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Abstract
In this paper, we consider the initial-boundary value problem of the following
semilinear heat equation with past and finite history memories:

ut –�u +
∫ t

0
g1(t – s) div(a1(x)∇u(s))ds

+
∫ +∞

0
g2(s) div(a2(x)∇u(t – s))ds + f (u) = 0, (x, t) ∈ Ω × [0, +∞),

where Ω is a bounded domain. Under suitable conditions on a1 and a2, for a large
class of relation functions g1 and g2, we establish a general decay estimate, including
the usual exponential and polynomial decay cases.
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1 Introduction
In this paper, we aim at studying a generalized decay result of the following problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – �u +
∫ t

0 g1(t – s) div(a1(x)∇u(s)) ds

+
∫ +∞

0 g2(s) div(a2(x)∇u(t – s)) ds + f (u) = 0, (x, t) ∈ Ω × [0, +∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, +∞),

u(x, –t) = u0(x, t), (x, t) ∈ Ω × [0, +∞),

(1.1)

where Ω ⊂R
N (N ≥ 1) is a bounded domain with smooth boundary ∂Ω , g1 and g2 are pos-

itive nonincreasing functions defined on R
+ := [0, +∞), a1 and a2 are essentially bounded

nonnegative functions defined on Ω , f is the nonlinear term, and u0 is a given initial con-
dition, respectively, satisfying assumptions (H1)–(H5) shown in Sect. 2.

This type of equations describes many mathematical models in engineering and physical
sciences; we refer to [1]. For example, in the study of heat conduction in materials with
memory, the classical Fourier law of the heat flux is replaced by the following form (see
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[2]):

q = –d∇u –
∫ t

–∞
g(t – s)∇[

a(x)u(x, s)
]

ds,

where q, u, d, and the integral term represent the heat flux, temperature, diffusion co-
efficient, and memory effect in the material, respectively. From the mathematical point
of view, we would expect that the leading term –d∇u dominates the integral term in the
equation. Hence theory of parabolic equations can be applied to this type of equations.

The study on the global existence, blow-up, and energy decay of solutions for this type of
problems involving a finite history memory term has attracted much attention; see [3–12]
and the references therein. More precisely, Messaoudi and Tellab [9] studied the quasilin-
ear parabolic system of the form

A(t)|ut|m–2ut – �u +
∫ t

0
g(t – s)�u(s)) ds = 0, (x, t) ∈ Ω × [0, +∞),

for m ≥ 2, where A(t) a bounded and positive definite matrix, and proved a general prop-
erty of energy decay result, with usual exponential and polynomial decays as particular
cases. Fang and Qiu [11] considered the mixed boundary problem of the equation

A(x, t)ut – �u +
∫ t

0
g(t – s) div

(
a(x)∇u(s)

)
ds = 0, (x, t) ∈ Ω × [0, +∞),

where A(x, t) is a positive function such that At(x, t) ≤ 0. By the technique of Lyapunov
functional they proved the existence and uniqueness of a global solution and that the
energy functional decays exponentially or polynomially to zero as time tends to infinity.
Later, Li et al. [12] were concerned with a mixed boundary value problem of the semilinear
parabolic equation

ut – �u +
∫ t

0
g(t – s) div

(
a(x)∇u(s)

)
ds = 0, (x, t) ∈ Ω × [0, +∞).

Under suitable conditions, a generalized property of energy decay was proved, in which the
exponential and polynomial decay results are only particular cases. However, to the best of
the authors’ knowledge, the decay results for semilinear heat equations with past (infinite)
history memory have not been discussed yet. Motivated by this observation, we intend to
study the generalized property of energy decay for problem (1.1) in the presence of past
and finite history memories, which allows a wide class of memory kernel functions, where
the exponential and polynomial decay results are only particular cases (see Example 3.1).
Our result is also valid for the problem with past memory or finite memory term case;
see Remark 3.2. It is necessary to point out that the argument in [9, 11, 12] cannot be
extended to problem (1.1) due to the past memory term. In this paper, we adopt a new
approach introduced by Guesmia [13], who investigated a class of hyperbolic problems.

This paper is organized as follows. In Sect. 2, we present preliminaries and some lem-
mas needed for later work. In Sect. 3, we establish the general decay result and give some
examples to illustrate its wide application.
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2 Preliminaries and some lemmas
In this section, we give some assumptions, definitions, and lemmas, which will be used to
establish our main result.

We first state the following assumptions.
(H1) gi : R+ → R

+ are differentiable nonincreasing functions satisfying gi(0) > 0, i = 1, 2,
and 1 – ‖a1‖∞

∫ +∞
0 g1(s) ds – ‖a2‖∞

∫ +∞
0 g2(s) ds = l > 0.

(H2) There exists a positive differentiable nonincreasing function ξ : R+ →R
+ such that

g1
′(t) ≤ –ξ (t)g1(t), t ≥ 0. (2.1)

(H3) There exist a positive constant σ and an increasing strictly convex function
G : R+ → R

+ of class C1(R+) ∩ C2(0, +∞), satisfying G(0) = G′(0) = 0 and
limt→+∞ G′(t) = +∞, such that

g2
′(t) ≤ –σ g2(t), t ≥ 0, (2.2)

or

∫ +∞

0

g2(t)
G–1(–g2′(t))

dt + sup
t∈R+

g2(t)
G–1(–g2′(t))

< +∞. (2.3)

(H4) ai : Ω → R
+ (i = 1, 2) are in C1(Ω), and there exist two positive constants b0 and

b1 such that |∇a1(x)| ≤ b1a1(x) for x ∈ Ω and

a1(x) + a2(x) ≥ b0, x ∈ Ω .

(H5) f : R→ R is Lipschitz continuous and satisfies

f (s)s ≥ 2F(s) ≥ 0, s ∈R,

where F(s) =
∫ s

0 f (z) dz.
To get an equivalent problem of (1.1) for convenience, we define

ηt(x, s) = u(x, t) – u(x, t – s), ∀x ∈ Ω , s, t ≥ 0.

Obviously, this gives

ηt
t(x, s) + ηt

s(x, s) = ut(x, t).

Together with (1.1), we deduce the problem

⎧⎪⎪⎨
⎪⎪⎩

ut – div[(1 – a2(x)
∫ +∞

0 g2(s) ds)∇u(t)] +
∫ t

0 g1(t – s) div(a1(x)∇u(s)) ds

–
∫ +∞

0 g2(s) div(a2(x)∇ηt(s)) ds + f (u) = 0, (x, t) ∈ Ω × [0,∞),

ηt
t(x, s) + ηt

s(x, s) – ut(x, t) = 0, x ∈ Ω , s, t ≥ 0,

(2.4)
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and the following initial and boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

u(x, t) = ηt(x, s) = 0, ∀x ∈ ∂Ω , s, t ≥ 0,

u(x, –t) = u0(x, t), ηt(x, 0) = 0, (x, t) ∈ Ω × [0,∞),

η0(x, s) = u0(x, 0) – u0(x, s), x ∈ Ω , s, t ≥ 0.

(2.5)

Now we define the Hilbert space

H1
0 (Ω) =

{
u ∈ H1(Ω)|u = 0 on ∂Ω

}

and the weight space with respect to g2

M =
{
ξ : R+ → H1

0 (Ω)
∣∣∣
∫ +∞

0
g2(s)

∥∥√
a2(x)∇ξ (s)

∥∥2
2 ds < +∞

}

endowed with scalar product and norm

(ξ ,ς )M =
∫ +∞

0
g2(s)

∫
Ω

a2(x)∇ξ (s)∇ς (s) dx ds,

‖ξ‖2
M =

∫ +∞

0
g2(s)

∥∥√
a2(x)∇ξ (s)

∥∥2
2 ds < +∞,

where ‖ · ‖q, 1 ≤ q ≤ ∞, is the norm of Lq(Ω).
We now state the definition of a solution of problem (2.4)–(2.5).

Definition 2.1 A solution of problem (2.4)–(2.5) is a function u ∈ C([0, T]; H1
0 (Ω)) ∩

C1([0, T]; L2(Ω)), T > 0, that satisfies

∫
Ω

ut(t)ω(x, t) dx +
∫

Ω

(
1 – a2(x)

∫ +∞

0
g2(s) ds

)
∇u(t)∇ω(x, t) dx

–
∫

Ω

∫ t

0
g1(t – s)a1(x)∇u(s)∇ω(x, t) ds dx +

∫
Ω

a2(x)
∫ +∞

0
g2(s)∇ηt(s)∇ω(x, t) ds dx

+
∫

Ω

f (u)ω(x, t) dx = 0,

(
ηt

t(s), ξ
)

M = –
(
ηt

s(s), ξ
)

M +
(
ut(t), ξ

)
M,

for all ω ∈ C([0, T]; H1
0 (Ω)) and ξ ∈ M.

Remark 2.2 The existence and uniqueness of a global solution for problem (2.4)–(2.5) can
be established by using the Galerkin method, the contraction mapping principle, and a
continuation argument. The process is similar to that of [11].

Define the modified energy functional of problem (2.4)–(2.5) by

E(t) := E[u](t)

=
1
2

∫
Ω

k(x, t)
∣∣∇u(t)

∣∣2 dx +
1
2

(g1 ◦ ∇u)(t) +
1
2
(
g2 ◦ ∇ηt)(t) +

∫
Ω

F
(
u(t)

)
dx, (2.6)
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where

k(x, t) = 1 – a1(x)
∫ t

0
g1(s) ds – a2(x)

∫ +∞

0
g2(s) ds,

(g1 ◦ ∇u)(t) =
∫ t

0
g1(t – s)

∥∥√
a1(x)

(∇u(t) – ∇u(s)
)∥∥2

2 ds, ∀u ∈ H1
0 (Ω),

(
g2 ◦ ∇ηt)(t) =

∫ +∞

0
g2(s)

∥∥√
a2(x)∇ηt(s)

∥∥2
2 ds.

We show the following lemma, which is useful to get dE(t)
dt .

Lemma 2.1 For all ηt(s) ∈ M, we have the equality

1
2

∫
Ω

a2(x)
∫ +∞

0
g2

′(s)
∣∣∇ηt(s)

∣∣2
ds dx = –

∫
Ω

a2(x)
∫ +∞

0
g2(s)∇ηt(s)∇ηt

s(s) ds dx.

Proof The result can be obtained directly from the calculation

0 =
1
2

∫
Ω

a2(x)
d
ds

(∫ +∞

0
g2(s)

∣∣∇ηt(s)
∣∣2 ds

)
dx

=
1
2

∫
Ω

a2(x)
∫ +∞

0
g ′

2(s)
∣∣∇ηt(s)

∣∣2 ds dx

+
∫

Ω

a2(x)
∫ +∞

0
g2(s)∇ηt(s)∇ηt

s(s) ds dx. �

Lemma 2.2 The energy functional E(t) of problem (2.4)–(2.5) satisfies

d
dt

E(t) = –
1
2

g1(t)
∥∥√

a1(x)∇u(t)
∥∥2

2 +
1
2
(
g1

′ ◦ ∇u
)
(t) +

1
2
(
g2

′ ◦ ∇ηt)(t) –
∥∥ut(t)

∥∥2
2

≤ 0. (2.7)

Proof Differentiating E(t) in (2.6), we obtain

d
dt

E(t) = –
1
2

g1(t)
∥∥√

a1(x)∇u(t)
∥∥2

2 +
∫

Ω

k(x, t)∇u(t)∇ut(t) dx +
1
2
(
g ′

1 ◦ ∇u
)
(t)

+
1
2
(
g ′

2 ◦ ∇ηt)(t) +
∫

Ω

a1(x)
∫ t

0
g1(t – s)

(∇u(t) – ∇u(s)
)∇ut(t) ds dx

+
∫

Ω

a2(x)
∫ +∞

0
g2(s)∇ηt(s)∇ηt

t(s) ds dx +
∫

Ω

f (u)ut(t) dx.

Multiplying the first equality in (2.4) by ut and then integrating the result over Ω , we
obtain

∫
Ω

u2
t (t) dx +

∫
Ω

∇u(t)∇ut(t) dx –
∫

Ω

∫ t

0
g1(t – s)a1(x)∇u(s) ds∇ut(t) dx

–
∫

Ω

∫ +∞

0
g2(s)a2(x)∇u(t – s) ds∇ut(t) dx +

∫
Ω

f (u)ut(t) dx = 0.

Subtracting the above two equalities and using Lemma 2.1, we get (2.7). �
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Note that here the positive constant c or C denotes different constants in different places.

3 General decay
In this section, we establish the estimate of general energy decay, which is the main result
of this paper. For this purpose, we introduce the perturbed energy functional

Ψ (t) = E(t) + ε1χ (t) + ε2φ(t),

where ε1 and ε2 are small positive constants, and

χ (t) =
1
2

∫
Ω

u2(t) dx,

φ(t) =
∫

Ω

u(t)
∫ t

0
g1(t – s)a1(x)u(s) ds dx.

We prove the following three lemmas for later use.

Lemma 3.1 Assume that u(x, t) is a solution of problem (2.4)–(2.5). Then there exist two
constants c1, c2 > 0 such that

c1E(t) ≤ Ψ (t) ≤ c2E(t). (3.1)

Proof Let c∗ be the best constant for the Poincaré inequality ‖u‖2 ≤ c∗‖∇u‖2. It follows
directly that

∣∣χ (t)
∣∣ =

1
2

∣∣∣∣
∫

Ω

u2(t) dx
∣∣∣∣ ≤ c2∗

2
‖∇u‖2

2 ≤ c01E(t).

Applying the Hölder inequality, we obtain

∣∣φ(t)
∣∣ ≤

∣∣∣∣
∫

Ω

u(t)
∫ t

0
g1(t – s)a1(x)

(
u(t) – u(s)

)
ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

u(t)
∫ t

0
g1(t – s)a1(x)u(t) ds dx

∣∣∣∣

≤
(

δ1

2
+ ‖a1‖∞

∫ t

0
g1(s) ds

)
c2
∗‖∇u‖2

2 +
‖a1‖∞

∫ t
0 g1(s) ds

2δ1
c2
∗(g1 ◦ ∇u)(t)

≤ c02E(t).

Then, selecting c1 = 1 – ε1c01 – ε2c02 and c2 = 1 + ε1c01 + ε2c02, we get(3.1). �

Lemma 3.2 Assume that (H1)–(H5) hold and u0 ∈ H1
0 (Ω) ∩ H2(Ω). Let u(x, t) be a solu-

tion of problem (2.4)–(2.5). Then there exists a small constant μ1 such that

χ ′(t) ≤ –(l – μ1)‖∇u‖2
2 +

1 – l
2μ1

[
(g1 ◦ ∇u)(t) +

(
g2 ◦ ∇ηt)(t)

]
–

∫
Ω

uf (u) dx. (3.2)
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Proof Differentiating χ (t) and using Green’s formula and Hölder’s inequality, we deduce

χ ′(t) =
∫

Ω

uut dx

= –
∫

Ω

∇u
[(

1 – a2(x)
∫ +∞

0
g2(s) ds

)
∇u(t)

]
dx

+
∫

Ω

∇u
∫ t

0
g1(t – s)

(
a1(x)∇u(s)

)
ds

–
∫

Ω

∇u
∫ +∞

0
g2(s)a2(x)∇ηt(s) ds dx –

∫
Ω

uf (u) dx

= –
∫

Ω

k(x, t)
∣∣∇u(t)

∣∣2 dx +
∫

Ω

∇u
∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds

–
∫

Ω

∇u
∫ +∞

0
g2(s)a2(x)∇ηt(s) ds dx –

∫
Ω

uf (u) dx

≤ –l‖∇u‖2
2 +

μ1 + μ2

2
‖∇u‖2

2 +
‖a1‖∞

∫ t
0 g1(s) ds

2μ1
(g1 ◦ ∇u)(t)

+
‖a2‖∞

∫ ∞
0 g2(s) ds

2μ2

(
g2 ◦ ∇ηt)(t) –

∫
Ω

uf (u) dx

≤ –(l – μ1)‖∇u‖2
2 +

1 – l
2μ1

[
(g1 ◦ ∇u)(t) +

(
g2 ◦ ∇ηt)(t)

]
–

∫
Ω

uf (u) dx.

Setting μ1 = μ2 in the last inequality, we get (3.2). �

Lemma 3.3 Assume that (H1)–(H5) hold and u0 ∈ H1
0 (Ω) ∩ H2(Ω). Let u(x, t) be a solu-

tion of problem (2.4)–(2.5). Then

∣∣φ′(t)
∣∣ ≤

[
1 +

c2∗
2

+ 2g1(0)‖a1‖∞c2
∗ +

(
3b2

1c2
∗ + 3 + c2

∗
)
(1 – l)2

]
‖∇u‖2

2

+
(
3b2

1c2
∗ + 4 + c2

∗
)
(1 – l)(g1 ◦ ∇u)(t) + (1 – l)

(
g2 ◦ ∇ηt)(t)

+
1
2

∫
Ω

∣∣f (u)
∣∣2 dx –

c2∗
2

‖a1‖∞g1(0)
(
g ′

1 ◦ ∇u
)
(t). (3.3)

Proof Differentiating φ(t) and using Green’s formula and Hölder’s inequality, we deduce

φ′(t) =
∫

Ω

ut(t)
∫ t

0
g1(t – s)a1(x)u(s) ds dx

+
∫

Ω

u(t)
∫ t

0
g ′

1(t – s)a1(x)u(s) ds dx + g1(0)
∫

Ω

∣∣u(t)
∣∣2a1(x) dx

=
∫

Ω

div

[(
1 – a2(x)

∫ +∞

0
g2(s) ds

)
∇u(t)

]∫ t

0
g1(t – s)a1(x)u(s) ds dx

–
∫

Ω

∫ t

0
g1(t – s) div

(
a1(x)∇u(s)

)
ds

∫ t

0
g1(t – s)a1(x)u(s) ds dx

+
∫

Ω

∫ +∞

0
g2(s) div

(
a2(x)∇ηt(s)

)
ds

∫ t

0
g1(t – s)a1(x)u(s) ds dx

–
∫

Ω

f (u)
∫ t

0
g1(t – s)a1(x)u(s) ds dx
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+
∫

Ω

u(t)
∫ t

0
g ′

1(t – s)a1(x)u(s) ds dx + g1(0)
∫

Ω

∣∣u(t)
∣∣2a1(x) dx

= –
∫

Ω

k(x, t)∇u(t)
∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

–
∫

Ω

k(x, t)∇u(t)
∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

:= I1

+
∫

Ω

∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds
∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

+
∫

Ω

∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds
∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

:= I2

–
∫

Ω

∫ +∞

0
g2(s)

(
a2(x)∇ηt(s)

)
ds

∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

–
∫

Ω

∫ +∞

0
g2(s)

(
a2(x)∇ηt(s)

)
ds

∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

:= I3

–
∫

Ω

f (u)
∫ t

0
g1(t – s)a1(x)u(s) ds dx

+
∫

Ω

u(t)
∫ t

0
g ′

1(t – s)a1(x)u(s) ds dx + g1(0)
∫

Ω

∣∣u(t)
∣∣2a1(x) dx. (3.4)

Using (H4), we estimate the first two terms in the right-hand side of this equality:

|I1| ≤
∣∣∣∣
∫

Ω

k(x, t)∇u(t)
∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

k(x, t)∇u(t)
∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

∣∣∣∣
≤ μ3 + μ4

2

∫
Ω

∣∣k(x, t)∇u(t)
∣∣2 dx

+
(

b2
1c2∗

2μ3
+

1
2μ4

)∫
Ω

(∫ t

0
g1(t – s)a1(x)∇u(s)

)2

ds dx

≤ μ3 + μ4

2
‖∇u‖2

2

+
(

b2
1c2∗

2μ3
+

1
2μ4

)
‖a1‖∞

∫ t

0
g1(s) ds

∫
Ω

∫ t

0
g1(t – s)a1(x)

∣∣∇u(s)
∣∣2 ds dx

≤
[

μ3 + μ4

2
+

(
b2

1c2∗
2μ3

+
1

2μ4

)
(1 + μ5)

(
‖a1‖∞

∫ t

0
g1(s) ds

)2]
‖∇u‖2

2

+
(

b2
1c2∗

2μ3
+

1
2μ4

)(
1 +

1
μ5

)
‖a1‖∞

∫ t

0
g1(s) ds(g1 ◦ ∇u)(t). (3.5)

We estimate the second two terms in the right-hand side of (3.4):

|I2| ≤
∣∣∣∣
∫

Ω

∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds
∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds
∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

∣∣∣∣
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≤ μ6 + μ7

2

∫
Ω

(∫ t

0
g1(t – s)a1(x)

(∇u(s) – ∇u(t)
)

ds
)2

dx

+
(

b2
1c2∗

2μ6
+

1
2μ7

)∫
Ω

(∫ t

0
g1(t – s)a1(x)∇u(s) ds

)2

dx

≤
(

b2
1c2∗

2μ6
+

1
2μ7

)
(1 + μ5)

(
‖a1‖∞

∫ t

0
g1(s) ds

)2

‖∇u‖2
2

+
[

μ6 + μ7

2
+

(
b2

1c2∗
2μ6

+
1

2μ7

)(
1 +

1
μ5

)]
‖a1‖∞

∫ t

0
g1(s) ds(g1 ◦ ∇u)(t). (3.6)

Similarly, we estimate the third two terms in the right-hand side of (3.4):

|I3| ≤
∣∣∣∣
∫

Ω

∫ +∞

0
g2(s)

(
a2(x)∇ηt(s)

)
ds

∫ t

0
g1(t – s)∇a1(x)u(s) ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

∫ +∞

0
g2(s)

(
a2(x)∇ηt(s)

)
ds

∫ t

0
g1(t – s)a1(x)∇u(s) ds dx

∣∣∣∣
≤ μ8 + μ9

2
‖a2‖∞

∫ +∞

0
g2(s) ds

(
g2 ◦ ∇ηt)

+
(

b2
1c2∗

2μ8
+

1
2μ9

)
(1 + μ5)

(
‖a1‖∞

∫ t

0
g1(s) ds

)2

‖∇u‖2
2

+
(

b2
1c2∗

2μ8
+

1
2μ9

)(
1 +

1
μ5

)
‖a1‖∞

∫ t

0
g1(s) ds(g1 ◦ ∇u)(t). (3.7)

The seventh term in the right-hand side of (3.4) gives

∣∣∣∣
∫

Ω

f (u)
∫ t

0
g1(t – s)a1(x)u(s) ds dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω

f (u)
∫ t

0
g1(t – s)a1(x)

(
u(s) – u(t)

)
ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

f (u)
∫ t

0
g1(t – s)a1(x)u(t) ds dx

∣∣∣∣

≤ μ10

2

∫
Ω

∣∣f (u)
∣∣2 dx +

1
2μ10

∫
Ω

(∫ t

0
g1(t – s)a1(x)u(s) ds

)2

dx

≤ μ10

2

∫
Ω

∣∣f (u)
∣∣2 dx +

c2∗
2μ10

(1 + μ5)
(

‖a1‖∞
∫ t

0
g1(s) ds

)2

‖∇u‖2
2

+
c2∗

2μ10

(
1 +

1
μ5

)
‖a1‖∞

∫ t

0
g1(s) ds(g1 ◦ ∇u)(t). (3.8)

From the last two terms in the right-hand side of (3.4) we get

∣∣∣∣
∫

Ω

u(t)
∫ t

0
g ′

1(t – s)a1(x)u(s) ds dx
∣∣∣∣

≤
∣∣∣∣
∫

Ω

u(t)
∫ t

0
g ′

1(t – s)a1(x)
(
u(t) – u(s)

)
ds dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

(
u(t)

)2
∫ t

0
g ′

1(t – s)a1(x) ds dx
∣∣∣∣
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≤ μ11c2∗
2

‖∇u‖2
2 +

1
2μ11

∫
Ω

(∫ t

0
g ′

1(t – s)a1(x)
(
u(t) – u(s)

)
ds

)2

dx

+ ‖a1‖∞
∣∣g1(t) – g1(0)

∣∣c2
∗‖∇u‖2

2

≤
(

μ11c2∗
2

+ ‖a1‖∞
∣∣g1(t) – g1(0)

∣∣c2
∗

)
‖∇u‖2

2

–
c2∗

2μ11
‖a1‖∞

∣∣g1(t) – g1(0)
∣∣(g ′

1 ◦ ∇u
)
(t) (3.9)

and

g1(0)
∫

Ω

∣∣u(t)
∣∣2a1(x) dx ≤ g1(0)‖a1‖∞c2

∗‖∇u‖2
2. (3.10)

Substituting inequalities (3.5)–(3.10) into (3.4), we obtain

∣∣φ′(t)
∣∣ ≤

[
μ3 + μ4

2
+

μ11c2∗
2

+ ‖a1‖∞
∣∣g1(t) – g1(0)

∣∣c2
∗ + g1(0)‖a1‖∞c2

∗

+
(

b2
1c2∗

2μ3
+

1
2μ4

+
b2

1c2∗
2μ6

+
1

2μ7
+

b2
1c2∗

2μ8
+

1
2μ9

+
c2∗

2μ10

)

× (1 + μ5)
(

‖a1‖∞
∫ t

0
g1(s) ds

)2]
‖∇u‖2

2

+
[

μ6 + μ7

2
+

(
b2

1c2∗
2μ3

+
1

2μ4
+

b2
1c2∗

2μ6
+

1
2μ7

+
b2

1c2∗
2μ8

+
1

2μ9
+

c2∗
2μ10

)(
1 +

1
μ5

)]

× ‖a1‖∞
∫ t

0
g1(s) ds(g1 ◦ ∇u)(t)

+
μ8 + μ9

2
‖a2‖∞

∫ +∞

0
g2(s) ds

(
g2 ◦ ∇ηt)

+
μ10

2

∫
Ω

∣∣f (u)
∣∣2 dx

–
c2∗

2μ11
‖a1‖∞

∣∣g1(t) – g1(0)
∣∣(g ′

1 ◦ ∇u
)
(t).

Set

μ3 = μ4 = μ5 = μ6 = μ7 = μ8 = μ9 = μ10 = μ11 = 1.

Then we obtain

∣∣φ′(t)
∣∣ ≤

[
1 +

c2∗
2

+ 2g1(0)‖a1‖∞c2
∗ +

(
3b2

1c2
∗ + 3 + c2

∗
)
(1 – l)2

]
‖∇u‖2

2

+
(
3b2

1c2
∗ + 4 + c2

∗
)
(1 – l)(g1 ◦ ∇u)(t) + (1 – l)

(
g2 ◦ ∇ηt)(t)

+
1
2

∫
Ω

∣∣f (u)
∣∣2 dx –

c2∗
2

‖a1‖∞g1(0)
(
g ′

1 ◦ ∇u
)
(t). �

We now state and prove our main theorem.
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Theorem 3.1 Assume that (H1)–(H5) hold and u0 ∈ H1
0 (Ω)∩H2(Ω). Assume further that

in case of (2.3), there exists M0 > 0 satisfying

∫
Ω

∣∣∇u0(x, t)
∣∣2 dx ≤ M0, t > 0. (3.11)

Then there exist positive constants ε0, k1, and k2 such that the energy functional of problem
(2.4)–(2.5) satisfies

E(t) ≤ k1G–1
1

(
k2

∫ t

0
ξ (s) ds

)
, t > 0, (3.12)

where G1(t) =
∫ 1

t
1

G0(s) ds, and

G0(t) =

⎧⎨
⎩

t if (2.2) holds,

tG′(ε0t) if (2.3) holds.

Remark 3.2 This result contains two particular cases: (i) a1 = 0, where we can take ξ ≡ 1,
and (ii) a2 = 0, where we can take G0(t) = t. Hence our result is more general; for example,
case (ii) contains Theorem 1 in [12].

Proof Applying (2.7), (3.2), and (3.3), for some ε1 > 0 and ε2 > 0, we obtain

Ψ ′(t) = E′(t) + ε1χ
′(t) + ε2φ

′(t)

≤ –
1
2

g1(t)
∥∥√

a1(x)∇u(t)
∥∥2

2 +
1
2
(
g2

′ ◦ ∇ηt)(t)

–
∥∥ut(t)

∥∥2
2 +

1 – l
2μ1

ε1
[
(g1 ◦ ∇u)(t) +

(
g2 ◦ ∇ηt)(t)

]
– ε1

∫
Ω

uf (u) dx

+
{[

1 +
c2∗
2

+ 2g1(0)‖a1‖∞c2
∗ +

(
3b2

1c2
∗ + 3 + c2

∗
)
(1 – l)2

]
ε2 – (l – μ1)ε1

}
‖∇u‖2

2

+
(
3b2

1c2
∗ + 4 + c2

∗
)
(1 – l)ε2(g1 ◦ ∇u)(t) + (1 – l)ε2

(
g2 ◦ ∇ηt)(t)

+
1
2
ε2

∫
Ω

∣∣f (u)
∣∣2 dx +

1
2
[
1 – c2

∗ε2‖a1‖∞g1(0)
](

g ′
1 ◦ ∇u

)
(t).

Choosing ε1 and ε2 such that

[
1 +

c2∗
2

+ 2g1(0)‖a1‖∞c2
∗ +

(
3b2

1c2
∗ + 3 + c2

∗
)
(1 – l)2

]
ε2 – (l – μ1)ε1 < 0

and

1 – c2
∗ε2‖a1‖∞g1(0) > 0,

we deduce

Ψ ′(t) ≤ –cE(t) + C
(
g1 ◦ ∇u + g2 ◦ ∇ηt), t > 0. (3.13)
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To get our conclusion, we deal with two cases to estimate (g2 ◦ ∇ηt)(t):
Case 1. Condition (2.2) holds. Using (2.7), we get

(
g2 ◦ ∇ηt)(t) ≤ –

1
σ

(
g2

′ ◦ ∇ηt)(t) ≤ –
2
σ

E′(t), t > 0. (3.14)

Case 2. Condition (2.3) holds. We follow the idea of [13]. Let G∗(t) = sups≥0{ts – G(s)} be
the dual function of the convex function G and set K(s) = s

G–1(s) , s ∈ R
+. Noting that G–1

is a positive concave function and G–1(0) = 0, for any 0 ≤ s1 < s2, we derive

K(s1) =
s1

G–1( s1
s2

s2 + (1 – s1
s2

)0)

≤ s1
s1
s2

G–1(s2) + (1 – s1
s2

)G–1(0)
=

s2

G–1(s2)
= K(s2),

which implies that K(s) is nondecreasing.
From (2.6) and (3.11) we arrive at

∥∥√
a2(x)∇ηt∥∥2

2 ≤ 2
∥∥√

a2(x)∇u(t)
∥∥2

2 + 2
∥∥√

a2(x)∇u(t – s)
∥∥2

2 ≤ cE(t) ≤ c.

Choosing τ1, τ2 > 0 and applying the Young inequality ts ≤ G(t) + G∗(s) and the fact that
K(s) and G∗ are nondecreasing, we have

(
g2 ◦ ∇ηt)(t) =

1
τ1G′(ε0E(t))

∫ +∞

0
G–1(–τ2g2

′(s)
∥∥√

a2(x)∇ηt∥∥2
2

)

× τ1G′(ε0E(t))g2(s)‖√a2(x)∇ηt‖2
2

G–1(–τ2g2′(s)‖√a2(x)∇ηt‖2
2)

ds

≤ –
τ2

τ1G′(ε0E(t))
(
g2

′ ◦ ∇ηt)(t)

+
1

τ1G′(ε0E(t))

∫ +∞

0
G∗

(
cτ1G′(ε0E(t))g2(s)

G–1(–cτ2g2′(s))

)
ds.

Using (2.7) and G∗(s) = s(G′)–1(s) – G((G′)–1(s)) ≤ s(G′)–1(s), we get

(
g2 ◦ ∇ηt)(t) ≤ –

2τ2

τ1G′(ε0E(t))
E′(t)

+ c
∫ +∞

0

g2(s)
G–1(–cτ2g2′(s))

(
G′)–1

(
cτ1G′(ε0E(t))g2(s)

G–1(–cτ2g2′(s))

)
ds.

Setting τ2 = 1
c , by (2.3) we know that

(
g2 ◦ ∇ηt)(t) ≤ –

2
cτ1G′(ε0E(t))

E′(t) + c
(
G′)–1(cτ1G′(ε0E(t)

))∫ +∞

0

g2(s)
G–1(–g2′(s))

ds.

Then, setting τ1 = 1
c and using (2.3) again, we obtain

G′(ε0E(t)
)(

g2 ◦ ∇ηt)(t) ≤ –cE′(t) + cε0E(t)G′(ε0E(t)
)
, t > 0. (3.15)
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From (3.14) and (3.15) it is easy to see that

G0(E(t))
E(t)

(
g2 ◦ ∇ηt)(t) ≤ –cE′(t) + cε0G0

(
E(t)

)
, t > 0, (3.16)

with G0 given in Theorem 3.1.
Now, multiplying (3.13) by G0(E(t))

E(t) , then using (3.16), and selecting ε0 sufficiently small,
we get

G0(E(t))
E(t)

Ψ ′(t) + cE′(t) ≤ –cG0
(
E(t)

)
+ C

G0(E(t))
E(t)

(g1 ◦ ∇u)(t), t > 0. (3.17)

Define

L(t) =
G0(E(t))

E(t)
Ψ (t) + cE(t), t > 0.

From the definition of G0 we have that t �→ G0(E(t))
E(t) is nonincreasing and nonnegative. Ap-

plying Lemma 3.1, we have L(t) ∼ E(t) for t > 0.
Differentiating L(t), we get

L′(t) =
(

G0(E(t))
E(t)

)′
Ψ (t) +

G0(E(t))
E(t)

Ψ ′(t) + cE′(t)

≤ –cG0
(
E(t)

)
+ C

G0(E(t))
E(t)

(g1 ◦ ∇u)(t), t > 0. (3.18)

To handle the last term in (3.18), multiplying it by ξ (t) in both sides, and using (H2), (2.7),
the fact that t �→ G0(E(t))

E(t) is nonnegative, we obtain

ξ (t)L′(t) ≤ –cξ (t)G0
(
E(t)

)
+ C

G0(E(t))
E(t)

ξ (t)(g1 ◦ ∇u)(t)

≤ –cξ (t)G0
(
E(t)

)
– C

(
g1

′ ◦ ∇u
)
(t)

≤ –cξ (t)G0
(
E(t)

)
– CE′(t), t > 0. (3.19)

Finally, set I(t) = ξ (t)L(t) + CE(t). Obviously, I(t) ∼ E(t). Since ξ (t) is nonincreasing, it
follows form (3.19) that

I ′(t) ≤ –cξ (t)G0
(
E(t)

)
, t > 0. (3.20)

Since G0(s) > 0 for s > 0 and I(t) ∼ E(t), we can see that

–
I ′(t)

G0(I(t))
≥ cξ (t), t > 0,

and thus

(
G1

(
I(t)

))′ ≥ cξ (t), t > 0.
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Integrating this inequality over (0, t), we obtain

G1
(
I(t)

) ≥ c
∫ t

0
ξ (s) ds + G1

(
I(0)

) ≥ c
∫ t

0
ξ (s) ds, t > 0.

Since G1 is nonincreasing, it is easy to get that

I(t) ≤ G1
–1

(
c
∫ t

0
ξ (s) ds

)
, t > 0.

Since I(t) ∼ E(t), we obtain (3.12). The proof is completed. �

Now we give some examples to illustrate the result in Theorem 3.1, in which the expo-
nential and polynomial decay estimates are only particular cases.

Example 3.1
(i) Let g1(t) = λe–(t+1)p , λ > 0, p ≥ 1, and g2(t) = e–(t+1)q , q ≥ 1. We can see that (2.1) and

(2.2) hold for ξ = p and σ = q, respectively. Then (3.12) gives the exponential decay
estimate

E(t) ≤ k1e–k2pt .

(ii) Let g1(t) = (1 + t)v, v < –1, and g2(t) = λe–(t+1)p , λ > 0, p ≥ 1. Similarly, we can check
that (2.1) and (2.2) hold for ξ (t) = –v

1+t and σ = p, respectively. Then (3.12) gives the
polynomial decay estimate

E(t) ≤ k1(1 + t)k2v.

(iii) Let g1(t) = 1
(2+t)v(ln(2+t))λ , v,λ > 0, and g2(t) = 1

(1+t)q , q > 1. We can see that (2.1) holds

for ξ (t) = v
2+t + λ

ln(2+t) and (2.3) holds for G(t) = t
1
p +1, p ∈ (0, q–1

2 ). Then we obtain
the decay estimate

E(t) ≤ k1

(k2
∫ t

0 ξ (s) ds + 1)p
=

k1

(k2 ln[(2 + t)v(ln(2 + t))λ] – k2 ln[2v(ln 2)λ] + 1)p .
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