ|σ–2∥∥M(λ)y

∥∥
q,0 + ‖Ty‖q,σ–2

+ |λ|σ–2‖Ty‖q,0 +
σ–1∑


=0

|λ|σ–1–

(
δ‖y‖q,
+1 + C(δ)‖y‖q,0

)
)

≤ C(ε)
(∥∥M(λ)y

∥∥
q,σ–2 + |λ|σ–2∥∥M(λ)y

∥∥
q,0 + ‖Ty‖q,σ–2

)

+ |λ|σ–2‖Ty‖q,0 + C(ε)
(
δ + C(δ)|λ|–1)

σ∑


=0

|λ|σ–
‖y‖q,
. (5.8)

From conditions (2), (3), inequality (5.8), and Theorem 1.7.7/2 in [3], for any δ > 0, we have

‖Ty‖q,σ–2 + |λ|σ–2‖Ty‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1(|Γky| + |Fky|)

≤ C(ε)
(∥∥M(λ)y

∥∥
q,σ–2 + |λ|σ–2∥∥M(λ)y

∥∥
q,0

)
+ δ

(‖y‖q,σ + |λ|σ–2‖y‖q,2
)

+ C(δ)|λ|σ–2‖y‖q,0 + C(ε)
(
δ + C(δ)|λ|–1)

σ∑


=0

|λ|σ–
‖y‖q,


+
2(n+1)∑

k=1

|λ|σ–nk –q–1‖y‖q,nk
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≤ C(ε)
(‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0

)

+ C(ε)
(
δ + C(δ)|λ|–q–1) σ∑


=0

|λ|σ–
‖y‖q,
. (5.9)

Substituting (5.9) into (5.4) yields

σ∑


=0

|λ|σ–
‖y‖q,
 ≤ C(ε)

(

‖f ‖q,σ–2 + |λ|σ–2‖f ‖q,0 +
2(n+1)∑

k=1

|λ|σ–nk –q–1 |fk|

+
(
δ + C(δ)|λ|–q–1) σ∑


=0

|λ|σ–
‖y‖q,


)

.

It is obvious that for fixed ε > 0 it is possible to choose δ > 0 so small and |λ| so large that
C(ε)(δ + C(δ)|λ|–q–1 ) < 1. Hence, for λ ∈ Ωε(w, w) sufficiently large in modulus, we obtain
a priori estimate (5.1).

It follows from estimate (5.1) that we can obtain the uniqueness property of solution
of problem (1.1)–(1.2), i.e., the operator M̂ is a one-to-one operator. Moreover, by Theo-
rem 3.1 the operator M̂ from W σ

q onto W σ–2
q ⊕C

2(n+1) is Fredholm.
In view of condition (2), the operator T from W σ

q into W σ–2
q ⊕C

2(n+1) is compact. From
above, we get that the operator M̂ is an isomorphism from W σ

q onto W σ–2
q ⊕C2(n+1). The

proof is completed. �

6 Conclusion
Sturm–Liouville problem with discontinuous points inside an interval has attracted exten-
sive attention for its wide application in physical and mathematical fields. In this paper, we
go into Sturm–Liouville problem with finite discontinuous points, and for such a prob-
lem, we establish the properties such as isomorphism, Fredholmness, and coerciveness
with respect to the spectral parameter. These results are of both theoretical and practical
significance.
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