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1 Introduction
In this paper, we consider the stochastic 3D Boussinesq equations driven by an additive

noise:

du+(u-Vu—-vAu+Vp)dt=pesdt +Y .o, P1,dW,,
dp+(u-Vp-kAp)dt=) 7 ¢2,id\)~7i, (&%) € (R* x R?),
V-u=0,

(1.1)
(M! :O)|t:0 = (MO: /00),

where u = (u1, uy, u3) is the velocity field of the flow, p is the scalar temperature, and p is
the scalar pressure; v, ¥ are nonnegative viscosity parameters and e; is the vertical unit
vector of R3. {W;}%°,, {W;}%°, are given independent standard Brownian motions defined
in the filtered space (£2, F, F;,P) with F; (a set of sub o-fields of F with F; C F; C F if
0<s<t<o0), ®;; and P;, are the components of the random force.

If §;; = @2 =0, system (1.1) becomes the deterministic Boussinesq equations, which
have been extensively studied for their physical significance as well as mathematical im-
portance in recent years (see, e.g., [1-4]). For 2D Boussinesq equations, the global regu-
larity issue has been settled in the affirmative under various degrees of viscosity: with full
viscosity v > 0 and « > 0, partial viscosity v > 0 and k = 0, or v = 0 and « > O for anisotropic
models [5-10], and with fractional Laplacian dissipation (see [11-15] and the references
therein). For the 3D Boussinesq system and the inviscid case in 2D, we can only obtain the
local well-posedness result or the global regularity result with respect to small initial data,
see [16-21] etc.
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In the meantime, researchers are interested in the stochastic Boussinesq equations by
considering that a system in reality is usually affected by external perturbations which in
many cases are of great uncertainty or random influence. Ferrario [22] first studied the
two-dimensional stochastic Boussinesq system with full viscosity, additive noise only on
the velocity field equation, and obtained the existence and uniqueness of its solution and
invariant measures for the associated semigroup. Following the work of the deterministic
case in [6, 7], Pu and Guo [23] studied the stochastic Boussinesq system with partial vis-
cosity with additive noise and obtained the global well-posedness type results. Then, Duan
and Millet [24] considered the multiplicative noise case and the large deviations, Brzez-
niak and Motyl [25] generalized the existence result (martingale solutions) to the 3D case,
and Yamazaki [26] considered the stochastic Boussinesq system with zero dissipation in
2D.

To the best of our knowledge, the problem of the existence and uniqueness of the strong
solutions for the 3D stochastic full viscosity Boussinesq equations is still open. In this
paper, we prove that the Cauchy problem (1.1) admits a local strong solution under some
conditions and obtain a blow-up time. Also, the probability estimate of the lifespan larger
than 8 (0 < 8 < 1) is given in our paper.

Without loss of generality, we take v = k = 1. We first state the definition of the local

strong solutions for the stochastic Boussinesq equations (1.1).
Definition 1.1 Fix stochastic S := (£2, F, F,P). Let (1o, po) € H; x H® be Fy measurable,
1<s<LU=(up).

(i) A pair (U, 7) is called a local strong solution of (1.1) if the following conditions are

satisfied:

« U is a right continuous progressively measurable process and, for all 0 < T' < oo,
U e L*(2;L%([0, T; H x H®)) N L*(2; ([0, T HE™ < H*™));
+ 7(w) is a stopping time with respect to J; such that
T(w) = A}I_I)l;o n(w) for almost all w,
where, for N = 1,2,...,

infl0<t<oo: IIL[(t)II%F + fot ||VU(S)||]2_[5 ds > N},
v(w) = (1.2)
0o, if the above set {-} is empty;

o U(t,x) € C([0, 7(w)); HS x H®) for almost all w € £2, and the following holds P-a.s.:

INTN
(u(t A Tx), )~ (10, 0) = fo ((Vi, Vo) = (u- Vi, ¢)) ds

x INTN
+ <Z/o (pl,idVVi(S)’({b>,
i-1
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IATN
<P(t/\TN)11/f)—(,00,1ﬁ) = /0 ((Vo, V) = (u-Vp,¥))ds
0 IATN "
¥ <Z/ <Pz,idWi(S),l/f>
i=1 70

forall0 <t<ooandall (¢,¥) € HX x H'. Here (-,-) is the inner product, and the
definition of spaces will be given in Sect. 2.
(if) We say the strong solutions are unique if, given any pair (U, 7), (U,7) of strong so-
lutions,

P(1yo)-iio) (U®) - U(®)) = 0Vt € [0,7 AT)) = 1.
Let @;:= {®;;}%, (j=1,2). Our main results are stated in the following two theorems.

Theorem 1.2 Fix stochastic S := (2, F, F,P). Let (uo, po) € L*($2; HS x H*) be Fo mea-
surable, (D1, @y) € L2(2; L% (R*;H° x H*)) is progressively measurable. Then there exists

loc
a unique strong solution (U, t) to system (1.1).

Moreover, the blow-up time could be weaker. Indeed, we have the following theorem.

Theorem 1.3 Let % <s <s, define

inf(t > 0: |u(®)12, = K},

lk =
0o, iftheset{-} is empty, (1.3)

¢= 1<1Ln;o k-
Then ¢ =t a.s., and we have
P({¢ > 8)) > 1— C*827+1 (A(S) + 1), (1.4)

where

8 8
A(6)=E(||uo||§p, + / 22, dt) +6E(||p||§z+ f ||q>2||iz).
0 0

Remark 1.4 In fact, we can consider the more general case that the solution U € Hj x H"
(% <s, % <n,s—2 <n<s). The proof is similar to ours.

We can construct the strong solution by the contraction mapping principle, cut-off func-
tion method, and Cauchy convergence theorem. For the detailed procedure, refer to [27].
Theorem 1.3 can be proved by using the stopping time and energy estimates.

The rest of the paper is organized as follows. We shall introduce some analysis tools in
Sobolev spaces and some basic theory of stochastic analysis in Sect. 2. In Sect. 3, we shall
prove the local existence of the strong solution, and Theorem 1.3 will be proved in the last
section.
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2 Preliminaries
Let H™ = W™2(R®) be the usual Sobolev space. We use the same notation H” for
H™(R3;R®) also. The symbols (-)ym and || - || ym represent the inner product and the norm

of H™, respectively. We introduce the function space
HY ={f e H";V -f =0}.

The symbol P denotes the projection H” — H"'. We recall the following inequality which
will be used later: for allv e H*, u € H%"H,, and w € H**1, % <s' <s<1,wehave

|- Vit wypss| < CIVI IVH 1oy Wl (2.1)

Lisy
H?2
since H C L7, Hi+w= ¢ L1, HYs C L7, 1/p+1/q+1/r = 1. By the interpolation inequality,
we have

Hstl*

1
IIVMIIH%“_S/ < Cllullys 2 llull (2.2)

We define the space for the white noise. Let @ := {®;}{°,, suppose m > 0, define

o0
H™ .= {cp‘w,cpi eH"and ) [ ®illfm < oo,

i=1

with the norm

o0
1D = D> N1l -

i=1

When s = 0, we also denote L.? by HC.
Now, we recall some basic theory of stochastic analysis. For details, we refer the reader

to [28-31] and the references therein.

Lemma 2.1 Suppose that M, = (M}, M?,...,M") is a vector of continuous local martin-
gales, that is, (Mi,]:t) is a local martingale for each i = 1,2,...,n and t € R*. Let A, =
(AL, A2,...,Al) be a vector of continuous process adapted to the same filtration such that
the total variation of Al on each finite interval is bounded almost surely, and Al = 0 almost
surely. Let X, = (X},th, ..., X}') be a vector of adapted processes such that X; = Xo + M, + A,
and let f € CY*(R* x R"). Then, for any t > 0, the equality

n t g i » - i
S X0) =£(0,Xo) + 21: /0 a—xif(s,Xs)dMS + Z; /O 8—mf(s,X5)dAs
1 n t 82 i 4 , 8
+ 5 ;/(; Faxjf(sy)(s) d(M ’M]>s +A gf(S,XS)dS (23)

holds almost surely. Here (-,-); is the cross variation process defined by (X,Y), = i{(X +
Y) — (X = Y).}, and (X); denotes the quadratic variation of X on [0, t].
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Lemma 2.2 (Burkholder—Davis—Gundy inequality) Let T > 0 and {X;}o<¢<T be a contin-
uous local martingale such that X, = 0. For every 0 < p < 00, there exist universal constants
¢, and C,, independent of T and X;, such that

S E((X)2) < E( max |X, |P) < GE((X)2). (2.4)

0<t<T

3 The local existence of local strong solution

We first give the key estimate to prove the local existence and uniqueness of the strong
solution. Fix N > 0 to be determined, choose a C*-smooth nonincreasing function gy :
[0,00) — [0, 1] such that

1, for|x| <N,

on(x) =
N {0, for |x] >N +1,

and

t 1/2
¢;‘;”=¢N(||u||m+||p||ﬂs+( / (||vM||%,s+||Vp||zs)ds) )
0

We consider the following Cauchy problem:
did + (@ P - Vid) — Aud)di = P(ples) dt + Y5, P, AW,

dp + (on” -V pI) = Ap))dt = 335, @), d W, (3.1)
(ujr pj)|t:0 = (I/[i), 06):
for j = 1,2. By Itd's formula in H* and the equations of (#/, /), we have
it ]

f{s +2HV141 - Vuz‘ f_[s dt

= —2<g01\"[1‘p1 (u' - Vu') - wz[z’pz (- Vu?),u' - u2>HS dt

@) - 2|2 dt + 2D}, - 2, ut - u?), AW
+ 2<(,01 - ,02)63, ut - uz)HS dt, (3.2)
and
d|p' =P + 2|V = Vo2t

= 2pk” (W V') =g (W V), 0" = Pyl
+ | @7 — @F || dt + 2(®F, — By p* — ), AW (3.3)

S
H HS
We have the following proposition.

Proposition 3.1 Forany T >0, we have

T
)+ [ Qv ||Vp||zs)dt)

2+ 5]

E( sup (”L’t(t)|
0<t<T
T
< €NTE(to ]| + | B0l s +/ (111 + 1P 17 dt), (3.4)
0

where i = uy — uy, p = p1 — pa, and @; = ®} — ®2 (i=1,2).
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Proof Set

We consider three cases:

2 2
Case 1: (p;’,p >0, 00" >0:

Q) <o — o |l - Vit - u?),, |
+ |((u —-u )-Vu ,ul—uz)Hs

+ |(u2 . V(u1 - uz),ul - uz)HS

= 11 +[2 +13, (35)

Q(t) < ’ﬁDIL\{z]' —‘PNp H(u -Vphpl=p )Hs
+ (' =?) - Vol 0t - 0%
+|{u?- V(o' = p*), 0" - 07),

=N+ L+ s (3.6)

1.1 2 .2
Case 2: ¢ >0,y =0:

1.1

QO = ok - o [t vul - ), (37)

Q) < el o[- Vol 0 = 07 - (3.8)
Case 3: (pN ‘oo, go” 5 0:

Qi(®) < |<,0K/l' - on ~0? |(w? - Vu*,u' — ), ], (3.9)

Qu(t) < |<,0K,1' — gt |(w?- Vo2 0! = p?),]. (3.10)

Denote

Y@= sup (Ju'(¢) = (¢) [+ [01(¢) =02 ()] )

0<t'<t

t
+/ (||Vu1—
0

we shall estimate Q;(¢) and Q,(¢). For Q;(¢), by taking s’ = s in (2.1) and (2.2), we have

2 HS + ”Vpl - vp2||?~15)dt

o G L o P I A
E CY t)l/zuul - u2 Hs+l ul SH+S% ul E[;-Sl
1 _
< gt = + YO 57 et (311)

..;;
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L= Cllut =], | Vit |y et =]
< Clu = e N U552 | 1 o 2
<t ,i, + Cllaaa |25 e | o Nl
||u —u? T
I < (u' ~u?) IIH% ! =] o
T el s PR
= gl =+ et -2 ol i
<l =il

Hence, it holds that

Q0 = 2 [V~ vl |}, + ROY ),

where
T \ 1
/ Rl(t)dtS(N+1)2sj _|_(]\[_|_1)Ts—7

0

according to the definition of ¢5;. Similarly, we have

h =< —||,0 - p? Hm +CY(t 2541 f;sl'
Jo = 20" = 02 P + Y@l [ | 52,
1 4

Js < 2ot = 02| + CY®] 2] ET

Therefore
3 1 22

Q) = [ V! = Vo[ + RAOY (@),

and
T B )
/ Ri(t)dt <(N+1)T +(N+1)T° 2.
0

In addition,

(0" = PY)es, ! =2, | < C([0" - ?[,

< CY(?).

Hstl

+ ”MI—M

2
- MZ”]-[Sj

2

2
)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Page 7 of 14
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Introducing a stopping time:

infl0<t<T:Y(t)>L}
gy =
T, iftheset{-}is empty.

Therefore, combining (3.2)—(3.19) and recalling the classical Gronwall inequality, we get

Y(T Aoy) < e (luh = 2|2 + [ 08 - 02])

[
C

t
+ e"N.T sup Z/O (Ml - I/lzr ¢l%1 ll)H“ dW‘

te[0,Tnop ] i1

o]

t
+eNT sup Zf (o' - 0% @l - (pt22)H3 aw
0

tel0,Trop ] i=1

A
+eCN'T/ (||<151
0

et 23 - @3]

2. dt.

Furthermore, by the Burkholder—Davis—Gundy inequality (2.4), one has

)

oo

eCN'TE< sup

te[0,T Aoy ]

t
/0 (' =, @y — @}y AW,

i=1

Thop ) 1/2
fecN,TE< [ volon -3 dt)
0

1
and
© At ~
eCN,TE sup / (,01 - 102; ®i2 - ¢i2,2>Hs dm
te[0,TAoL]| ;57 JO

T Aoy, 5 1/2
< eCN-TE( / Y0Pl - PP | s dt)
0

1 T
= ZEY(T Ao) +eNTE / | @k, - 027, dt.
0

Taking the mathematical expectation in (3.20), (3.21), and (3.22) implies

EY(T) < eNTE(|up— 2|1 + | 08 — 08| s)

+ @) - @35 a

v [ (o} - o]},

Hence, we get the key estimate for proving the existence of strong solution.

give the sketch for the proof of the existence and uniqueness of strong solution.

(3.20)

(3.21)

(3.22)

(3.23)
O

Now, we

Page 8 of 14
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1. Let v, be the Friedrichs mollifier. By the contraction mapping principle, we can show

that the approximate mollified equation

o0
du, + (goZ;f'pgiP(ug -Vu,) - Aug) dt =Pp.esdt + ZPQDU * v, dW},

i=1

Ug

o0
dpe + (goNi’pEi e - Vo — Apg) dt = Zd’Z,i * v, dW;,

i=1

(e Pe)le=0 = (U0 * Vg, Po * Ve),

admits a unique global strong solution.
2. It follows from (3.23) that {l/,,} is a Cauchy sequence in

L*(2;C([0, T, HS x H')) N L*(82;L%(0, T; H3' x H**)).
Let U be the limit. We can extract a subsequence still denoted by U/;; such that
U, (0) > U(w) inC([0, T HS x H) NL*(0, T; H3' x H**')  P-as.

Then gy """ — ¢’ Hence U is the unique solution of the modified equation

o0
du+ (o5 "Pu- Vu) - Au)dt = Ppesdt + Y PPy ;dW,,

i-1
o0
dp + (px"u-Vo - Ap)dt = Z(Dg)idﬁ’/i,
i1

(4, p)ls=0 = (400, po)-

3. Define the stopping time, and drop the cut-off function by the uniqueness of U, we
can get the local strong solution of (1.1). If there are two solutions U defined for [0, ) and
U defined for [0,7), then by inequality (3.4), for any N > 1,

U=U on[0,tn ATy

If Ty < v, then |U(tn)||%s > N, which contradicts the definition of 7y in (1.2). Hence
v < Ty. Similarly, we have Ty < ty, thus Ty = tn. Therefore, we obtain the uniqueness of
solutions.

4 Proof of Theorem 1.3
4.1 A new blow-up time
We introduce another stopping time as follows:

~ inf{¢ > 0: |u(t A 7)||%, > K},
- infiez 0s e A D)2, 2 K) W

7, if the set {-} is empty.

We have the following proposition.
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Proposition 4.1 For any K > 0, Tx < T almost surely on the set {t < oo}.

Proof Define Sff ={ww < EK} N {ty <k} for k> 1 and N > 1. According to Itd’s formula

and the equation of (i, p), we have

d(lulzs + 1o0Fs) + 2(IVulls + 1V oll7s) de

= (=2(u- Vu,u)ys = 2(u - Vp, p)ps + (pes, u)ps) dt

o0
+2) " ((@rw) s AW + (Do, p)1is AW;) + (I|PD1 |75 + | P2 ) dt. (4.2)

i=1

By (2.1) and (2.2), Young’s inequality, and Holder’s inequality, we bound

|- Vit uhpas | < Nl el 5oy Nl s
J-1 3 ¢
< Nl gy Nl ™ el o

4

1 /
< EIIVMIIiIs + Cllaallzs (L + el 27), (4.3)

|-V p,p)ms| < llull e o 1ol prser

H%ﬂ—s
S,—l E—S,

= lull g 121 * 1121 oo
4

1 7
= S IVpllEs + Cllolzs (1+ llull 5 ), (44)

and

| (pes, u)s| < Cllpll s lael] s

<C(lpllzs + lulfs)- (4.5)

By Gronwall’s inequality, we obtain

k/\TN/\ZK
2 2 2 2
sup  (llullzs + 1plFs) +/ (IVullFs + 1V pllzs ) ds
te[0,kATnALK] 0

kAtNAE}<
2 2 2 2
= C| lluollzs + loolls +/ (1P 115 + 11P215::) dt
0

o]

t t
+  sup Z / (P ) s AW +/ (Pais P) s sz')
0 0

te [O,k/\TNAZK] i=1

kAT ALK _4
X exp(C / (1+ ||u||12;s/,‘1)ds). (4.6)
0

According to the definition of Zx, we have

7
s

kAT AZK 4 )
/ (1+ ||u||Z;_,‘1 Jds<(1+K2-1)k as. (4.7)
0
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Furthermore, by the Burkholder—Davis—Gundy inequality (2.4), one has

e“KkE sup
te[0,kATyn /\EK] i=1

c kATNAZK
2 2 2 2
<e K'k]E</ (el Zs 1@l Ess + oM Fs I P2 lIis) dS)
0

t t
/ (Dry s AW + f (Bo P A,
0 0

1/2

IA
N | =

k
E  sup (Ilullf{s+llp||12{s)+€CK*E/ (191113 + 1P 115:) dt. (4.8)
0

te[O,k/\‘L’N/\EK]
Taking the mathematical expectation in (4.6), we have

kATN/\EK
E  sup  (lulfs +lolis) +E / IVl + IV ol ds)
0

te [O,k/\IN/\EK]

k
< S E([luol%s + | 00l%s) +eKAE / (1911 + 1Pl ) it (49)
0

By the definition of A%;, one has
k/\TN/\ZI(
Ak ¢ { sup  (llulls + oli7s) +/ (IVullZs + IV o2 ds) zN}.
te[0,kATN ALK 0

By Chebyshev’s inequality, it follows from (4.9) that

exp(Crx k) k
P(Afv)sTE ol s + ool s + | (191013 + D2 11F) dt ). (4.10)
0

Define A* = {t < ¢x} N {r < k}, then A C Af\, for all N, so P(A¥) = 0. Since {t < ¢x} N
{t <00} = U,filAk, then P({t < ¢x} N {r < o0}) = 0. The proof of Proposition 4.1 is thus
complete. d

Then, by the definition of {x (1.3), we have EK =g and ¢ < 7 a.s. On the other hand,
llull s < llullps, then |lu(ty)|l v < N.Due to the definition of {x, we have Ty < {x. There-
fore,

T=¢ as,
and ¢ is another blow-up time.

4.2 The proof of (1.4)
By 1to’s formula for || o|?,, we have

o0
dllpl2, + 21Vl 72 dt =2 (o, ®a) 2 dW; + | DallF, dt. (4.11)
i=1

By the Burkholder—Davis—Gundy inequality (2.4), we have

t/
E sup 22/ (0, @) 2 AW
0

veloignt] iy
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tNCK 1/2
< C]E(/ o721 P17 » dt)
0

1 t
<-E sup ||p||§2+ﬂ<:/ D213, dt.
0

t'e[0,¢x At]

Therefore, we obtain

t
E sup ol < CElpoll7 +Ef I3 » dt.
0

t'e[0,¢x At]

Applying It6’s formula for || ulli{s, , we have

d||u||12{S, + 2||Vu||?{s, dt=2(u-Vu,u),y dt +2(pes, u) v dt

o]

+2) (P tt) o AW, + PPy |2, dt.

i=1

By (2.1), we bound

2|(u-Vu,u)

o | = Cllullyg IVull Nl

s+l By
< Clull 2,
45'+2

1
2 25/ -1 2
=l + Clllael 2 + llll7, ),

and

2[(pes, u) s | < lloll2llullpze

1 2 2 2
= IVulle + Clpliz> + llull,y)-

Similar to (4.8), we have

o]

sup
t' €0tk ] i=1

t/
/ <¢1,i; u)].[s’ dVVl‘
0

1 t
< E sup Jul?,+ CIE/ 11112, dt.
0

t'e[0,tnck]

Combining (4.13)—(4.17) and recalling the definition of {x, we obtain

INEK
E sup [ul?, +IE/ Vul?, dt
te[0,6A¢k] H 0 H

2 ’ 2 1452
<Cl|E ||u0||HS, + ”¢1”H5’ dt | +K 218§+ K§
0

8
+3E(|Ipolliz+/ ||<Pz||]2L2>>
0

< C(K" 515+ K6 + A(9)),

Page 12 of 14

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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where we define

§ $
A(5)=E<||Mo||f{s/ - [z, dt) +5E<||po||§2 - ||<1>2||?L2).
0 0

By the definition of ¢k, one has

{wltx < 8) C {a)| sup [lul?, = K}.
te[0,6n¢k]

By Chebyshev’s inequality, we obtain

CK™ 518+ K8 + A(5))
= .

P({¢k <8}) <

Let § be given such that 0 < § < 1. Choose an integer K > 0 such that

1 25’1 1
<8+ < —,
K+1— K

then

25’1

P({¢ > 8)) = P({¢x > 8}) = 1 - C*527+1 (A(5) + 1).
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