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1 Introduction
Fractional differential equations have gained considerable importance due to their applica-
tions in various sciences such as physics, mechanics, chemistry, engineering, etc. [1–7]. In
the recent years, there has been a significant development in ordinary and partial differen-
tial equations involving fractional derivatives, see the monographs [8–10] and the papers
in [11–17]. However, there have been few contributions to the existence and uniqueness
of the following fractional differential equations:

⎧
⎨

⎩

Dα
c x(t) – Dβ

c x(t) = f (t, x(t)), t ∈ [0, T), 0 < β < α < 1,

x(0) = x0.
(1.1)

In most of the available literature, fractional integral inequalities play an important role
in the qualitative analysis of the solutions for fractional differential equations (see [14–
17]). In this paper, by a method introduced by M. Medveď [18], we first study the following
Henry–Gronwall integral inequalities:

u(t) ≤ a(t) + b1(t)
∫ t

0
(t – s)γ1–1l1(s)u(s) ds + b2(t)

∫ t

0
(t – s)γ2–1l2(s)u(s) ds (1.2)

and

u(t) ≤ a(t)+b1(t)
∫ t

0
(t –s)γ1–1l1(s)ϕ1

(
u(s)

)
ds+b2(t)

∫ t

0
(t –s)γ2–1l2(s)ϕ2

(
u(s)

)
ds, (1.3)

where 0 < γ1 < γ2 < 1, which generalize the famous Henry inequalities [19]. Then using
a suitable substitution, we construct an equivalent fractional integral equation of equa-
tion (1.1). By the above integral inequalities and fixed point theorem, we present the exis-
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tence and uniqueness of fractional differential equations (1.1). Finally, some examples are
given to illustrate the applications of the obtained results.

2 Preliminaries
In this section, we introduce definitions and preliminary facts which are used throughout
this paper.

Let I = [0, a] (0 < a < +∞) be a finite interval. AC[0, a] is the space of functions which are
absolutely continuous on I . L∞(0, a) is the space of measurable functions f : I → � with
the norm ‖f ‖L∞ = inf{c > 0, |f (t)| ≤ c, a.e. t ∈ I}. C1[0, a] is the space of functions which
are continuously differentiable on I .

The Riemann–Liouville fractional integral and derivative of order α ∈ (0, 1) are defined
by

Iαx(t) =
1

Γ (α)

∫ t

0

x(s)
(t – s)1–α

ds, t > 0

and

Dαx(t) =
1

Γ (1 – α)
d
dt

∫ t

0

x(s)
(t – s)α

ds, t > 0.

The Caputo fractional derivative of order α ∈ (0, 1) is defined by

Dα
c x(t) = Dαx(t) –

x(0)
Γ (1 – α)

t–α , t > 0.

In particular, when x(t) ∈ AC[0, a],

Dα
c x(t) =

1
Γ (1 – α)

∫ t

0

x′(s)
(t – s)α

ds, t > 0.

Lemma 2.1 ([8]) Let α ∈ (0, 1) and x ∈ L∞(0, a) or x ∈ C[0, a], then

(
Dα

c Iαx
)
(t) = x(t).

Lemma 2.2 ([8]) Let α ∈ (0, 1) and x ∈ AC[0, a] or x ∈ C1[0, a], then

(
IαDα

c x
)
(t) = x(t) – x(0).

Theorem 2.3 Let 0 < β < α < 1 and x ∈ AC[0, a] or x ∈ C1[0, a], then

(
Dα

c Iα–βx
)
(t) = Dβ

c x(t) +
x(0)

Γ (1 – β)
t–β .

Proof By Lemmas 2.1 and 2.2, we know

(
Dα

c Iα–βx
)
(t) = Dα

c Iα–β
((

IβDβ
c x

)
(t) + x(0)

)

=
(
Dα

c IαDβ
c x

)
(t) + Dα

c Iα–β
(
x(0)

)
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= Dβ
c x(t) +

x(0)
Γ (1 – β)

t–β . (2.1)
�

Theorem 2.4 Let 0 < β < α < 1 and x = Iβμ(t), where μ ∈ C[0, a], then

(
Dα

c Iα–βx
)
(t) = Dβ

c x(t).

Proof We know

(
Dα

c Iα–βx
)
(t) =

(
Dα

c Iα–β Iβμ
)
(t)

=
(
Dα

c Iαμ
)
(t)

= μ(t)

= Dβ
c x(t). (2.2)

�

Theorem 2.5 Let 0 < γ1 < γ2 < 1, a(t), b1(t), b2(t), l1(t), and l2(t) be continuous, nonnega-
tive functions on [0, +∞), and u(t) be a continuous, nonnegative function on [0, +∞) with

u(t) ≤ a(t) + b1(t)
∫ t

0
(t – s)γ1–1l1(s)u(s) ds + b2(t)

∫ t

0
(t – s)γ2–1l2(s)u(s) ds. (2.3)

Then the following assertions hold:

u(t) ≤
(

3p–1ap(t) + 3p–1bp(t)
(

A(t) +
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ ) dτ

)

ds
)) 1

p
,

t ∈ [0, +∞), (2.4)

where b(t) = max{ b1(t)tγ1–1+ 1
q

(q(γ1–1)+1)
1
q

, b2(t)tγ2–1+ 1
q

(q(γ2–1)+1)
1
q
}, A(t) =

∫ t
0 3p–1(lp

1(s) + lp
2(s))ap(s) ds, L(t) =

3p–1bp(t)(lp
1(t) + lp

2(t)), and p, q ∈ (1, +∞) such that γ1 + 1
q > 1 and 1

q + 1
p = 1.

Proof Choose nonnegative constants p, q such that γ1 + 1
q > 1 and 1

q + 1
p = 1. Using the

Hölder inequality, we obtain

u(t) ≤ a(t) + b1(t)
∫ t

0
(t – s)γ1–1l1(s)u(s) ds

+ b2(t)
∫ t

0
(t – s)γ2–1l2(s)u(s) ds

≤ a(t) + b1(t)
(∫ t

0
(t – s)(γ1–1)q ds

) 1
q
(∫ t

0

(
l1(s)u(s)

)p ds
) 1

p

+ b2(t)
(∫ t

0
(t – s)(γ2–1)q ds

) 1
q
(∫ t

0

(
l2(s)u(s)

)p ds
) 1

p

≤ a(t) +
b1(t)tγ1–1+ 1

q

(q(γ1 – 1) + 1)
1
q

(∫ t

0
lp
1(s)up(s) ds

) 1
p
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+
b2(t)tγ2–1+ 1

q

(q(γ2 – 1) + 1)
1
q

(∫ t

0
lp
2(s)up(s) ds

) 1
p

. (2.5)

Let b(t) = max{ b1(t)tγ1–1+ 1
q

(q(γ1–1)+1)
1
q

, b2(t)tγ2–1+ 1
q

(q(γ2–1)+1)
1
q
}. Then

up(t) ≤ 3p–1ap(t) + 3p–1bp(t)
∫ t

0

(
lp
1(s) + lp

2(s)
)
up(s) ds (2.6)

and

∫ t

0

(
lp
1(s) + lp

2(s)
)
up(s) ds

≤
∫ t

0
3p–1(lp

1(s) + lp
2(s)

)
ap(s) ds

+
∫ t

0
3p–1bp(s)

(
lp
1(s) + lp

2(s)
)
∫ s

0

(
lp
1(τ ) + lp

2(τ )
)
up(τ ) dτ ds. (2.7)

Let w(t) =
∫ t

0 (lp
1(s)+lp

2(s))up(s) ds, A(t) =
∫ t

0 3p–1(lp
1(s)+lp

2(s))ap(s) ds, and L(t) = 3p–1bp(t)×
(lp

1(t) + lp
2(t)). Then

w(t) ≤ A(t) +
∫ t

0
L(s)w(s) ds. (2.8)

By Gronwall’s integral inequality, we have

w(t) ≤ A(t) +
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ ) dτ

)

ds. (2.9)

By (2.6) and (2.9) we obtain inequality (2.4) and complete the proof. �

Theorem 2.6 Let 0 < γ1 < γ2 < 1, a(t), b1(t), b2(t), l1(t), and l2(t) be nondecreasing, non-
negative, and continuous functions on [0, T)(0 < T ≤ +∞), ϕ1,ϕ2 : [0, +∞) → [0, +∞) be
continuous, nondecreasing functions, and u(t) be a continuous, nonnegative function on
[0, T) with

u(t) ≤ a(t) + b1(t)
∫ t

0
(t – s)γ1–1l1(s)ϕ1

(
u(s)

)
ds

+ b2(t)
∫ t

0
(t – s)γ2–1l2(s)ϕ2

(
u(s)

)
ds. (2.10)

Then

u(t) ≤
(

Ω–1
(

Ω
(
A(t)

)
+ B1(t)

∫ t

0
lp
1(s) ds + B2(t)

∫ t

0
lp
2(s) ds

)) 1
p

, t ∈ [0, T1], (2.11)

where A(t) = 3p–1ap(t), B1(t) = 3p–1( b1(t)tγ1–1+ 1
q

(q(γ1–1)+1)
1
q

)p, B2(t) = 3p–1( b2(t)tγ2–1+ 1
q

(q(γ2–1)+1)
1
q

)p, Ω(x) =
∫ x

t0
1

μ1(t)+μ2(t) dt, μ1(t) = ϕ
p
1 (t

1
p ), μ2(t) = ϕ

p
2 (t

1
p ), t0 > 0, Ω–1 is the inverse of Ω , and T1 ∈
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(0, T) is such that Ω(A(t)) + B1(t)
∫ t

0 lp
1(s) ds + B2(t)

∫ t
0 lp

2(s) ds ∈ Dom(Ω–1) for all t ∈ [0, T1],
and p, q ∈ (1, +∞) such that γ1 + 1

q > 1 and 1
q + 1

p = 1.

Proof Choose nonnegative constants p, q such that γ1 + 1
q > 1 and 1

q + 1
p = 1. Using the

Hölder inequality, we obtain

u(t) ≤ a(t) + b1(t)
∫ t

0
(t – s)γ1–1l1(s)ϕ1

(
u(s)

)
ds

+ b2(t)
∫ t

0
(t – s)γ2–1l2(s)ϕ2

(
u(s)

)
ds

≤ a(t) +
b1(t)tγ1–1+ 1

q

(q(γ1 – 1) + 1)
1
q

(∫ t

0
lp
1(s)ϕp

1
(
u(s)

)
ds

) 1
p

+
b2(t)tγ2–1+ 1

q

(q(γ2 – 1) + 1)
1
q

(∫ t

0
lp
2(s)ϕp

2
(
u(s)

)
ds

) 1
p

. (2.12)

Then

up(t) ≤ 3p–1ap(t) + 3p–1
(

b1(t)tγ1–1+ 1
q

(q(γ1 – 1) + 1)
1
q

)p ∫ t

0
lp
1(s)ϕp

1
(
u(s)

)
ds

+ 3p–1
(

b2(t)tγ2–1+ 1
q

(q(γ2 – 1) + 1)
1
q

)p ∫ t

0
lp
2(s)ϕp

2
(
u(s)

)
ds. (2.13)

Let w(t) = up(t), A(t) = 3p–1ap(t), B1(t) = 3p–1( b1(t)tγ1–1+ 1
q

(q(γ1–1)+1)
1
q

)p, and B2(t) = 3p–1( b2(t)tγ2–1+ 1
q

(q(γ2–1)+1)
1
q

)p.

Fix any T0 ∈ [0, T1], then for t ∈ [0, T0] and (2.13) we have

w(t) ≤ A(T0) + B1(T0)
∫ t

0
lp
1(s)μ1

(
w(s)

)
ds

+ B2(T0)
∫ t

0
lp
2(s)μ2

(
w(s)

)
ds. (2.14)

Let V (t) = A(T0) + B1(T0)
∫ t

0 lp
1(s)μ1(w(s)) ds + B2(T0)

∫ t
0 lp

2(s)μ2(w(s)) ds, then we get

V ′(t) = B1(T0)lp
1(t)μ1

(
w(t)

)
+ B2(T0)lp

2(t)μ2
(
w(t)

)

≤ B1(T0)lp
1(t)μ1

(
V (t)

)
+ B2(T0)lp

2(t)μ2
(
V (t)

)
. (2.15)

This yields

V ′(t)
μ1(V (t)) + μ2(V (t))

≤ B1(T0)lp
1(t) + B2(T0)lp

2(t) (2.16)

or

d
dt

Ω
(
V (t)

) ≤ B1(T0)lp
1(t) + B2(T0)lp

2(t). (2.17)
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Integrating this inequality from 0 to t ∈ [0, T0], we obtain

Ω
(
V (t)

) ≤ Ω
(
A(T0)

)
+

∫ t

0
B1(T0)lp

1(s) + B2(T0)lp
2(s) ds, (2.18)

then

V (t) ≤ Ω–1
(

Ω
(
A(T0)

)
+

∫ t

0
B1(T0)lp

1(s) + B2(T0)lp
2(s) ds

)

, t ∈ [0, T0] (2.19)

and

u(t) ≤
(

Ω–1
(

Ω
(
A(T0)

)
+

∫ t

0
B1(T0)lp

1(s) + B2(T0)lp
2(s) ds

)) 1
p

, t ∈ [0, T0]. (2.20)

So

u(T0) ≤
(

Ω–1
(

Ω
(
A(T0)

)
+ B1(T0)

∫ T0

0
lp
1(s) ds + B2(T0)

∫ T0

0
lp
2(s) ds

)) 1
p

. (2.21)

Now replacing T0 by t in inequality (2.21), we obtain the result (2.11) valid for t ∈ [0, T1]
provided

Ω
(
A(t)

)
+ B1(t)

∫ t

0
lp
1(s) ds + B2(t)

∫ t

0
lp
2(s) ds ∈ Dom

(
Ω–1)

for all t ∈ [0, T1]. �

Lemma 2.7 ([20, 21]) Let E be a Banach space X, C be a closed, convex subset of E, U be
an open subset of C, and P ∈ U . Suppose that F : U → C is a continuous, compact map.
Then either

(a) F has a fixed point in U ; or
(b) there are u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u) + (1 – λ)P.

Lemma 2.8 ([20, 21]) Let E be a Hausdorff locally convex linear topological space, C be
a convex subset of E, U be an open subset of C, and P ∈ U . Suppose that F : U → C is a
continuous, compact map. Then either

(a) F has a fixed point in U ; or
(b) there are u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u) + (1 – λ)P.

3 Main results
In this section, we give the existence and uniqueness results of the fractional differential
equations (1.1).

Theorem 3.1 f : �+ × � → � is a continuous function. If x(·) ∈ C[0, a] is the solution of
the following integral equation

x(t) = x0 +
1

Γ (α – β)

∫ t

0
(t – s)α–β–1(x(s) – x0

)
ds +

1
Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds, (3.1)

then x(t) is the solution of the fractional integral equation (1.1).



Zhu Boundary Value Problems         (2019) 2019:22 Page 7 of 11

Proof If x(t) ∈ C[0, a] is the solution of the integral equation (3.1), we know x(0) = x0 and

x(t) – x0 = Iα–β
(
x(t) – x0

)
+ Iαf

(
t, x(t)

)
= Iα–βμ(t), (3.2)

where μ(t) = x(t) – x0 + Iβ f (t, x(t)). By (3.1) and (3.2), we obtain

x(t) – x0 = Iα–β
(
x(t) – x0

)
+ Iαf

(
t, x(t)

)
= I2(α–β)μ(t) + Iαf

(
t, x(t)

)
. (3.3)

If 2(α –β) < α, then x(t) – x0 = I2(α–β)μ1(t), where μ1(t) = μ(t) + I2β–αf (t, x(t)). By the same
step, we obtain x(t) – x0 ∈ Iαφ1(t) and x(t) – x0 ∈ Iβφ2(t), where φ1(t),φ2(t) ∈ C[0, a].

By Lemma 2.1 and Theorem 2.4, we get

Dα
c x(t) = Dα

c Iα–β
(
x(t) – x0

)
+ Dα

c Iαf
(
t, x(t)

)

= Dβ
c
(
x(t) – x0

)
+ f

(
t, x(t)

)

= Dβ
c x(t) + f

(
t, x(t)

)
. (3.4)

�

Theorem 3.2 Let x0 > 0, f : �+ × �+ → �+ be a continuous function, and there exist non-
negative continuous functions l(t) and k(t) such that

∣
∣f (t, x)

∣
∣ ≤ l(t)|x| + k(t)

for all x ∈ �+, t ∈ [0,∞). Then equation (1.1) has at least one positive solution on [0,∞).

Proof Consider the operator G : W → W defined by

(Gx)(t) = x0 +
1

Γ (α – β)

∫ t

0
(t – s)α–β–1(x(s) – x0

)
ds

+
1

Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds, (3.5)

where W = {x(t) ∈ C[0, +∞)|x(t) ≥ x0}.
By Theorem 3.1, we know that the fixed points of operator G are solutions of equation

(1.1). We can show that G : W → W is continuous and compact by the usual techniques
(see [12, 13]).

Let U = {x ∈ W : |x(t)| < (3p–1ap(t) + 3p–1bp(t)(A(t) +
∫ t

0 L(s)A(s) exp(
∫ t

s L(τ ) dτ ) ds))
1
p +

1, t ∈ [0,∞)}, where a(t) = |x0| + | x0tα–β

(α–β)Γ (α–β) | + 1
Γ (α)

tα–1+ 1
q

((α–1)q+1)
1
q

(
∫ t

0 kp(s) ds)
1
p , b(t) =

max{
1

Γ (α–β) tα–β–1+ 1
q

(q(α–β–1)+1)
1
q

,
1

Γ (α) tα–1+ 1
q

(q(α–1)+1)
1
q
}, A(t) =

∫ t
0 3p–1(1 + lp(s))ap(s) ds, L(t) = 3p–1bp(t)(1 + lp(t)),

and p, q ∈ (1, +∞) such that α – β + 1
q > 1 and 1

q + 1
p = 1.

If x ∈ W is any solution of

x(t) = (1 – λ)x0 + λ

(
1

Γ (α – β)

∫ t

0
(t – s)α–β–1(x(s) – x0

)
ds

+
1

Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

)

(3.6)

for λ ∈ (0, 1).
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Then

∣
∣x(t)

∣
∣ ≤ |x0| +

∣
∣
∣
∣

x0tα–β

(α – β)Γ (α – β)

∣
∣
∣
∣

+
∣
∣
∣
∣

1
Γ (α – β)

∫ t

0
(t – s)α–β–1x(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

1
Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds)

∣
∣
∣
∣

≤ |x0| +
∣
∣
∣
∣

x0tα–β

(α – β)Γ (α – β)

∣
∣
∣
∣ +

1
Γ (α)

tα–1+ 1
q

((α – 1)q + 1)
1
q

(∫ t

0
kp(s) ds

) 1
p

+
1

Γ (α – β)

∫ t

0
(t – s)α–β–1∣∣x(s)

∣
∣ds +

1
Γ (α)

∫ t

0
(t – s)α–1l(s)

∣
∣x(s)

∣
∣ds. (3.7)

Consequently, by Theorem 2.5, we can get

∣
∣x(t)

∣
∣ ≤

(

3p–1ap(t) + 3p–1bp(t)
(

A(t) +
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ ) dτ

)

ds
)) 1

p
,

t ∈ [0,∞). (3.8)

Applying Lemma 2.8, we can obtain that G has at least one fixed point in W . Thus, the
proof is completed. �

Theorem 3.3 If f : �+ × �+ → �+ is a continuous function and

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ l(t)|x – y|

for all x, y ∈ �+ and t ∈ [0, +∞), where nonnegative function l(t) ∈ C[0, +∞), then equation
(1.1) has a unique positive solution on [0, +∞).

Proof By Theorem 3.2, we suppose that x1(t), x2(t) are two positive solutions of equation
(1.1). Then

∣
∣x1(t) – x2(t)

∣
∣ ≤

∣
∣
∣
∣

1
Γ (α – β)

∫ t

0
(t – s)α–β–1(x1(s) – x2(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
Γ (α)

∫ t

0
(t – s)α–1(f

(
s, x1(s)

)
– f

(
s, x2(s)

))
ds

∣
∣
∣
∣

≤ 1
Γ (α – β)

∫ t

0
(t – s)α–β–1∣∣x1(s) – x2(s)

∣
∣ds

+
1

Γ (α)

∫ t

0
(t – s)α–1l(s)|x1(s)) – x2(s)|ds. (3.9)

By Theorem 2.5, we can get x1(t) = x2(t). �

Theorem 3.4 Let x0 > 0, f : [0, T] × �+ → �+ be a continuous function, and there ex-
ist a nonnegative function l(t) ∈ C[0, T] and a nonnegative nondecreasing function ω ∈
C[0, +∞) such that

∣
∣f (t, x)

∣
∣ ≤ l(t)ω

(|x|).
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Then the initial value problem (1.1) has at least a continuous positive solution on [0, T]
provided that

Ω
(
A(t)

)
+ tB1(t) + B2(t)

∫ t

0
lp(s) ds ∈ Dom

(
Ω–1)

for all t ∈ [0, T], where A(t) = 3p–1(|x0| + |x0tα–β |
(α–β)Γ (α–β) )p, B1(t) = 3p–1(

1
Γ (α–β) tα–β–1+ 1

q

(q(α–β–1)+1)
1
q

)p, B2(t) =

3p–1(
1

Γ (α) tα–1+ 1
q

(q(α–1)+1)
1
q

)p, Ω(x) =
∫ x

t0
1

μ1(t)+μ2(t) dt, μ1(t) = t, μ2(t) = ωp(t
1
p ), t0 > 0, Ω–1 is the inverse

of Ω , and p, q ∈ (1, +∞) such that α – β + 1
q > 1 and 1

q + 1
p = 1.

Proof Consider the operator G : W → W defined by

(Gx)(t) = x0 +
1

Γ (α – β)

∫ t

0
(t – s)α–β–1(x(s) – x0

)
ds

+
1

Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds, (3.10)

where W = {x ∈ C[0, T]|x(t) ≥ x0}.
Similarly with the proof of Theorem 3.2, we can show that G : W → W is continuous

and compact.
Let U = {x ∈ W : |x(t)| < (Ω–1(Ω(A(t)) + tB1(t) + B2(t)

∫ t
0 lp(s) ds))

1
p + 1, t ∈ [0, T]}.

If x ∈ W is any solution of

x(t) = (1 – λ)x0 + λ

(
1

Γ (α – β)

∫ t

0
(t – s)α–β–1(x(s) – x0

)
ds

+
1

Γ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

)

for λ ∈ (0, 1).
Then

∣
∣x(t)

∣
∣ ≤ |x0| +

|x0tα–β |
(α – β)Γ (α – β)

+
1

Γ (α – β)

∫ t

0
(t – s)α–β–1∣∣x(s)

∣
∣ds

+
1

Γ (α)

∫ t

0
(t – s)α–1l(s)ω

(∣
∣x(s)

∣
∣
)

ds. (3.11)

By Theorem 2.6, we can get

∣
∣x(t)

∣
∣ ≤

(

Ω–1
(

Ω
(
A(t)

)
+ tB1(t) + B2(t)

∫ t

0
lp(s) ds

)) 1
p

, t ∈ [0, T]. (3.12)

By Lemma 2.7, G has at least one fixed point in W . Thus, the proof is completed. �
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4 Examples
Example 4.1

⎧
⎨

⎩

D
1
2
c x(t) – D

1
4
c x(t) = t2x 1

2 (t),

x(0) = 1.
(4.1)

We know |t2x 1
2 (t)| ≤ t2(|x(t)|+1)

2 , all assumptions of Theorem 3.2 are satisfied. Hence equa-
tion (4.1) has at least one positive solution on [0, +∞).

Example 4.2

⎧
⎨

⎩

D
1
2
c x(t) – D

1
4
c x(t) = et ln(1 + x(t)),

x(0) = 1.
(4.2)

We know | ln(1+ x) – ln(1+ y)| ≤ |x – y| for all x, y ∈ (0, +∞). From Theorem 3.3, equation
(4.2) has a unique positive solution on [0, +∞).

Example 4.3

⎧
⎨

⎩

D
1
2
c x(t) – D

1
4
c x(t) = tx2(t),

x(0) = 1.
(4.3)

Let q = 5
4 and p = 5, from Theorem 3.4, equation (4.3) has at least one positive solution

on [0, T] provided that

ln

(

34
(

1 +
4T 1

4

Γ ( 1
4 )

)5)

+ 34
(

16
4
5 T 1

20

Γ ( 1
4 )

)5

T + 34
(

8
4
5 T 3

10

3
4
5 Γ ( 1

2 )

)5 T6

6

< ln

(

1 + 34
(

1 +
4T 1

4

Γ ( 1
4 )

)5)

.
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