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Abstract
A parabolic equation related to the p-Laplacian is considered. If the equation is
degenerate on the boundary, then demonstrating the regularity on the boundary is
difficult, the trace on the boundary cannot be defined, in general. The existence and
uniqueness of weak solutions are researched. Based on uniqueness, the stability of
solutions can be proved without any boundary condition.

MSC: 35K65; 35K55; 35R35

Keywords: p-Laplacian; Existence; Uniqueness; Stability

1 Introduction and main results
Consider a parabolic equation related to the p-Laplacian

ut = div
(
a(u, x, t)|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u)
∂xi

, (x, t) ∈ QT = Ω × (0, T), (1.1)

with the initial value

u(x, 0) = u0(x), x ∈ Ω , (1.2)

where Ω is a bounded domain in R
N with appropriately smooth boundary, p > 1, u0(x)

is a C1
0(Ω) function, a(u, x, t) ≥ 0. If a(u, x, t) = 1, Eq. (1.1) is the evolutionary p-Laplacian

equation with a convective term

ut = div
(|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u)
∂xi

, (x, t) ∈ QT , (1.3)

and the usual boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.4)

can be imposed. The initial-boundary boundary value problem of Eq. (1.3) has been stud-
ied in many monographs or textbooks, one can refer to [1–3] and the references therein.
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Benedikt et al. [4, 5] had studied the equation

ut = div
(|∇u|p–2∇u

)
+ q(x)

∣
∣uα–1∣∣u, (x, t) ∈ QT ,

with 0 < α < 1, and such that there exists an x0 ∈ Ω satisfying q(x0) > 0. They showed that
the uniqueness of a solution does not hold. Meanwhile, the author of [6] had studied the
equation

ut = div
(
dα|∇u|p–2∇u

)
+ f (u, x, t), (x, t) ∈ QT ,

with α > 0, and has shown that the stability of solutions can be proved without any bound-
ary condition, where d = d(x) = dist(x, ∂Ω) is the distance function from the boundary and
f (s, x, t) is a Lipschitz function. Certainly, |u|α–1u is not a Lipschitz function with respect
to u, the result of [6] is compatible with those of [4, 5]. But then, the result of [6] shows
that the degeneracy of the coefficient dα can eliminate the action from the source term
f (u, x, t). Moreover, we have shown that a weak solution to the equation

ut = div
(
dα|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u)
∂xi

, (x, t) ∈ QT ,

is unique independent of the boundary value condition [7], and the stability of the weak
solutions can be proved in some cases [8].

For a degenerate parabolic equation, the phenomenon that the solution is free from the
limitation of the boundary condition has been studied for a long time, one can refer to [9–
15]. Roughly speaking, instead of the whole boundary condition (1.4), we may conjecture
that only a partial boundary condition

u(x, t) = 0, (x, t) ∈ Σ1 × (0, T), (1.5)

should be imposed, where Σ1 is a relatively open subset of ∂Ω . In this paper, we will show
that a weak solution to Eq. (1.1) is unique independent of the boundary value condition.
In other words, the degeneracy of the diffusion a(·, x, t) on the boundary can take place
regardless of the boundary value condition.

To simplify exposition, in what follows, we assume that

a(u, x, t) = ρ(x)|u|r ,

where r > 0 is a constant, ρ(x) is a C1(Ω) nonnegative function and

ρ(x) |x∈∂Ω= 0, ρ(x) |x∈Ω> 0. (1.6)

Let

u = |v|β–1v, β =
p – 1

r + p – 1
, δ = βp–1.
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Then Eq. (1.1) becomes

(|v|β–1v
)

t = δ div
(
ρ(x)|∇v|p–2∇v

)
+

N∑

i=1

∂ai(v)
∂xi

, (1.7)

where

ai(v) = bi
(|v|β–1v

)
.

The initial value matching up to Eq. (1.7) is

|v|β–1v(x, 0) = u0(x), x ∈ Ω . (1.8)

Definition 1.1 Function v(x, t) is said to be a weak solution of Eq. (1.7) with the initial
value (1.8), if v satisfies

v ∈ L∞
loc

(
0, T ; W 1,p), v ∈ W 1,2

loc
(
(0, T), L2(Ω)

)
, ρ|∇v|p ∈ L1(QT ), (1.9)

and, for any function φ(x, t) ∈ C1
0(QT ), there holds

∫∫

QT

(
–|v|β–1vφt

)
dx dt + δ

∫∫

QT

ρ(x)|∇v|p–2∇v · ∇φ dx dt

+
N∑

i=1

∫∫

QT

ai(v)φxi dx dt = 0. (1.10)

If v is a weak solution of Eq. (1.7) with the initial value (1.8), then we say that u = |v|β–1v is
a weak solution of Eq. (1.1) with the initial value (1.2).

We will give a basic result of the existence of a weak solution.

Theorem 1.2 If p ≥ 2, u0(x) ≥ 0, ρ(x) |x∈∂Ω= 0 and
∫
Ω

ρ(x)– 2
p–2 dx < ∞, for any given i ∈

{1, 2, . . . , N}, ai(s) is a C1 function and there exist constants α and c such that

∣∣ai(s)
∣∣ ≤ c|s|1+α ,

∣∣a′
i(s)

∣∣ ≤ c|s|α , (1.11)

then there is a nonnegative weak solution of Eq. (1.7) with the initial value (1.8) in the sense
of Definition 1.1.

This theorem may not be optimal, the conditions p ≥ 2,
∫
Ω

ρ(x)– 2
p–2 dx < ∞ and (1.11)

may all be weakened. However, the main aim of this paper is to probe the uniqueness and
stability of weak solutions, the main results of our paper are the following theorems.

Theorem 1.3 Let p > 1, ai(s) be a Lipschitz function, and let ρ(x) satisfy (1.6). Then a weak
solution of Eq. (1.7) with the initial value (1.8) is unique.
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Theorem 1.4 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.7) with different initial
values u0(x) and v0(x), respectively. If p ≥ 2,

∫

Ω

ρ(x)– 1
p–1 dx ≤ c, (1.12)

and ai(s) is a Lipschitz function, then

∫

Ω

∣∣|u|β–1u(x, t) – |v|β–1v(x, t)
∣∣dx

≤
∫

Ω

∣
∣|u0|β–1u0(x) – |v0|β–1v0(x)

∣
∣dx, ∀t ∈ [0, T). (1.13)

It is well-known that the usual evolutionary p-Laplacian equation needs to be subjected
to the whole boundary condition (1.4) [2, 3]. Clearly, condition a(u, x, t)|x∈∂Ω = 0 excludes
the usual evolutionary p-Laplacian equation, while condition (1.12) excludes the conser-
vation law equation. The uniqueness of solutions for a conservation law equation only
holds in the sense of the entropy solution [2]. The equations considered in [6–8, 16–19],
as well as Eq. (1.1), have apparently different characteristics from both the usual evolution-
ary p-Laplacian equation and the conservation term. Roughly speaking, in the interior of
Ω , Eq. (1.1) has the characteristic of the usual evolutionary p-Laplacian equation, while
on the boundary ∂Ω , Eq. (1.1) has the characteristic of the conservation law equation.
Comparing with our previous works [7, 17–19] and [6, 8], the main difficulty comes from
the nonlinearity of the diffusion coefficient a(u, x, t). Moreover, unlike our previous works,
the stability of the weak solutions is based on the uniqueness of the weak solution.

Theorem 1.3 shows that the uniqueness of the weak solution holds independently of
the boundary value condition. Once we have the uniqueness of the weak solution, The-
orem 1.4 shows that the stability of the weak solutions is also true without the boundary
value condition. Accordingly, Theorems 1.3 and 1.4 show that not only the degeneracy of
the coefficient a(u, x, t) can eliminate the action from the source term f (u, x, t) [6], but it
may also eliminate the action of the convection term

∑N
i=1

∂ai(v)
∂xi

.

2 Existence of a solution
Consider an approximate problem of Eq. (1.7), namely

(|v|β–1v
)

t = δ div
((

ρ(x) + ε
)|∇v|p–2∇v

)
+

N∑

i=1

∂ai(v)
∂xi

, (2.1)

with the initial boundary value conditions

|v|β–1v(x, 0) = u0(x), x ∈ Ω , (2.2)

v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T). (2.3)

Definition 2.1 A function v(x, t) is said to be a weak solution of problem (2.1)–(2.3), if v
satisfies

v ∈ L∞
loc

(
0, T ; W 1,p

0 (Ω)
)
, v ∈ W 1,2

loc
(
(0, T), L2(Ω)

)
, (2.4)
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and for any φ(x) ∈ C1
0(QT ), there holds

–
∫∫

QT

|v|β–1vφt dx dt + δ

∫∫

QT

(
ρ(x) + ε

)|∇v|p–2∇v · ∇φ dx dt

+
∫∫

QT

ai(v)φxi dx dt = 0. (2.5)

For any k > 0, we define ϕ+
k (s) = βsβ–1 when s ≥ k–1, ϕ+

k (s) = β(aks2 + bks) when 0 ≤ s <
k–1, where

ak = k2–β , bk = k1–β 3 – β

2
, k = 1, 2, . . .

Extending ϕ+(s) to be an even function on the whole R
1, and denoting it as ϕk(s), we have

ϕk(s) ∈ C1, ϕk(s) → βsβ–1, s 
= 0 as k → ∞. By considering the following approximate prob-
lem:

ϕk(v)vt = δ div

((
ρ(x) + ε

)(|∇v|2 +
1
k

) p–2
2 ∇v

)
+

N∑

i=1

∂ai(v)
∂xi

, (2.6)

vk(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.7)

vk(x, 0) = v0k(x), x ∈ Ω , (2.8)

where ‖v0k(x) – v0(x)‖p → 0 as k → 0 and |v|β–1v0(x) = u0(x), we obtain that there is a
unique classical solution vkε of problem (2.6)–(2.8). Let k → ∞. Similarly as in [20], we
can prove that

vkε → vε , a.e. in QT ,

and vε is a solution of problem (2.1)–(2.3) in the sense of Definition 2.1; we omit the details
here. In particular, if u0(x) ∈ L∞(Ω), then we have

‖vkε‖L∞(QT ) ≤ c, ‖vε‖L∞(QT ) ≤ c, (2.9)

where c is a constant independent of k and ε, but depending on ‖u0‖L∞(Ω). In what follows,
we call vε an asymptotic solution.

Proof of Theorem 1.2 Multiplying (2.1) by vε and integrating over QT , we have

β

β + 1

∫

Ω

vβ+1
ε dx + δ

∫∫

QT

ρε|∇vε|p dx dt +
N∑

i=1

∫∫

QT

vε

∂ai(vε)
∂xi

dx dt

=
β

β + 1

∫

Ω

vβ+1
0 dx,
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where ρε = ρ + ε. Using the fact

N∑

i=1

∫∫

QT

vε

∂ai(vε)
∂xi

dx dt = –
N∑

i=1

∫∫

QT

∂vε

∂xi
ai(vε) dx dt

= –
N∑

i=1

∫

Ω

∂

∂xi

∫ vε

0
ai(s) ds dx = 0,

we have

β

β + 1

∫

Ω

vβ+1
ε dx + δ

∫∫

QT

ρε|∇vε|p dx dt ≤ c,

and in particular,

∫∫

QT

ρ|∇vε|p dx dt ≤ c
∫∫

QT

ρε|∇vε|p dx dt ≤ c. (2.10)

For small enough λ > 0, let Ωλ = {x ∈ Ω : ρ(x) > λ}. Since p ≥ 2, by (1.6) and (2.10),

∫ T

0

∫

Ωλ

|∇vε|2 dx dt ≤ c
(∫ T

0

∫

Ωλ

|∇vε|p dx dt
) 2

p
≤ c(λ). (2.11)

Multiplying (2.1) with vεt , and integrating over Ω ,

β

∫

Ω

vβ–1
ε (vεt)2 dx

= δ

∫

Ω

div
(
(ρ + ε)|∇vε|p–2∇vε

)
vεt dx +

N∑

i=1

∫

Ω

∂ai(vε)
∂xi

vεt dx, (2.12)

δ

∫

Ω

div
(
(ρ + ε)|∇vε|p–2∇vε

)
vεt dx

= –δ

∫

Ω

(ρ + ε)|∇vε|p–2∇vε∇vεt dx

= –
δ

2

∫

Ω

(ρ + ε)|∇vε|p–2|∇vε|2t dx

= –
δ

2

∫

Ω

(ρ + ε)
d
dt

∫ |∇vε |2

0
s

p–2
2 ds dx. (2.13)

By the assumption of (1.11),

N∑

i=1

∣
∣∣
∣

∫

Ω

∂ai(vε)
∂xi

vεt dx
∣
∣∣
∣

≤
N∑

i=1

∫

Ω

∣
∣a′

i(vε)
∣
∣|vεxi ||vεt|dx

≤ β

2

∫

Ω

vβ–1
ε (vεt)2 dx + c

∫

Ω

|vε|2α–β+1|∇vε|2 dx. (2.14)
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By (2.12)–(2.14), we have

β

2

∫

Ω

vβ–1(vεt)2 dx +
δ

2

∫

Ω

(ρ + ε)
d
dt

∫ |∇vε |2

0
s

p–2
2 ds dx

≤ c
∫

Ω

|vε|2α–β+1|∇vε|2 dx

≤ c
(∫

Ω

(ρ + ε)– 2
p–2 dx

) p–2
p

(∫

Ω

(ρ + ε)|∇vε|p dx
) 2

p

≤ c.

Here, we have used the assumption
∫
Ω

ρ(x)– 2
p–2 dx < ∞, which implies

∫
Ω

(ρ + ε)– 2
p–2 dx <

∞. Then

∥∥(
v

β+1
2

ε

)
t

∥∥
L2(QT ) =

β + 1
2

∥∥v
β–1

2
ε vεt

∥∥
L2(QT ) ≤ c (2.15)

and

∫∫

QT

|vεt|2 dx dt ≤
∫ T

0

∫

Ω

vβ–1
ε |vεt|2v1–β

ε dx dt

≤ ‖vε‖1–β

L∞(QT )

∫ T

0

∫

Ω

vβ–1
ε |vεt|2 dx dt ≤ c. (2.16)

From (2.10), (2.11), and (2.16), one knows that
∫∫

QλT

|vεt|2 dx dt ≤ c,
∫∫

QλT

|∇vε|2 dx dt ≤ c(λ),

where QλT = Ωλ × (0, T). Then vε → v in L2(QλT ). By the arbitrariness of λ, vε → v a.e. in
QT . Thus ai(vε) → ai(v) a.e. in QT . �

We use (2.10), (2.15), and let ε → 0. Similarly as in [3, 20], we can prove that

(
ρ(x) + ε

)|∇vε|p–2∇vε ⇀ ∗ρ(x)|∇v|p–2∇v, weakly star in L1(0, T ; L
p

p–1 (Ω)
)
,

so that ai(vε) → ai(v) a.e. in QT , and then there is a solution of Eq. (1.7) with the initial
value (1.8) in the sense of Definition 1.1.

3 The uniqueness
Theorem 3.1 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.7) with different initial
values u0(x) and v0(x), respectively, 0 < m ≤ ‖u‖L∞(QT ) ≤ M, 0 < m ≤ ‖v‖L∞(QT ) ≤ M. Let
p > 1, ai(s) be a Lipschitz function, and let ρ(x) satisfy (1.6). Then there exists a constant
α1 ≥ max{p, 2, 2(p – 1)} such that

∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, t) – |v|β–1v(x, t)

∣
∣2 dx

≤
∫

Ω

ρ
α1
p

∣∣|u0|β–1u0(x) – |v0|β–1v0(x)
∣∣2 dx, ∀t ∈ [0, T). (3.1)
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Proof Denote Ωλ = {x ∈ Ω : ρ(x) > λ} as before. Let

ξλ =
[
ρ(x) – λ

] α1
p

+ . (3.2)

For any fixed τ , s ∈ [0, T], we may choose χ[τ ,s](uε – vε)ξλ as a test function in (3.1), where
χ[τ ,s] is the characteristic function on [τ , s], where uε and vε are the mollified functions of
the solutions u and v, respectively. Then, denoting Qτ s = Ω × [τ , s], we have

∫∫

Qτ s

(uε – vε)ξλ

∂(|u|β–1u – |v|β–1v)
∂t

dx dt

= –δ

∫∫

Qτ s

(
ρ(x)|∇u|p–2∇u – |∇v|p–2∇v

)∇[
(uε – vε)ξλ

]
dx dt

–
N∑

i=1

∫∫

Qτ s

[
ai(u) – ai(v)

]
[uε – vε)ξλ]xi dx dt. (3.3)

For any given small λ > 0, denoting QTλ = Ωλ × (0, T), since ρ(x) ∈ C1(Ω) and ρ(x) > 0
when x ∈ Ω , then ∇u ∈ Lp(QTλ), ∇v ∈ Lp(QTλ). According to the definition of the mollified
functions uε and vε , we have

uε ∈ L∞(QT ), vε ∈ L∞(QT ), (3.4)

‖∇uε‖p,Ωλ
≤ ‖∇u‖p,Ωλ

, ‖∇vε‖p,Ωλ
≤ ‖∇v‖p,Ωλ

. (3.5)

Since on Ωλ, by Young inequality,

∣
∣ρ(x)

(|∇u|p–2∇u – |∇v|p–2∇v
)∇[(uε – vε)

∣
∣

≤ c(λ)
(|∇u|p + |∇v|p) + c

(|∇uε|p + |∇vε|p
)

≤ 2c(λ)
(|∇u|p + |∇v|p),

by (3.2), (3.4) and (3.5), using the Lebesgue dominated convergence theorem, we have

lim
ε→0

∫∫

Qτ s

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇[
(uε – vε)ξλ

]
dx dt

=
∫∫

Qτ s

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇[
(u – v)ξλ

]
dx dt

=
∫∫

Qτ s

ρ(x)ξλ

(|∇u|p–2∇u – |∇v|p–2∇v
)∇(u – v) dx dt

+
∫∫

Qτ s

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)
(u – v)∇ξλ dx dt. (3.6)

The first term on the right-hand side of (3.6) satisfies

∫∫

Qτ s

ρ(x)ξλ

(|∇u|p–2∇u – |∇v|p–2∇v
)∇(u – v) dx dt ≥ 0. (3.7)
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The last term on the right-hand side of (3.6) can be bounded as follows:

∣∣
∣∣

∫∫

Qτ s

(u – v)ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ξλ dx dt
∣∣
∣∣

≤ c
(∫ s

τ

∫

Ωλ

ρ(x)
(|∇u|p + |∇v|p)dx dt

) p–1
p

·
(∫ s

τ

∫

Ωλ

ρ(x)|∇ξλ|p|u – v|p dx dt
) 1

p

≤ c
(∫ s

τ

∫

Ω

ρ(x)
(|∇u|p + |∇v|p)dx dt

) p–1
p

·
(∫ s

τ

∫

Ωλ

ρ(x)
[
ρ(x) – λ

]p( α1
p –1)|∇ρ|p|u – v|p dx dt

) 1
p

≤ c
(∫ s

τ

∫

Ωλ

ρ(x)
[
ρ(x) – λ

]p( α1
p –1)|u – v|p dx dt

) 1
p

.

Here, we have used the fact that |∇ρ(x)| ≤ c. Then,

lim
λ→0

∣
∣∣
∣

∫∫

Qτ s

(u – v)ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇ξλ dx dt
∣
∣∣
∣

≤ lim
λ→0

c
(∫ s

τ

∫

Ωλ

ρ(x)(ρ – λ)p( α1
p –1)|u – v|p dx dt

) 1
p

≤ c
(∫ s

τ

∫

Ω

ρ
1+p( α1

p –1)|u – v|p dx dt
) 1

p
. (3.8)

If p ≥ 2, clearly, since u, v ∈ L∞, |u – v| ≤ c, and we have

(∫ s

τ

∫

Ω

ρ
1+p( α1

p –1)|u – v|p dx dt
) 1

p
≤ c

(∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx dt

) 1
p

, (3.9)

if 1 < p < 2, for α1 ≥ 2(p – 1), using the Hölder inequality, we have

(∫ s

τ

∫

Ω

ρ
1+p( α1

p –1)|u – v|p dx dt
) 1

p

≤
(∫ s

τ

∫

Ω

[
ρ

1+p( α1
p –1)– α1

2
] 2

2–p

) 2–p
2

1
p
(∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx dt

) 1
2

≤ c
(∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx dt

) 1
2

. (3.10)

Meanwhile, by the Lebesgue dominated convergence theorem,

lim
ε→0

∫∫

Qτ s

[
ai(u) – ai(v)

]
[uε – vε)ξλ]xi dx dt

=
∫∫

Qτ s

[
ai(u) – ai(v)

][
(u – v)ξλ

]
xi

dx dt
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=
∫∫

Qτ s

[
ai(u) – ai(v)

]
(u – v)ξλxi dx dt

+
∫∫

Qs

[
ai(u) – ai(v)

]
(u – v)xiξλ dx dt. (3.11)

Due to the fact |∇ρ| ≤ c, α1 ≥ p, we have

lim
λ→0

∫∫

Qτ s

[
ai(u) – ai(v)

]
(u – v)ξλxi dx dt

≤ c lim
λ→0

∫ s

τ

∫

Ωλ

[
ai(u) – ai(v)

]
(u – v)[ρ – λ]

α1
p –1|ρxi |dx

≤ c
(∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx

) 1
2

, (3.12)

and

lim
λ→0

∫∫

Qτ s

[
ai(u) – ai(v)

]
(u – v)xiξλ dx dt

= lim
λ→0

∫∫

Qτ s

[
ai(u) – ai(v)

]
(u – v)xi [ρ – λ]

α1
p

+ dx dt

≤
(∫ s

τ

∫

Ω

(
ρ

α1–1
p

)p′ ∣∣ai(u) – ai(v)
∣
∣p′

dx dt
) 1

p′

·
(∫ s

τ

∫

Ω

ρ(x)
(|∇u|p + |∇v|p)dx dt

) 1
p

≤ c
(∫ s

τ

∫

Ω

ρ
α1–1
p–1

∣
∣ai(u) – ai(v)

∣
∣p′

dx dt
) 1

p′
.

If 1 < p < 2, then p′ > 2, and if α1 ≥ p, when ρ < 1, then ρ
α1–1
p–1 ≤ ρ

α1
p . When 1 ≤ ρ ≤ D =

supx∈Ω ρ(x), it is obvious that

ρ
α1–1
p–1 – α1

p = ρ
α1–p

p(p–1) ≤ D
α1–p

p(p–1) ≤ c.

Thus, ρ
α1–1
p–1 ≤ cρ

α1
p is always true, and then we have

(∫ s

τ

∫

Ω

ρ
α1–1
p–1

∣
∣ai(u) – ai(v)

∣
∣p′

dx dt
) 1

p′
≤ c

(∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx dt

) 1
p′

. (3.13)

If p ≥ 2, then p′ < 2, and for α1 ≥ 2, by the Hölder inequality,

(∫ s

τ

∫

Ω

ρ
α1–1
p–1

∣
∣ai(u) – ai(v)

∣
∣p′

dx dt
) 1

p′

≤ c
(∫ s

τ

∫

Ω

[
ρ

α1–1
p–1 – α1

2(p–1)
] 2

2–p′ dx dt
) 2–p′

2
1
p′ (∫ s

τ

∫

Ω

ρ
α1
p |u – v|2 dx dt

) 1
2

. (3.14)
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By (3.6)–(3.14), after letting ε → 0, we let λ → 0 in (3.3). Then

∫∫

Qτ s

ρ
α1
p (u – v)

∂(|u|β–1u – |v|β–1v)
∂t

dx dt

≤ c
(∫ s

0

∫

Ω

ρ
α1
p

∣
∣u(x, t) – v(x, t)

∣
∣2 dx dt

)q

, (3.15)

where q < 1. Now,

∫∫

Qτ s

ρ
α1
p (u – v)

∂(|u|β–1u – |v|β–1v)
∂t

dx dt

=
∫∫

Qτ s

ρ
α1
p

u – v
|u|β–1u – |v|β–1v

(|u|β–1u – |v|β–1v
)∂(|u|β–1u – |v|β–1v)

∂t
dx dt

=
1
2

∫∫

Qτ s

ρ
α1
p

β|ζ |β–1
∂(|u|β–1u – |v|β–1v)2

∂t
dx dt, (3.16)

where ζ ∈ (v, u).
If for any s ≥ τ

d
dt

∥∥ρ
α1
2p

(|u|β–1u – |v|β–1v
)∥∥

L2(Ω) ≤ 0, t ∈ [τ , s], (3.17)

is true, then
∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, s) – |v|β–1v(x, s)

∣
∣2 dx ≤

∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, τ ) – |v|β–1v(x, τ )

∣
∣2 dx

clearly holds.
If there is an s0 ≥ τ such that

d
dt

∥
∥ρ

α1
2p

(|u|β–1u – |v|β–1v
)∥∥

L2(Ω) > 0, t ∈ [τ , s0], (3.18)

then by (3.16)

∫∫

Qτ s0

ρ
α1
p (u – v)

∂(|u|β–1u – |v|β–1v)
∂t

dx dt

=
1
2

∫∫

Qτ s0

ρ
α1
p

β|ζ |β–1
∂(|u|β–1u – |v|β–1v)2

∂t
dx dt

≥ 1
2βMβ–1

∫∫

Qτ s0

ρ
α1
p

∂(|u|β–1u – |v|β–1v)2

∂t
dx dt, (3.19)

where ζ ∈ (v, u), M = max{‖u‖L∞(QT ),‖v‖L∞(QT )}.
By (3.15), (3.16), and (3.19),

∫ s0

τ

∂

∂t

∫

Ω

ρ
α1
p

(|u|β–1u – |v|β–1v
)2 dx dt

≤ 2cβMβ–1
(∫ s0

τ

∫

Ω

ρ
α1
p

∣
∣u(x, t) – v(x, t)

∣
∣2 dx dt

)q

.
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Then
∫

Ω

ρ
α1
p

∣∣|u|β–1u(x, s0) – |v|β–1v(x, s0)
∣∣2 dx

≤
∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, τ ) – |v|β–1v(x, τ )

∣
∣2 dx

+ 2cβMβ–1
(∫ s0

τ

∫

Ω

ρ
α1
p

∣
∣u(x, t) – v(x, t)

∣
∣2 dx dt

)q

. (3.20)

Since

∣
∣|u|β–1u – |v|β–1v

∣
∣ =

∣∣
∣∣
|u|β–1u – |v|β–1v

u – v
(u – v)

∣∣
∣∣ = β|ζ |β–1|u – v|,

by (3.20), we have

∫

Ω

ρ
α1
p

∣∣|u|β–1u(x, s0) – |v|β–1v(x, s0)
∣∣2 dx

≤
∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, τ ) – |v|β–1v(x, τ )

∣
∣2 dx

+
2cMβ–1

βm2(β–1)

(∫ s0

τ

∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, t) – |v|β–1v(x, t)

∣
∣2 dx dt

)q

. (3.21)

Here m = min{‖u‖L∞(QT ),‖v‖L∞(QT )}. Inequality (3.21) implies

∫

Ω

ρ
α1
p

∣∣|u|β–1u(x, s0) – |v|β–1v(x, s0)
∣∣2 dx

≤
∫

Ω

ρ
α1
p

∣
∣|u|β–1u(x, τ ) – |v|β–1v(x, τ )

∣
∣2 dx, t ∈ [τ , s0].

This inequality contradicts assumption (3.18).
Thus, for any s, τ ∈ [0, T), (3.17) is always true. By the arbitrariness of τ , we have

∫

Ω

ρ
α1
p

∣∣|u|β–1u(x, s) – |v|β–1v(x, s)
∣∣2 dx ≤

∫

Ω

ρ
α1
p

∣∣|u0|β–1u0(x) – |v0|β–1v0(x)
∣∣2 dx.

The proof is complete. �

Since ρ satisfies (1.6), from (3.1), we can deduce Theorem 1.3.

4 The proof of Theorem 1.4

Proof For any given positive integer n, let gn(s) be an odd function, and

gn(s) =

⎧
⎨

⎩
1, s > 1

n ,

n2s2e1–n2s2 , 0 ≤ s ≤ 1
n .

Clearly,

lim
n→∞ gn(s) = sgn(s), s ∈ (–∞, +∞), (4.1)
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and

0 ≤ g ′
n(s) ≤ c

s
, 0 < s <

1
n

, (4.2)

where c is independent of n.
Let uε and vε be the asymptotic solutions of u and v, respectively. They satisfy the asymp-

totic problem (2.1)–(2.3). Since the weak solution of Eq. (1.7) with the initial value (1.8) is
unique, we have

lim
ε→0

uε = u, lim
ε→0

vε = v, a.e. (x, t) ∈ QT , (4.3)

ρ
1
p (x)∇uε ⇀ ρ

1
p (x)∇u, ρ

1
p (x)∇vε ⇀ ρ

1
p (x)∇v, in Lp(Ω). (4.4)

We can choose χ[τ ,s]gn(uε – vε) as the test function. Then

∫ t

s

∫

Ω

gn(uε – vε)
∂(|u|β–1u – |v|β–1v)

∂t
dx dt

+ δ

∫ t

s

∫

Ω

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(uε – vε)g ′
n dx dt

+
N∑

i=1

∫ t

s

∫

Ω

[
ai(u) – ai(v)

] · (uε – vε)xi g
′
n(uε – vε) dx dt

= 0. (4.5)

At first, by (4.4), we have

lim
ε→0

∫

Ω

[
ρ

p–1
p

(|∇u|p–2∇u – |∇v|p–2∇v
)]

ρ
1
p
[∇(uε – vε) – ∇(u – v)

]
dx dt = 0. (4.6)

Secondly, we have

lim
ε→0

∫

Ω

ρ
p–1

p
(|∇u|p–2∇u – |∇v|p–2∇v

)
ρ

1
p
[∇(uε – vε) – ∇(u – v)

]
g ′

n(uε – vε) dx dt

= lim
ε→0

∫

Ω

ρ
p–1

p
(|∇u|p–2∇u – |∇v|p–2∇v

)
ρ

1
p
[∇(uε – vε) – ∇(u – v)

]′
n(u – v) dx dt

+ lim
ε→0

∫

Ω

ρ
p–1

p (x)
(|∇u|p–2∇u – |∇v|p–2∇v

)

· ρ 1
p
[∇(uε – vε) – ∇(u – v)

][
g ′

n(uε – vε) – g ′
n(u – v)

]
dx dt

= lim
ε→0

∫

Ω

ρ
p–1

p
(|∇u|p–2∇u – |∇v|p–2∇v

)
ρ

1
p
[∇(uε – vε) – ∇(u – v)

]
g ′

n(u – v) dx dt

= 0. (4.7)
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Here, we have used two facts. The first one is, by (4.6),

lim
ε→0

∫

Ω

ρ
p–1

p
(|∇u|p–2∇u – |∇v|p–2∇v

)
ρ

1
p
[∇(uε – vε) – ∇(u – v)

]
g ′

n(u – v) dx dt

= g ′
n(ζ ) lim

ε→0

∫

Ω

ρ
p–1

p (x)
(|∇u|p–2∇u – |∇v|p–2∇v

)
ρ

1
p
[∇(uε – vε) – ∇(u – v)

]
dx dt

= 0.

The second one is, since (uε – vε) → (u – v), a.e. in Ω ,

∣
∣[g ′

n(uε – vε) – g ′
n(u – v)

]∣∣ ≤ c(n),

using (4.6),

lim
ε→0

∫

Ω

ρ
p–1

p (x)
(|∇u|p–2∇u – |∇v|p–2∇v

)

× ρ
1
p
[∇(uε – vε) – ∇(u – v)

][
g ′

n(uε – vε) – g ′
n(u – v)

]
dx dt

= 0.

Thirdly, we have

lim
ε→0

∫

Ω

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(uε – vε)g ′
n(uε – vε) dx dt

=
∫∫

Qτ s

ρ(x)
(|∇u|p–2∇u – |∇v|p–2∇v

)∇(u – v)g ′
n(u – v) dx dt ≥ 0. (4.8)

Moreover, since

∫

Ω

∣
∣ρ

1
p (uε – vε)xi g

′
n(uε – vε)

∣
∣p dx

≤ c(n)
∫

Ω

∣∣ρ
1
p (uε – vε)xi

∣∣p dx ≤ c(n),

we have

ρ
1
p g ′

n(uε – vε)(uε – vε)xi ⇀ ρ
1
p (u – v)xi g

′
n(u – v), in Lp(Ω).

Then

lim
ε→0

∫

Ω

[
ai(u) – ai(v)

]
(uε – vε)xi g

′
n(uε – vε) dx

=
∫

Ω

[
ai(u) – ai(v)

] · (u – v)xi g
′
n(u – v) dx.

Based on it, we are able to prove that

lim
n→∞

∫

Ω

[
ai(u) – ai(v)

] · (u – v)xi g
′
n(u – v) dx = 0. (4.9)
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In details, the limitation (4.9) is established by the following calculations:

∣∣
∣∣

∫

{x∈Ω :|u–v|< 1
n }

[
ai(u) – ai(v)

]
g ′

n(u – v)(u – v)xi dx
∣∣
∣∣

≤ c
∫

{x∈Ω :|u–v|< 1
n }

∣
∣∣
∣
ai(u) – ai(v)

u – v

∣
∣∣
∣
∣∣(u – v)xi

∣∣dx

≤ c
[∫

{x∈Ω :|u–v|< 1
n }

∣∣
∣∣ρ

– 1
p

ai(u) – ai(v)
u – v

∣∣
∣∣

p
p–1

dx
] p–1

p

·
[∫

{x∈Ω :|u–v|< 1
n }

∣
∣ρ

1
p ∇(u – v)

∣
∣p dx

] 1
p

. (4.10)

Due to (1.12),

∫

{x∈Ω :|u–v|< 1
n }

∣
∣∣
∣ρ

– 1
p

ai(u) – ai(v)
u – v

∣
∣∣
∣

p
p–1

dx

≤
∫

Ω

ρ
– 1

p–1
∣∣a′

i(ξ )
∣∣

p
p–1 dx ≤ c

∫

Ω

ρ
– 1

p–1 dx

≤ c, (4.11)

where ξ ∈ (v, u).
In (4.10), let n → ∞. If {x ∈ Ω : |u – v| = 0} is a set of zero measure, by (4.11), then

lim
n→∞

∫

{x∈Ω :|u–v|< 1
n }

∣∣ρ
–1

p–1 a′
i(ξ )

∣∣dx =
∫

{x∈Ω :|u–v|=0}

∣∣ρ
–1

p–1 a′
i(ξ )

∣∣dx = 0.

If the set {x ∈ Ω : |u – v| = 0} has positive measure, then

lim
n→∞

∫

{x∈Ω :|u–v|< 1
n }

ρ
∣
∣∇(u – v)

∣
∣p dx =

∫

{x∈Ω :|u–v|=0}
ρ
∣
∣∇(u – v)

∣
∣p dx = 0.

Therefore, in both cases, the right-hand side of inequality (4.10) goes to 0 as n → ∞. So
(4.9) is true.

Now, letting n → ∞ in (4.5),

lim
n→∞ lim

ε→0

∫

Ω

gn(uε – vε)
∂(|u|β–1u – |v|β–1v)

∂t
dx

= lim
n→∞

∫

Ω

gn(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx

=
∫

Ω

sgn(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx

=
∫

Ω

sgn
(|u|β–1u – |v|β–1v

)∂(|u|β–1u – |v|β–1v)
∂t

dx

=
d
dt

∥
∥|u|β–1u – |v|β–1v

∥
∥

1. (4.12)
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Then, by (4.6), (4.7), (4.8), (4.9) and (4.12), we have

d
dt

∥
∥|u|β–1u – |v|β–1v

∥
∥

1 ≤ 0.

It implies that

∫

Ω

∣
∣|u|β–1u(x, t) – |v|β–1v(x, t)

∣
∣dx ≤

∫

Ω

∣
∣|u0|β–1u0 – |v0|β–1v0

∣
∣dx, ∀t ∈ [0, T).

Theorem 1.4 is proved. �

5 Conclusions
The equation considered in this paper comes from many reaction–diffusion problems. If
the diffusion coefficient not only depends on the unknown solution u, but also on the spa-
tial variable x, the degeneracy of the equation becomes more complicated. If the diffusion
coefficient is degenerate on the boundary, the usual Dirichlet boundary value condition
seems redundant completely. The uniqueness of the weak solution is proved without any
boundary value conditions. Based on this fact, the stability of weak solutions can also be
proved without any boundary value conditions.
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