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ematicians, and we recommend to read the study of Riemann, Liouville, Caputo, and other
famous mathematicians. Fractional calculus plays an important role in various fields such
as electricity, biology, economics, signal and image processing. From decades ago, so many
researchers studied in this area and obtained theoretical results (see, for example, [4–6,
23, 51] and the references therein). Fractional calculus is also important in the regular-
ity theory of solutions to partial differential equations. For example, in 2018, Scapellato
[43] studied the second-order divergence-form operators L with coefficients satisfying
the vanishing mean oscillation property, and then presented some regularity results con-
cerning with the divergence form elliptic equation Lu = div f and applying the fractional
integral operators (see also [19, 38, 49]).

To know more information about the pioneers in fractional differential operators,
Lacroix [25] observed that dm

dxm xn = n!
(n–m)! x

n–m for n ∈ N, m ∈ N ∪ {0}, n ≥ m. He write
the latter derivative in terms of the Γ -function in the form dm

dxm xn = Γ (n+1)
Γ (n–m+1) x

n–m and then
set m = 1

2 . About 50 years later, Grünwald [18] defined the differentiation dq

[d(x–a)]q based
on the infinite series where q is arbitrary. The fractional integral of an arbitrary order is
a generalization of the ordinary nth order integral (n ∈ N). One of the most fundamen-
tal definitions of fractional integral of arbitrary order is the Riemann–Liouville fractional
derivative operator which will be defined further on. This operator has novel applications
in the modeling and study the neural networks [50], electrical conductivity and tempera-
ture control [44], etc., see also [8, 16, 40, 45].

In general, the classical instantaneous impulses cannot describe certain dynamics of
evolution processes. For example, when we consider the hemodynamic equilibrium of a
person, the introduction of the drugs in the bloodstream and the consequent absorption
for the body are gradual and continuous processes. In fact, the above situation can be
characterized by a new case of impulsive action, which starts at an arbitrary fixed point
and stays active on a finite time interval. It is remarkable that Hernández and O’Regan
[22] and Pierri et al. [36] introduced some initial value problems for a new class of non-
instantaneous impulsive differential equations to describe some certain dynamic change
of evolution processes in the pharmacotherapy (as therapy using pharmaceutical drugs).
Very recently, Pierri et al. [35] studied the existence of global solutions for a class of im-
pulsive abstract differential equations with non-instantaneous impulses. As a part of their
investigation, the existence of mild solutions on R+ and the existence of S-asymptotically
ω-periodic mild solutions based on the Hausdorff measure of noncompactness have been
established. We remark that the measure of noncompactness has been recently utilized
in several papers (for example, see [2, 27]). Both integer- or fractional-order differential
equations with impulses have been studied previously. One can see the monographs [1, 3,
7, 10, 11, 14, 15, 24, 26, 41, 42, 47, 48], and the references therein.

In the next section, we introduce some helpful preliminaries. In Sect. 3, we establish
an existence result of mild solutions for problem (1.1) by considering an integral equa-
tion which is given in terms of probability density and semigroup. The methods of the
functional analysis concerning a C0-semigroup of operators and some fixed point theo-
rems are applied effectively. At the end of this section we give also an example to illustrate
the application of the abstract result. Finally, in Sect. 4, we focus on the existence of S-
asymptotically ω-periodic mild solutions.
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2 Notations and auxiliary facts
This section is devoted to collecting a few auxiliary facts concerning mainly measures
of noncompactness which are used throughout this paper (cf. [9]). Denote by B(x; r) the
closed ball centered at x and with radius r. We will write Br to denote the ball B(θ ; r) where
θ is the zero element of given real Banach space (E; ‖ · ‖). Let Lp([a, b]; E) be the space of
E-valued Bochner functions on [a, b] with the norm ‖x‖[a,b] = (

� b
a ‖x(s)‖p ds)

1
p . Suppose

C([a, b]; E) stands for the space of continuous functions from [a, b] into E.
If X is a subset of E then symbols X and Conv X denote the closure and convex closure of

X, respectively. The family of all nonempty and bounded subsets of E will be indicated by
ME while its subfamily consisting of all relatively compact sets is denoted byNE . Following
[9], we accept the following definition of a regular measure of noncompactness.

Definition 2.1 ([9]) A mapping μ : ME −→ R
+ is said to be a regular measure of noncom-

pactness in E if it satisfies the following conditions:

(i) μ(X) = 0 ⇐⇒ X ∈ NE .
(ii) X ⊂ Y ⇒ μ(X) ≤ μ(Y ).

(iii) μ(Conv X) = μ(X).
(iv) For all λ ∈ [0, 1] and X, Y ∈ ME ,

μ
�
λX + (1 – λ)Y

�
≤ λμ(X) + (1 – λ)μ(Y ).

(v) μ(λX) = |λ|μ(X) for λ ∈ R.
(vi) μ(X + Y ) ≤ μ(X) + μ(Y ).

(vii) μ(X ∪ Y ) = max{μ(X),μ(Y )}.
(viii) If (Xn)n∈N is a sequence of closed sets from ME such that

Xn+1 ⊂ Xn for all n = 1, 2, . . . and lim
n→∞

μ(Xn) = 0,

then the intersection set

X∞ =
∞	

n=1

Xn is nonempty.

For a bounded, closed, and convex subset C ⊆ E, the mapping T : C ⊆ E → E is said to be
a μ-contraction map, if there exists a positive constant k < 1 such that μ(T(W )) ≤ kμ(W ),
and is said to be μ-condensing map if μ(T(W )) < μ(W ) for any bounded closed subset
W ⊆ C.

For our purposes, we will need the following theorem which was established by Darbo
[13] in 1955 for μ-contractions, and by Sadovskii [39] in 1967 for μ-condensing map-
pings.

Theorem 2.2 (Darbo–Sadovskii) Let C be a nonempty, bounded, closed, and convex subset
of a Banach space E and let the continuous mapping T : C ⊆ E → E be a μ-contraction
map. Then T has at least one fixed point in C.
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One of the most frequently used regular measures are the so-called Hausdorff and Ku-
ratowski measures of noncompactness (see [9]).

In what follows, we will work in the space C([a, b]; E) and consider the measure of non-
compactness on it similar to that for C(R+; E) introduced in [30]. In order to formulate it,
for I = [a, b] with a ≥ 0 let r : I → (0, ∞) be a given function and

Mr =


X ⊂ C(I; E) : X 
= ∅,

��x(t)
�� ≤ r(t) for x ∈ X, t ∈ I

�
.

Denote by Nr the family of all relatively compact members of Mr .
Fix X ∈ Mr , then for x ∈ X and ε > 0, denote by ωI(x, ε) the modulus of continuity of the

function x on the interval I as follows:

ωI(x, ε) =

��x(t) – x(s)

�� : t, s ∈ I, |t – s| ≤ ε
�

.

Further, we define

ωI(X, ε) = sup


ωI(x, ε) : x ∈ X

�
, ωI

0(X) = lim
ε→0+

ωI(X, ε).

We observe that functions from the set X ∈ Mr are equicontinuous on any compact inter-
val of I if and only if ωI

0(X) = 0 for arbitrary compact interval I (see also [9]).
Suppose μ is the regular measure of noncompactness in E and let us put μI(X) =

sup{μ(X(t)) : t ∈ I}. We define the function γR on the family Mr by

γR(X) = sup



1

R(b – a)
�
ωI

0(X) + μI(X)
�

: for any interval I = [a, b]
�

, (2.1)

where R : R
+ → (0, ∞) is a given function such that r(t) ≤ R(t) for t ≥ 0.

Olszowy et al. [32] proved the following basic properties of the quantity γR:
(i) The family kerγR := {X ∈ Mr : γR(X) = 0} = Nr .

(ii) γR(Conv(X)) = γR(X).
(iii) If (Xn)n∈N is a sequence of closed sets from Mr such that

Xn+1 ⊂ Xn for all n = 1, 2, . . . and lim
n→∞

γR(Xn) = 0,

then the intersection set

X∞ =
∞	

n=1

Xn is nonempty.

For X ∈ Mr , let us denote
� t

0 X(τ ) dτ = {
� t

0 x(τ ) dτ , x ∈ X}.

Lemma 2.3 ([31]) If all functions belonging to X are equicontinuous on any compact subset
of R

+ then

μ

�� t

0
X(τ ) dτ

�
≤

� t

0
μ

�
X(τ )

�
dτ .
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Lemma 2.4 ([9]) If μ is a regular measure of noncompactness then

��μ(X) – μ(Y )
�� ≤ μ

�
B(0, 1)

�
dH (X, Y )

for any bounded subsets X, Y ∈ E, where dH is the Hausdorff distance between X and Y .

Lemma 2.5 ([9]) Suppose that x ≥ 1, then

�
x
e

�x√
2πx

�
1 +

1
12x

�
< Γ (1 + x) <

�
x
e

�x√
2πx

�
1 +

1
12x – 0.5

�
.

Similar to Cauchy’s formula, we have the following lemma which can be easily proved
by changing the integral order and some calculations.

Lemma 2.6 If f : R
+ → R is a continuous function and q > 0, then

� t

0
(t – s1)q–1

� s1

0
(s1 – s2)q–1 · · ·

� sn

0
(sn – sn+1)q–1f (sn+1) dsn+1 dsn · · · ds1

=
Γ n+1(q)

Γ ((n + 1)q)

� t

0
(t – s)(n+1)q–1f (s) ds, for t ≥ 0.

Theorem 2.7 ([12], Tikhonov fixed-point theorem) Let V be a locally convex topologi-
cal vector space. For any nonempty compact convex X in V , if the function F : X → X is
continuous, then F has a fixed point in X.

For the convenience of the reader, we recall the following generalized forms of classic
concepts from [23].

Definition 2.8 ([48]) The Caputo derivative of order q for a function f : [a, b] → R can
be written as

CDq
a,tf (t) = LDq

a,t

�

f (t) –
n–1�

k=0

tk

k!
f (k)(a)

�

, t > a, n – 1 < q < n.

Here, the function f can be discontinuous and LDq
a,t is understood by the following defi-

nition:

Definition 2.9 ([48]) For a function f given on the interval [a, b], the qth Riemann–
Liouville fractional order derivative of f is defined by

L�Dq
a,t f

�
(t) =

1
Γ (n – q)

dn

dtn

� t

a
(t – s)n–q–1f (s) ds,

where Γ is the gamma function, n = [q] + 1 and [q] denotes the integer part of q.

Definition 2.10 ([48]) The fractional order integral of the function f ∈ L1([a, b], R) with
order q ∈ R

+ is defined by

Iq
a,t f (t) =

1
Γ (q)

� t

a

f (s)
(t – s)1–q ds, t > a.



Saadati et al. Boundary Value Problems         (2019) 2019:19 Page 6 of 23

We also remark that if f is an abstract function with values in E, then integrals which
appear in the previous definitions are taken in Bochner’s sense.

3 Existence of mild solutions
In this section, we deal with establishing the existence results via the measure of noncom-
pactness as introduced before. To treat with the impulsive action, we consider the vector
space PC(E) which is formed by all functions x : [0, ∞) → E such that x(·) is continuous
at t 
= ti, x(t–

i ) = x(ti) and x(t+
i ) exists for all i ∈ N. For x ∈ PC(E) and i ∈ N0, we denote by

x̃i the function x̃i ∈ C([ti, ti+1]; E) given by

x̃i =

�
�

�
x(t), t ∈ (ti, ti+1],

x(t+
i ), t = ti.

Inspired by the result of Zhou et al. [51], we adopt the following definition of mild solutions
of problem (1.1).

Definition 3.1 A function x ∈ PC(E) is called a mild solution of problem (1.1) if x(0) = x0,
x(t) = gi(t, Ni(t)(yi)), for all t ∈ (ti, si] and each i ∈ N, and x satisfies

x(t) = S(t)x0 +
� t

0
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds, t ∈ [0, t1],

x(t) = S(t – si)x(si) +
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds, t ∈ [si, ti+1], i ∈ N,

where

S(t) =
� ∞

0
ξq(θ )T

�
tqθ

�
dθ ,

T(t) = q
� ∞

0
θξq(θ )T

�
tqθ

�
dθ ,

ξq(θ ) =
1
q
θ

–1– 1
q Ψq

�
θ

–1
q
�
,

Ψq(θ ) =
1
π

∞�

n=1

(–1)n–1θ–qn–1 Γ (nq + 1)
n!

sin(nπq), θ ∈ R
+.

(3.1)

To show the validity of Definition 3.1, we remark that problem (1.1) can be formulated
in the equivalent integral equation as form

x(t) = x(si) +
� t

si
(t – s)q–1�Ax(s) + f

�
s, x(s)

��
ds, t ∈ [si, ti+1], i ∈ N ∪ {0}.

Following the technique of Laplace transform applied in [51], we easily see that

v(λ) =
x(si)
λ

+
1
λq Av(λ) +

1
λq w(λ)

= λq–1�λqI – A
�–1x(si) +

�
λqI – A

�–1w(λ)

= λq–1
� ∞

0
e–sλq

T(s)x(si) ds +
� ∞

0
e–sλq

T(s)w(λ) ds, (3.2)
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where I is the identity operator defined on E and v, w are the Laplace transforms given by

v(λ) =
� ∞

0
e–λsx(s) ds, w(λ) =

� ∞

0
e–λsf

�
s, x(s)

�
ds.

Now, since the Laplace transform of one-sided stable probability density Ψq given by (3.1)
is equal to e–λq for q ∈ (0, 1) (see [28, 51]), we find

v(λ) =
� ∞

0
e–λt

�� ∞

0
Ψq(θ )T

�
(t – si)q

θq

�
x(si) dθ

+ q
� t

si

� ∞

0
Ψq(θ )T

�
(t – s)q

θq

�
f
�
s, x(s)

� (t – s)q–1

θq dθ ds
�

dt,

which for the inverse Laplace transform implies that

x(t) =
� ∞

0
Ψq(θ )T

�
(t – si)q

θq

�
x(si) dθ

+ q
� t

si

� ∞

0
Ψq(θ )T

�
(t – s)q

θq

�
f
�
s, x(s)

� (t – s)q–1

θq dθ ds

=
� ∞

0
ξq(θ )T(t – si)qθ )x(si) dθ

+ q
� t

si

� ∞

0
θ (t – s)q–1ξq(θ )T

�
(t – s)qθ

�
f
�
s, x(s)

�
dθ ds

= S(t – si)x(si) +
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds,

where ξq,S andT are given in Definition 3.1. In the following, we use the symbol yi defined
by

yi(t) =

�
�

�
x(t), t ∈ (ti, si],

x(t+
i ), t = ti.

To state and prove our main results for the existence of mild solutions of problem (1.1), we
need the hypotheses as below. In what follows we use the notations J =

�∞
i=0[si, ti+1] and

J ′ =
�∞

i=1[ti, si].
(H0) Suppose that the C0-semigroup {T(t)}t≥0 generated by A is compact and there exists

a constant M > 0 such that M = sup{‖T(t)‖; t ∈ R
+} < ∞.

Remark 3.2 Obviously, one can see that under condition (H0) for any fixed t ≥ 0, S(t) and
T(t) defined as above are linear and bounded operators (see also [46]), i.e., for any x ∈ E,

��S(t)x
�� ≤ M‖x‖,

��T(t)x
�� ≤

M
Γ (q)

‖x‖.

Moreover, using the compactness of the semigroup {T(t)}t≥0, we obtain the fact that such
operators are continuous in the uniform operator topology for t > 0.
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(H1) There exist constants Lgi such that ‖gi(t, x) – gi(t, y)‖ ≤ Lgi‖x – y‖ for all x, y ∈ E,
t ∈ [ti, si] and each i ∈ N.

(H2) The function f : R
+ × E → E satisfies the Carathéodory type conditions, i.e., f (t, ·) :

E → E is continuous for a.e. t ∈ J and f (·, x) : J → E is strongly measurable for each
x ∈ E.

(H3) There exist locally L
1
p -integrable function h and function m both from J into R

+

(0 < p < q) and a non-decreasing function Φi ∈ C(R+, R+), i ∈ N, such that mΦi is
locally L

1
p -integrable and

��f (t, x)
�� ≤ m(t)Φi

�
‖x‖

�
+ h(t)

for all x ∈ E and a.e. t ∈ [si, ti+1].
(H4) k : R

+ → R
+ is a measurable and essentially bounded function on the compact in-

tervals of R
+ such that

μ
�
f (t, X)

�
≤ k(t)μ(X)

for a.e. t ∈ J and bounded subsets X of E, where μ is a regular measure of noncom-
pactness on E.

(H5) There exist constants ηi > 0, i ∈ N such that

γ
�


Ni(·)(v) : v ∈ Wi
��

≤ ηiγ (Wi)

for every bounded set Wi ⊆ C([ti, si]; E) where γ denotes the regular measure of
noncompactness on C([a, b]; E).

From the recent condition we observe that the mappings Ni(·) : C([ti, si]; E) → C([ti, si]; E),
i ∈ N, given by (Ni(·)x)(t) = Ni(t)x are uniformly bounded on bounded sets. For such rea-
son, from now on, we use the notation

χi,r = sup

��Ni(t)(x)

�� : t ∈ [ti, si], x ∈ C
�
[ti, si]; E

�
, ‖x‖∞ ≤ r

�
.

Remark 3.3 If condition (H5) holds, then the maps Ni(·) : C([ti, si]; E) → C([ti, si]; E), i ∈ N,
defined by Ni(y)(t) = Ni(t)(y), are continuous. Indeed, if (yn)n is a sequence convergent to y
in C([ti, si]; E), then the set Y = {yn : n ∈ N} is relatively compact in C([ti, si]; E) which yields
{Ni(·)yn : n ∈ N} is so. Finally, there exists a subsequence (ynk )k of (yn)n where Ni(·)(ynk )
tends into Ni(·)(y) as k → ∞ in C([ti, si]; E). Now, from the fact that this property is inde-
pendent from the sequence (ynk )k , we infer that Ni(·)(yn) goes to Ni(·)(y) as n → ∞.

Now we can formulate our result of the section as follows.

Theorem 3.4 Assume that hypotheses (H0)–(H5) hold and Lgiηi < 1 for i ∈ N0. Also sup-
pose that there exist a function ri(t) and constant�ci such that

MCi +
M

Γ (q)

�
1 – p
q – p

�1–p

(t – si)q–p���mΦi
�
‖ri‖

���
L

1
p [si ,t]

+ ‖h‖
L

1
p [si ,t]

�
≤ ri(t) (3.3)
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for t ∈ [si, ti+1] and

Lgiχi,�ci + sup
t∈[ti ,si]

��gi(t, 0)
�� ≤�ci. (3.4)

Then problem (1.1) has at least one mild solution x ∈ PC(E).

Proof We divide the proof into solving of two fixed point problems as follows. First, let us
define

Fi : C
�
[ti, si]; E

�
→ C

�
[ti, si]; E

�
, for i ∈ N (3.5)

given by Fi(y)(t) = gi(t, Ni(t)(y)), ti ≤ t ≤ si. It follows from our main assumptions
and Remark 3.3 that Fi is a continuous. Furthermore, if y ∈ C([ti, si]; E) with ‖y‖∞ =
supt∈[ti ,si] ‖y(t)‖ ≤�ci then

��Fi(y)(t)
�� ≤

��gi
�
t, Ni(t)(y)

�
– gi(t, 0)

�� +
��gi(t, 0)

��

≤ Lgiχi,�ci + sup
t∈[ti ,si]

��gi(t, 0)
��,

which shows that Fi(B�ci (0)) ⊆ B�ci (0) followed by (3.4). Moreover, for every bounded set
W ⊆ C([ti, si]; E) with γ (W ) > 0, if �W = {Ni(·)(v) : v ∈ W } then, using (H1) and (H5), we
obtain

γ
�
Fi(W )

�
≤ Lgiγ ( �W ) ≤ Lgiηiγ (W ).

Accordingly, Fi is a γ -contraction map, and, applying Theorem 2.2, we obtain that there
is a fixed point yi of Fi.

As the second part of the proof, we define the operator Fi : C([si, ti+1]; E) → C([si, ti+1];
E), i ∈ N0, by

(Fix)(t) = S(t – si)yi(si)

+
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds, t ∈ [si, ti+1], x ∈ C

�
[si, ti+1]; E

�
, (3.6)

where y0(s0) = x0. Using (H2), since the function s → f (s, x(s)) is integrable on [si, ti+1], Fi

is well-defined. We shall show that there exists a function ri : [si, ti+1] → R such that if
x ∈ C([si, ti+1]; E) and ‖x(t)‖ ≤ ri(t) for t ∈ [si, ti+1], then

��(Fix)(t)
�� ≤ ri(t). (3.7)

In fact, if we choose ri(t) as a solution of inequality (3.3), then from the hypotheses we
have

��(Fix)(t)
�� ≤

��S(t – si)yi(si)
�� +

����

� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds

����
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=
����

� ∞

0
ξq(θ )T

�
(t – si)qθ

�
yi(si) dθ

����

+
����q

� t

si
(t – s)q–1

� ∞

0
θξq(θ )T

�
(t – s)qθ

�
dθ f

�
s, x(s)

�
ds

����,

which, together with the fact that ξq(θ ) is the probability density function defined on R
+,

implies that

��(Fix)(t)
�� ≤ M

��yi(si)
�� +

M
Γ (q)

�� t

si
(t – s)

q–1
1–p ds

�1–p���mΦi
�
‖ri‖

���
L

1
p [si ,t]

+ ‖h‖
L

1
p [si ,t]

�

= M
��yi(si)

�� +
M

Γ (q)

�
1 – p
q – p

�1–p

(t – si)q–p���mΦi
�
‖ri‖

���
L

1
p [si ,t]

+ ‖h‖
L

1
p [si ,t]

�

≤ ri(t)

for t ∈ [si, ti+1]. Let us fix x ∈ C([si, ti+1], E) such that x(t) ≤ ri(t). We will estimate the modu-
lus of continuity of the function Fix. Fix arbitrary Ti ≥ si and ε > 0 and take ti1 , ti2 ∈ [si, Ti]
such that |ti1 – ti2 | ≤ ε. Without loss of generality, we assume that ti2 ≥ ti1 , then

��(Fix)(ti2 ) – (Fix)(ti1 )
��

=
����S(ti2 – si)yi(si) +

� ti2

si
(ti2 – s)q–1

T(ti2 – s)f
�
s, x(s)

�
ds

– S(ti1 – si)yi(si) –
� ti1

si
(ti1 – s)q–1

T(ti1 – s)f
�
s, x(s)

�
ds

����

≤
����
�
S(ti2 – si) – S(ti1 – si)

�
����
��yi(si)

�� +
����

� ti2

ti1

(ti2 – s)q–1
T(ti2 – s)f

�
s, x(s)

�
ds

����

+
� ti1

si

�
(ti2 – s)q–1 – (ti1 – s)q–1�

T(ti2 – s)f
�
s, x(s)

�
ds

����

+
� ti1

si
(ti1 – s)q–1�

T(ti2 – s) – T(ti1 – s)
�
f
�
s, x(s)

�
ds

����

≤ ωTi (S, ε)
��yi(si)

�� +
M

Γ (q)

� ti2

ti1

(ti2 – s)q–1�m(s)Φi
���x(s)

���
+ h(s)

�
ds

+
M

Γ (q)

� ti1

si

�
(ti1 – s)q–1 – (ti2 – s)q–1��m(s)Φi

���x(s)
���

+ h(s)
�
ds

+
� ti1

si
(ti1 – s)q–1��T(ti2 – s) – T(ti1 – s)

���
m(s)Φi

���x(s)
���

+ h(s)
�
ds.

Therefore, we get

��(Fix)(ti2 ) – (Fix)(ti1 )
��

≤ ωTi (S, ε)
��yi(si)

�� +
M

Γ (q)

�
1 – p
q – p

�1–p

εq–p���mΦi
�
‖ri‖

���
L

1
p [ti1 ,ti2 ]

+ ‖h‖
L

1
p [ti1 ,ti2 ]

�

+
M

Γ (q)

�� ti1

si

�
(ti1 – s)q–1 – (ti1 – s)q–1� 1

1–p ds
�1–p
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·
���mΦi

�
‖ri‖

���
L

1
p [si ,ti1 ]

+ ‖h‖
L

1
p [si ,ti1 ]

�

+ νTi (T, ε)
� ti1

si
(ti1 – s)q–1�m(s)Φi

���x(s)
���

+ h(s)
�
ds

≤ ωTi (S, ε)
��yi(si)

�� +
MΩi

Γ (q)

�
1 – p
q – p

�1–p

εq–p

+
M

Γ (q)

�
1 – p
q – p

�1–p

εq–p���mΦi
�
‖ri‖

���
L

1
p [si ,Ti]

+ ‖h‖
L

1
p [si ,Ti]

�

+ νTi (T, ε)
�

1 – p
q – p

�1–p

(Ti – si)q–p���mΦi
�
‖ri‖

���
L

1
p [si ,Ti]

+ ‖h‖
L

1
p [si ,Ti]

�

:= Λ(Ti, ε),

where

Ωi = sup

���mΦi

�
‖ri‖

���
L

1
p [ti1 ,ti2 ]

+ ‖h‖
L

1
p [ti1 ,ti2 ]

�
: si ≤ ti1 ≤ ti2 ≤ Ti

�
,

ωTi (S, ε) = sup

��S(ti2 ) – S(ti1 )

��; ti1 , ti2 ∈ [0, Ti – si], |ti1 – ti2 | ≤ ε
�

,

νTi (T, ε) = sup

��T(ti2 ) – T(ti1 )

��; ti1 , ti2 ∈ [0, Ti – si], |ti1 – ti2 | ≤ ε
�

.

Thus, we obtain

��(Fix)(ti2 ) – (Fix)(ti1 )
�� ≤ Λ(Ti, ε) (3.8)

for x such that x(t) ≤ ri(t). From Remark 3.2, we have

lim
ε→0+

Λ(Ti, ε) = 0, for Ti ≥ si. (3.9)

Now define the subset Bi of C([si, ti+1]; E) as follows:

Bi =


x ∈ C

�
[si, ti+1]; E

�
:
��x(t)

�� ≤ ri(t),ωTi (x, ε) ≤ Λ(Ti, ε) for t, Ti ≥ si and ε ≥ 0
�

.

In view of x(t) ≡ Myi(si) ∈ Bi, we see that Bi is nonempty. Moreover, Bi is a closed and con-
vex subset of C([si, ti+1]; E). From (3.9) and using the definition of ω

Ti
0 as mentioned in the

previous section, we find that the set Bi is the family consisting of functions equicontin-
uous on compact intervals [si, ti+1]. By (3.7) we observe that Fi maps Bi into itself. Next,
we will show that Fi : Bi → Bi is continuous. For x, x̂n ∈ Bi such that limn→∞ x̂n = x in
C([si, ti+1]; E), we have

lim
n→∞

sup
si≤t≤Ti

��x̂n(t) – x(t)
�� = 0, Ti ≥ si.

Now fix Ti ≥ si. Then we get

sup
si≤t≤Ti

��(Fix̂n)(t) – (Fix)(t)
�� ≤ sup

si≤t≤Ti

� t

si
(t – s)q–1��T(t – s)

�
f
�
s, x̂n(s)

�
– f

�
s, x(s)

����ds

≤
M

Γ (q)
sup

si≤t≤Ti

� t

si
(t – s)q–1��f

�
s, x̂n(s)

�
– f

�
s, x(s)

���ds.
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This means that limn→∞ F x̂n = Fx in C([si, ti+1]; E), which is implied by the Lebesgue
dominated convergence theorem together with (H2).

Let us consider Bi0 = Bi, Bin = ConvF (Bin–1 ) for n = 1, 2, . . . . Then all sets of this se-
quence are nonempty, closed, and convex. Moreover, Bin+1 ⊆ Bin for n = 0, 1, . . . . By the
equicontinuity of the set Bi on compact intervals, we have

ω
Ti
0 (Bin ) = 0 for n = 0, 1, . . . , and Ti ≥ si.

Put ain (t) = μ(Bin (t)). From Lemma 2.4 and (3.8), we get

��ain (t) – ain (s)
�� ≤ μ

�
B(0, 1)

�
Λ

�
Ti, |t – s|

�
,

which, together with (3.9), yields the continuity of ain (t) on [si, ti+1]. Focusing on the prop-
erties of μ and Lemma 2.3, together with assumption (H4), we obtain

ain+1 (t) = μ
�
(ConvFBin )(t)

�

= μ

�� t

si
(t – s)q–1

T(t – s)f
�
s, Bin (s)

�
ds

�

= M
� t

si
(t – s)q–1k(s)ain (s) ds

≤ Mki(t)
� t

si
(t – s)q–1ain (s) ds,

where ki(t) = ess sup{k(s) : si ≤ s ≤ t}; clearly, ki(t) is nondecreasing. Using the mathemat-
ical induction and Lemma 2.6, we have

ain+1 (t) ≤ Mki(t)
� t

si
(t – s)q–1ain (s) ds

≤ M2k2
i (t)

� t

si
(t – r1)q–1

� r1

si
(r1 – r2)q–1ain–1 (r2) dr2 dr1

≤ Mn+1kn+1
i (t)

� t

si
(t – r1)q–1

� r1

si
(r1 – r2)q–1 × · · ·

×
� rn

si
(rn – rn+1)q–1ai0 (rn+1) drn+1 drn · · · dr1

≤ Mn+1kn+1
i (t)

Γ n+1(q)
Γ ((n + 1)q)

� t

si
(t – s)(n+1)q–1ai0 (s) ds.

Thus for n ≥ 1–q
q we have

ain+1 (t) ≤ Mn+1kn+1
i (t)

Γ n+1(q)
Γ ((n + 1)q)

t(n+1)q–1
� t

si
ai0 (s) ds. (3.10)

Now we utilize the measure of noncompactness γR defined in C([si, ti+1]; E) by formula
(2.1), where

Ri(t) = ri(t)
�
1 +

�
MΓ (q)ki(t)

� 1
q
��

1 +
� t

si
ai0 (s) ds

�
e(MΓ (q)ki(t))

1
q t .
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Clearly, ri(t) ≤ Ri(t) and, using inequality (3.10), for n ≥ 1–q
q we get

μ̄Ti (Bin+1 ) = sup
si≤t≤Ti

ain+1 (t) ≤ Mn+1kn+1
i (Ti)

Γ n+1(q)
Γ ((n + 1)q)

T (n+1)q–1
i

� Ti

si
ai0 (s) ds

and also

μ̄Ti (Bin+1 )
Ri(Ti)

=
(MΓ (q)ki(Ti))n+1– 1

q T (n+1)q–1
i

ri(Ti)Γ ((n + 1)q)e(MΓ (q)ki(Ti))
1
q Ti

=
((MΓ (q)ki(Ti))

1
q Ti)(n+1)q–1

ri(Ti)Γ ((n + 1)q)e(MΓ (q)ki(Ti))
1
q Ti

.

On the other hand, from the estimate supa≥0{ an

ea } ≤ nn

en we infer

μ̄Ti (Bin+1 )
Ri(Ti)

≤
(n + 1)q – 1)(n+1)q–1

ri(Ti)Γ ((n + 1)q)e(n+1)q–1 .

Then from Lemma 2.5, for n > max{1, 1–q
q } we infer

μ̄Ti (Bin+1 )
Ri(Ti)

<
1

ri(Ti)
�

2π ((n + 1)q – 1)
.

Therefore, we get

lim
n→∞

γRi (Bin+1 ) = lim
n→∞

sup
si≤Ti≤ti+1



1

Ri(Ti)
�
ω

Ti
0 (Bin+1 ), μ̄Ti (Bin+1 )

��
= 0.

In view of the properties of γRi , we get Bi∞ =
�∞

n=0 Bin 
= ∅. Since 0 ≤ γRi (Bi∞ ) ≤
limn→∞ γRi (Bin ), we have γRi (Bi∞ ) = 0, which yields that Bi∞ is a compact subset in
C([si, ti+1]; E).

Consider Fi : Bi∞ → Bi∞ . From the above arguments, we see that all the conditions of
the Tikhonov fixed-point theorem are satisfied. Therefore Fi has at least one fixed point
xi in Bi∞ , which is the mild solution of Eq. (3.6). Now using this inductive procedure, we
are led to define

x(t) =

�
�

�
xi(t), t ∈ [si, ti+1), i ∈ N0,

yi(t), t ∈ [ti, si], i ∈ N.
(3.11)

It is easily seen that x ∈ PC(E) is a mild solution of problem (1.1). �

Now, we give a simple example to illustrate the feasibility of the assumptions made be-
fore.

Example 3.5 Let Bn ⊆ R
n be an n-ball bounded by Sn–1 as (n – 1)-sphere in n-dimensional

Euclidean space R
n. Consider a fractional initial/boundary value Cauchy problem of the
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form

�
������

������

CDq
0,tu(t, z) = uzz(t, z) + f (t, u(t, z)), (t, z) ∈ J × Bn,

u(t, z) = pi(t, qi(t, u(·, z))), (t, z) ∈ Ii × Bn,

u(t, z) = 0, (t, z) ∈ J × Sn–1,

u(0, z) = u0, z ∈ Bn,

(3.12)

where Ii = (ti, si], i ∈ N, J =
�∞

i=0[si, ti+1], CDq
0,t is the Caputo fractional partial derivative of

order 0 < q < 1, and f is a given function.
Assume E = L2(Bn), we define an operator Au = ∂2u

∂z2 on E with the domain

D(A) =



u ∈ E
���u,

∂u
∂z

are absolutely continuous,
∂2u
∂z2 ∈ E, and u ≡ 0 on Sn–1

�
.

Then, operator A is the infinitesimal generator of a strongly continuous semigroup
{T(t)}t≥0 which is compact and analytic with ‖T(t)‖ ≤ e–t for all t ≥ 0. Therefore, system
(3.12) can be reformulated in E as follows:

�
������

������

CDq
t x(t) = Ax(t) + f (t, x(t)), t ∈ J ,

x(t) = pi(t, qi(t, x(t))), t ∈ Ii,

x(t) = 0, t ∈ J ,

x(0) = u0,

where x(t) = u(t, ·), that is, x(t) = u(t, z) for all z ∈ Bn. Let us choose q = 1
2 , f (t, x(t)) =

3√t sin(arctan |x(t)|) + 3√ln(t + 1) and gi(t, x(t)) = et sin tx(t)
2i+t+cos tx(t) . Firstly, following the argument

as above, we see that (H0) is satisfied. Also, for mapping gi we have

��gi(t, x) – gi(t, y)
�� =

����
et sin tx

2i + t + cos tx
–

et sin ty
2i + t + cos ty

����

= et
����

sin t(x – y) + (2i + t)(sin tx – sin ty)
(2i + t + cos tx)(2i + t + cos ty)

����

≤
esi

(2i + ti – 1)2

�
si‖x – y‖ + si

�
2i + si

�
‖x – y‖

�

:= Lgi‖x – y‖

for all t ∈ [ti, si], i ∈ N and x, y ∈ E where

Lgi =
siesi (2i + si + 1)

(2i + ti – 1)2 .

This shows that (H1) holds. On the other hand, considering the given function f , we claim
that it satisfies the Carathéodory type conditions and

�� 3√t sin
�
arctan

��x(t)
��� + 3

�
ln(t + 1)

�� ≤ 3√t arctan
�
‖x‖

�
+ 3

�
ln(t + 1)

:= m(t)Φi
�
‖x‖

�
+ h(t)
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for all x ∈ E and a.e. t ∈ [si, ti+1]. This means that (H2) and (H3) are satisfied. Moreover,
from the fact

��f
�
t, x(t)

�
– f

�
t, y(t)

��� ≤ 3√t
��arctan

��x(t)
�� – arctan

��y(t)
����

≤ 3√t‖x – y‖∞,

we conclude that (H4) is also valid. Since Ni defined in (1.1) is considered as the trivial
mapping, then hypothesis (H5) is also fulfilled, and our above result can be used to derive
the existence of PC-mild solutions to problem (3.12) under the considerations as men-
tioned.

4 S-Asymptotically ω-periodic solutions
Throughout this section we investigate the existence of S-asymptotically ω-periodic mild
solutions for (1.1). Concentrating on the theory of S-asymptotically ω-periodic functions,
we invite the reader to see the recent papers [20, 21, 29, 34–37]. Next, we need to adapt the
concept of S-asymptotically ω-periodic function introduced in the cited works to include
piecewise continuous functions. Initially, we recall the concept of S-asymptotically ω-
periodic function and gather some related definitions (see also [35]).

From now on, by Cb([0, ∞); E) and PCb we denote all bounded continuous functions
from R+ into E and the subspace of PC(E) consisting of all bounded functions endowed
with the norm of uniform convergence symbolized by ‖·‖PC , respectively. It is well-known
that PCb(E) is a Banach space.

Definition 4.1 A function x ∈ Cb([0, ∞); E) is said to be S-asymptotically periodic if there
exists ω > 0 such that limt→∞[x(t + ω) – x(t)] = 0. In this case, we say that x(·) is an S-
asymptotically ω-periodic function.

In what follows, SAPω(X) stands for the space including all E-valued S-asymptotically
ω-periodic functions provided with the norm ‖ · ‖Cb([0,∞);E).

Definition 4.2 We say that a function x ∈ PCb is IS-asymptotically periodic if there exists
ω > 0 such that limt→∞[x(t+ω)–x(t)] = 0. In this case, we say that ω is an asymptotic period
of x(·) and that x(·) is an IS-asymptotically ω-periodic function.

We next use the notation ISAPω(E) for the space formed by all E-valued S-
asymptotically ω-periodic functions provided with the norm ‖ · ‖PC(E). It is not difficult
to see that ISAPω(E) is a Banach space,

Definition 4.3 A continuous function ϕ : [0, ∞) × E → E is said to be uniformly S-
asymptotically ω-periodic on bounded sets if for every bounded subset K of E, the set
{ϕ(t, x) : t ≥ 0, x ∈ K} is bounded and limt→∞[ϕ(t, x) – ϕ(t + ω, x)] = 0 uniformly for x ∈ K .

In the remainder of this section, we always assume that there is a k ∈ N such that the
impulsive points si, ti satisfy that si – ti = ti+1 – si = ω2–k for all i ∈ N0. Motivated by the
previous concept, we give the next definitions which are also needed some notations to
simplify the text. Let us define g : [0, ∞) × E → E as g(t, x) = gi(t, x) for t ∈ [ti, si], g0(0, x) =
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x0, and

g(t, x) =
ti+1 – t
ti+1 – si

gi(si, x) +
t – si

ti+1 – si
gi+1(ti+1, x)

for all t ∈ [si, ti+1] and i ∈ N0. It is clear that g is continuous. Suppose that x ∈ PC(E) and
i ∈ N. We denote by xi ∈ C([ti, si]; E) the function given by xi(t) = x(t) for t ∈ (ti, si] and
xi(ti) = limt→t+

i
x(t). We define N(t) : PC(E) → E by N(t)(x) = Ni(t)(xi) for t ∈ [ti, si], and

N(t)(x) =
ti+1 – t
ti+1 – si

Ni(si)(x) +
t – si

ti+1 – si
Ni+1(ti+1)(x)

for all t ∈ [si, ti+1] and i ∈ N0. Here, we set N(0) = 0.

Definition 4.4 We say that the family of functions (gi)i∈N is uniformly IS-asymptotically
ω-periodic on bounded sets if g is uniformly S-asymptotically ω-periodic on bounded
sets.

Finally, we also should consider the following concept.

Definition 4.5 The family (Ni)i∈N is said to be IS-asymptotically ω-periodic if the set
{N(t)(x) : t ≥ 0} is bounded and [N(t + ω)(x) – N(t)(x)] → 0 as t → ∞ for each x ∈
ISAPω(E).

In our next results we consider the following Lipschitz conditions:
(H6) For the bounded linear operator T generated by the infinitesimal generator A,

there exist constants M ≥ 1 and σ ∈ R such that ‖T(t)‖ ≤ Meσ t for all t ≥ 0 and

ηij = sup
t∈[si ,ti+1]

� ∞

0
θ j��ξq(θ )

�� exp
�
σ (t – si)qθ

�
dθ

< ∞ for every i ∈ N0 and j = 0, 1.

(H7) There is a function Lf ∈ L1
loc([0, ∞); R+) such that ‖f (t, x) – f (t, y)‖ ≤ Lf (t)‖x – y‖

for all x, y ∈ E and every t ≥ 0.
(H8) There are constants ai ≥ 0 such that

��Ni(t)(v2) – Ni(t)(v1)
�� ≤ ai‖v2 – v1‖∞, t ∈ [ti, si], v2, v1 ∈ C

�
[ti, si]; E

�
,

(H9)

ξ = sup
i∈N

sup
ti≤t≤si

�
Lgi

��Ni(t, 0)
�� +

��gi(t, 0)
���

< ∞,

(H10)

l = sup
i∈N0

sup
si≤t≤ti+1

� ti+1

si
(t – s)q–1Lf (s) ds < ∞.
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Remark 4.6 We notice that condition (H6) is tangibly weaker than condition (H0) (for
more details on semigroup theory, we refer the reader to [33]). Moreover, setting η(j) =
supi∈N0 ηij, we conclude that

η(j) =

�
�

�

� ∞
0 θ j|ξq(θ )|dθ , σ ≤ 0,

� ∞
0 θ j|ξq(θ )| exp( ωqσθ

2kq ) dθ , σ > 0,

for j = 0, 1.

Theorem 4.7 Suppose that f is continuous and conditions (H1) and (H6)–(H10) are sat-
isfied. Let f (·) be uniformly S-asymptotically ω-periodic on bounded sets, the family (gi)i∈N

be uniformly IS-asymptotically ω-periodic on bounded sets, and the family (Ni)i∈N be IS-
asymptotically ω-periodic. If � = supi∈N Lgi and η(j) are finite and τ = Mη(0) supi∈N Lgiai < 1,
then there exists a unique IS-asymptotically ω-periodic mild solution of problem (1.1).

Proof In order to prove the claim, let us define F on PS0(E) = {x ∈ PS(E) : x(0) = x0} by
Fx(t) = Fix(t), for t ∈ (ti, si], i ∈ N, and Fx(t) = Fix(t), for t ∈ [si, ti+1], i ∈ N0, where the
mappings Fi are defined by (3.5) and

(Fix)(t) = S(t – si)Fi(x)(si) +
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds, for t ∈ [si, ti+1].

It is obvious that F : PS0(E) → PS0(E). We divide the rest of proof into several steps:
Step 1. In what follows we will show that F takes bounded functions to bounded ones.

Suppose that x ∈ PS0(E) is a bounded function. For t ∈ (ti, si], i ∈ N, from the hypotheses
on τ and �, and applying (H7), we get

��gi
�
t, Ni(t)(x)

��� ≤
��gi

�
t, Ni(t)(x)

�
– gi(t, 0)

�� +
��gi(t, 0)

��

≤ Lgi

��Ni(t)(x)
�� +

��gi(t, 0)
��

≤ Lgiai‖x‖∞ + Lgi

��Ni(t)(0)
�� +

��gi(t, 0)
��

≤ τ‖x‖∞ + ξ ,

which yields that {Fx(t) : t ∈ J ′} is a bounded set. Similarly, for [si, ti+1], i ∈ N0, we infer

��Fx(t)
�� =

����S(t – si)Fi(x)(si) +
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds

����

≤ Mη(0)��x(si)
�� + q

� ∞

0

� t

si
θ
��ξq(θ )

�� exp
�
σ (t – s)qθ

�
(t – s)q–1��f

�
s, x(s)

���dsdθ

≤ Mη(0)��x(si)
�� + qη(1)

� t

si
(t – s)q–1Lf (s)

��x(s)
��ds

+ qη(1)
� t

si
(t – s)q–1��f (s, 0)

��ds

and, using (H9) and the fact that f (t, 0) is bounded on R+, we have that {Fx(t) : t ∈ J} is a
bounded set. Therefore, we can consider F : PS0

b(E) → PS0
b(E).
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Step 2. In this step we show that F is Lipschitz continuous on PS0
b(E), and that there

exists n ∈ N such that F n is a contraction. As Mη(0) ≥ 1, so γ := τ

Mη(0) < 1, then for x, y ∈
PS0

b(E) if t ∈ [ti, si], i ∈ N we obtain

��Fx(t) – F y(t)
�� ≤ Lgiai sup

ti≤t≤si

��x(t) – y(t)
�� ≤ γ ‖x – y‖∞.

Instantly, we get

��F nx – F ny
��

∞ ≤ γ n‖x – y‖∞, for all n ∈ N.

Also, if t ∈ [si, ti+1], i ∈ N0, then

��Fx(t) – F y(t)
��

≤ Mηi0
��Fi(x)(si) – Fi(y)(si)

�� +
� t

si
(t – s)q–1

T(t – s)Lf (s)
��x(s) – y(s)

��ds

≤ Mγ η(0)‖x – y‖∞

+ q
� ∞

0

� ti+1

si
θ
��ξq(θ )

�� exp
�
σ (t – s)qθ

�
(t – s)q–1Lf (s)

��x(s) – y(s)
��dsdθ

≤ Mγ η(0)‖x – y‖∞ + qη(1)
�� ti+1

si
(t – s)q–1Lf (s) ds

�
‖x – y‖∞.

By iterating this process, one can easily obtain

��F nx – F ny
��

∞ ≤ τ n

� n�

k=1

( L
τ

)k

k!

�

‖x – y‖∞,

where

sup
i∈N0

sup
si≤t≤ti+1

� ti+1

si
(t – s)q–1Lf (s) ds < ∞.

This, combining with the fact that
�∞

k=1
( L
τ )k

k! < ∞ and hypothesis τ < 1, explains that F n

is a contraction for n sufficiently large.
Step 3. Following the last step, in order to establish that there is an IS-asymptotically

ω-periodic mild solution, one only needs to prove that ISAP0
ω(E) is F -invariant where

ISAP0
ω(E) = {x ∈ ISAPω(E) : x(0) = x0}. To show this fact, we choose x ∈ ISAPω(E) and

t ≥ 0. We consider the following two cases:
If t ∈ [ti, si], i ∈ N, then, using the fact that t + ω ∈ [ti+1, si+1], we have

Fx(t + ω) – Fx(t) = gi+1
�
t + ω, Ni+1(t + ω)(x)

�
– gi

�
t, Ni(t)(x)

�

= g
�
t + ω, N(t + ω)(x)

�
– g

�
t, N(t + ω)(x)

�

+ gi
�
t, N(t + ω)(x)

�
– gi

�
t, N(t)(x)

�
.
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Now, since {N(t)(x) : t ≥ 0} is a bounded set, g(t +ω, N(t +ω)(x))–g(t, N(t +ω)(x)) vanishes
as t tends to infinity. On the other hand,

��gi
�
t, N(t + ω)(x)

�
– gi

�
t, N(t)(x)

��� ≤ sup
i∈N

Lgi

��N(t + ω)(x) – N(t)(x)
�� → 0, t → ∞.

Hence, we get

Fx(t + ω) – Fx(t) → 0 as t → ∞, t ∈ [ti, si], i ∈ N.

For the case t ∈ [si, ti+1], since t + ω ∈ [si+1, ti+2], we obtain

Fx(t + ω) – Fx(t)

= S(t + ω – si+1)Fi+1(x)(si+1) – S(t – si)Fi(x)(si)

+
� t+ω

si+1

(t + ω – s)q–1
T(t + ω – s)f

�
s, x(s)

�
ds –

� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds

= S(t – si)
�
Fi+1(x)(si+1) – Fi(x)(si)

�

+
� t

si
(t – s)q–1

T(t – s)
�
f
�
s + ω, x(s + ω)

�
– f

�
s, x(s)

��
ds,

which yields

��Fx(t + ω) – Fx(t)
��

≤ Mη(0)��Fi+1(x)(si+1) – Fi(x)(si)
��

+ q
� ∞

0

� t

si
θ
��ξq(θ )

�� exp
�
σ (t – s)qθ

�
(t – s)q–1

×
��f

�
s + ω, x(s + ω)

�
– f

�
s, x(s + ω)

���dsdθ

+ q
� ∞

0

� t

si
θ
��ξq(θ )

�� exp
�
σ (t – s)qθ

�
(t – s)q–1��f

�
s, x(s + ω)

�
– f

�
s, x(s)

���dsdθ

≤ Mη(0)��Fi+1(x)(si+1) – Fi(x)(si)
��

+
η(1)ωq

2kq sup
si≤s≤ti+1

��f (s + ω, x) – f (s, x)
��

+ qη(1)
�� t

si
(t – s)q–1Lf (s) ds

�
sup

si≤s≤ti+1

��x(s + ω) – x(s)
��.

Applying the conclusion of the first case, we see that the first term on the right-hand side
of the latter inequality vanishes as t → ∞. Moreover, using the hypotheses, we infer that
the other two terms also converge to zero as t tends to infinity. Now, following the steps as
above, we easily observe that F n is a contraction on ISAP0

ω(E), which implies that there
exists a unique IS-asymptotically ω-periodic mild solution of (1.1). �

Definition 4.8 ([35]) We say that the family of functions (gi)i∈N vanishes uniformly at
infinity on bounded sets if for every bounded set K ⊆ E, g(t, x) → 0 as t → ∞ uniformly
for x ∈ K .
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Inspired by the proof of the previous theorem and modifying some conditions around
gi and Ni, we can restate Theorem 4.7 as follows.

Theorem 4.9 Suppose that f is continuous and conditions (H1), (H7) and (H10) are
satisfied. Let ‖T(t)‖ ≤ Meσ t for all t ≥ 0 and σ ∈ R. Suppose that f (·) is uniformly S-
asymptotically ω-periodic on bounded sets such that lqη(1) < 1 and there exists nonnegative
number r0 ≥ ‖x0‖ such that

Lgχi+1,r0 + sup
ti+1≤t≤si+1

��gi+1(t, 0)
�� ≤ r0 (4.1)

for each i ∈ N0. Moreover, suppose the family (gi)i∈N vanishes uniformly at infinity on
bounded sets, and the mappings Ni, i ∈ N are uniformly bounded on bounded sets. If the
mappings Ni : C([ti, si]; E) → C([ti, si]; E), i ∈ N, are completely continuous, then there exists
an IS-asymptotically ω-periodic mild solution of (1.1).

Proof Let us introduce the space Z of all bounded continuous functions x : J ′ → E
equipped with the topology of uniform convergence. We define F2 on Z by

F2x(t) = gi
�
t, N(t)(x)

�
, t ∈ [ti, si], i ∈ N.

We remark that, as a consequence of (H1), continuity of Ni, and vanishing of the family
(gi)i∈N uniformly at infinity on bounded sets, F2 is a continuous mapping from Z into Z.
Moreover, mixing (H1) with the property that Ni are completely continuous, we deduce
that the mappings Fi for i ∈ N are completely continuous, too.

Applying again that the family (gi)i∈N vanishes uniformly at infinity on bounded sets and
using the compactness criterion (which states that for any W ⊆ PCb(E) if �Wi = {x̃i : x ∈ W }
is relatively compact in C([ti, ti+1]; E) for all i ∈ N0 and x(t) → 0 as t → ∞ uniformly for
x ∈ W , then W is relatively compact in PCb(E)), we can approve that F2 is completely
continuous. Recall that compact operators on Banach spaces are always completely con-
tinuous. In addition, using (4.1) we can confirm that there exists a constant r0 > 0 such
that Br0 (0, Z) is F2-invariant.

Now applying the well-known Schauder–Tychonoff theorem (see [17]), we are allowed
to conclude the existence of a function x̄ ∈ Z such that F2x̄ = x̄. From x̄(t) = gi(t, N(t)(x̄))
for t ∈ [ti, si], we obtain that x̄(t) → 0 as t ∈ J ′, t → ∞. We now introduce F1 on PCb(E)
by

F1x(t) =

�
���

���

S(t)x0 +
� t

0 (t – s)q–1T(t – s)f (s, x(s)) ds, t ∈ [0, t1],

x̄(t), t ∈ (ti, si], i ∈ N,

S(t – si)x̄(si) +
� t

si
(t – s)q–1T(t – s)f (s, x(s)) ds, t ∈ (si, ti+1], i ∈ N.

(4.2)

Now, following the argument as in the proof of Theorem 4.7, we obtain that F1 is a map
from PCb(E) into itself. Furthermore, proceeding as in the third step of its proof, we can
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establish that ISAPω(E) is F1-invariant. Indeed, if t ∈ [si, ti+1], then t + ω ∈ [si+1, ti+2], and

F1x(t + ω) – F1x(t)

= S(t + ω – si+1)x̄(si+1) – S(t – si)x̄(si)

+
� t+ω

si+1

(t + ω – s)q–1
T(t + ω – s)f

�
s, x(s)

�
ds –

� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds

= S(t – si)
�
x̄(si + ω) – x̄(si)

�
+

� t

si
(t – s)q–1

T(t – s)
�
f
�
s + ω, x(s + ω)

�
– f

�
s, x(s)

��
ds.

Using the assumption that f is uniformly S-asymptotically ω-periodic on bounded sets,
together with the fact that x̄(si) → 0 as i → ∞, i ∈ N, we can conclude that F1x(t + ω) –
F1x(t) → 0 as i → ∞. Moreover, by the virtue of proof of Theorem 4.7, together with
(4.2), we obtain

��F1x2(t) – F1x1(t)
�� ≤ lqη(1)‖x2 – x1‖∞,

which means F1 is a contraction. Mixing these assertions, we infer that there is an x ∈
ISAPω(E) such that F1x = x. This yields that x(t) = x̄(t) for t ∈ (ti, si], i ∈ N, and

x(t) = S(t – si)x(si) +
� t

si
(t – s)q–1

T(t – s)f
�
s, x(s)

�
ds,

for t ∈ (si, ti+1]. Therefore, x(·) is an IS-asymptotically ω-periodic mild solution of
Eq. (1.1). �
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